当前位置: 首页 > news >正文

Spring AI 结构化输出详解

一、Spring AI 结构化输出的定义与核心概念

Spring AI 提供了一种强大的功能,允许开发者将大型语言模型(LLM)的输出从字符串转换为结构化格式,如 JSON、XML 或 Java 对象。这种结构化输出能力对于依赖可靠解析输出值的下游应用程序至关重要。

通过 Spring AI 的结构化输出转换器,开发者可以快速将 AI 模型的结果转换为可以传递给其他应用程序函数和方法的数据类型。转换器在 LLM 调用之前将期望的输出格式附加到 prompt 中,为模型提供生成所需输出结构的明确指导。在 LLM 调用之后,转换器获取模型的输出文本并将其转换为结构化类型的实例。
在这里插入图片描述

二、结构化输出的技术原理

结构化输出的技术原理可以分为以下几个关键步骤:

  1. 附加格式说明
    在 LLM 调用之前,转换器会将期望的输出格式(output format instruction)附加到 prompt 中。这些指令充当蓝图,塑造模型的响应以符合指定的格式。例如:

    Your response should be in JSON format.
    The data structure for the JSON should match this Java class: java.util.HashMap
    Do not include any explanations, only provide a RFC8259 compliant JSON response following this format without deviation.
    
  2. 模型生成响应
    LLM 根据 prompt 中的格式说明生成符合要求的输出。

  3. 解析与转换
    转换器获取模型的输出文本,并将其解析为结构化类型的实例。此过程涉及将原始文本输出映射到相应的结构化数据表示,如 JSON、XML 或特定于域的数据结构。

三、Spring AI 提供的转换器实现

Spring AI 提供了多种转换器实现,以满足不同的结构化输出需求:

  1. BeanOutputConverter

    • 使用指定的 Java 类(例如 Bean)或 ParameterizedTypeReference 配置。
    • 指示 AI 模型生成符合 JSON 模式的响应,随后利用 ObjectMapper 将 JSON 输出反序列化为目标类的 Java 对象实例。
  2. MapOutputConverter

    • 指导 AI 模型生成符合 RFC8259 的 JSON 响应。
    • 包含一个转换器实现,利用提供的 MessageConverter 将 JSON 负载转换为 java.util.Map<String, Object> 实例。
  3. ListOutputConverter

    • 指导 AI 模型生成逗号分隔的格式化输出。
    • 最终转换器将模型文本输出转换为 java.util.List
四、结构化输出的应用场景

结构化输出技术广泛应用于以下场景:

  1. 智能助手
    将模型输出转换为结构化数据,用于驱动智能助手的应用逻辑。

  2. 数据分析
    将模型生成的分析结果转换为结构化格式,便于后续的数据处理和可视化。

  3. 内容生成
    将模型生成的内容转换为特定的结构化格式,用于内容管理系统或自动化生成报告。

五、结构化输出的实现方式

以下是一些使用 Spring AI 结构化输出的代码示例:

1. 使用 BeanOutputConverter
import com.alibaba.cloud.ai.client.ChatClient;
import com.alibaba.cloud.ai.client.model.ChatModel;
import com.alibaba.cloud.ai.client.output.BeanOutputConverter;public class StructuredOutputExample {public static void main(String[] args) {ChatModel chatModel = ChatModel.create("your-model-id");// 定义目标类record ActorsFilms(String actor, List<String> movies) {}// 创建 BeanOutputConverterBeanOutputConverter<ActorsFilms> beanOutputConverter = new BeanOutputConverter<>(ActorsFilms.class);// 获取格式说明String format = beanOutputConverter.getFormat();// 构建 promptString actor = "Tom Hanks";String template = """Generate the filmography of 5 movies for {actor}.{format}""";// 调用模型Generation generation = chatModel.call(new PromptTemplate(template, Map.of("actor", actor, "format", format)).create()).getResult();// 转换为目标类ActorsFilms actorsFilms = beanOutputConverter.convert(generation.getOutput().getContent());System.out.println("Actor: " + actorsFilms.actor());System.out.println("Movies: " + actorsFilms.movies());}
}
2. 使用 MapOutputConverter
import com.alibaba.cloud.ai.client.ChatClient;
import com.alibaba.cloud.ai.client.model.ChatModel;
import com.alibaba.cloud.ai.client.output.MapOutputConverter;import java.util.Map;public class MapOutputExample {public static void main(String[] args) {ChatModel chatModel = ChatModel.create("your-model-id");// 创建 MapOutputConverterMapOutputConverter mapOutputConverter = new MapOutputConverter();// 构建 promptString subject = "an array of numbers from 1 to 9 under their key name 'numbers'";String prompt = "Provide me a List of " + subject;// 调用模型Generation generation = chatModel.call(new Prompt(prompt)).getResult();// 转换为 MapMap<String, Object> result = mapOutputConverter.convert(generation.getOutput().getContent());System.out.println("Result: " + result);}
}
3. 使用 ListOutputConverter
import com.alibaba.cloud.ai.client.ChatClient;
import com.alibaba.cloud.ai.client.model.ChatModel;
import com.alibaba.cloud.ai.client.output.ListOutputConverter;import java.util.List;public class ListOutputExample {public static void main(String[] args) {ChatModel chatModel = ChatModel.create("your-model-id");// 创建 ListOutputConverterListOutputConverter listOutputConverter = new ListOutputConverter(new DefaultConversionService());// 构建 promptString subject = "ice cream flavors";String prompt = "List five " + subject;// 调用模型Generation generation = chatModel.call(new Prompt(prompt)).getResult();// 转换为 ListList<String> flavors = listOutputConverter.convert(generation.getOutput().getContent());System.out.println("Flavors: " + flavors);}
}
4. 使用 ChatClient 进行结构化输出
import com.alibaba.cloud.ai.client.ChatClient;
import com.alibaba.cloud.ai.client.model.ChatModel;public class ChatClientExample {public static void main(String[] args) {ChatModel chatModel = ChatModel.create("your-model-id");// 定义目标类record ActorsFilms(String actor, List<String> movies) {}// 使用 ChatClient 转换为 ActorsFilms 对象ActorsFilms actorsFilms = ChatClient.create(chatModel).prompt().user(u -> u.text("Generate the filmography of 5 movies for {actor}.").param("actor", "Tom Hanks")).call().entity(ActorsFilms.class);System.out.println("Actor: " + actorsFilms.actor());System.out.println("Movies: " + actorsFilms.movies());}
}
六、结构化输出的未来发展方向
  1. 多模态输出
    结合文本、图像、音频等多种模态数据,提升输出的多样性和准确性。

  2. 实时转换
    提高转换器的实时性,支持更快速的输出解析和转换。

  3. 领域特定转换
    针对特定领域(如医疗、法律)提供定制化的结构化输出转换器。

  4. 自动化优化
    通过机器学习技术自动优化转换器的性能和准确性。

七、总结

Spring AI 的结构化输出功能为开发者提供了一种强大的工具,可以将 LLM 的输出转换为结构化格式,从而满足下游应用程序的需求。通过使用 Spring AI 提供的转换器实现,开发者可以轻松地将模型输出转换为 JSON、XML 或 Java 对象,提高开发效率和应用可靠性。随着技术的不断发展,结构化输出将在更多领域发挥重要作用,为开发者提供更多智能化的解决方案。

相关文章:

Spring AI 结构化输出详解

一、Spring AI 结构化输出的定义与核心概念 Spring AI 提供了一种强大的功能&#xff0c;允许开发者将大型语言模型&#xff08;LLM&#xff09;的输出从字符串转换为结构化格式&#xff0c;如 JSON、XML 或 Java 对象。这种结构化输出能力对于依赖可靠解析输出值的下游应用程…...

AMGCL库使用示例

AMGCL库使用示例 AMGCL是一个用于解决大规模稀疏线性方程组的C库&#xff0c;它实现了代数多重网格(AMG)预处理器和Krylov子空间迭代求解器。下面是一些AMGCL的使用示例。 基本示例&#xff1a;求解稀疏线性系统 #include <iostream> #include <vector> #includ…...

关于 Java 预先编译(AOT)技术的详细说明,涵盖 GraalVM 的配置、Spring Boot 3.x 的集成、使用示例及优缺点对比

以下是关于 Java 预先编译&#xff08;AOT&#xff09;技术的详细说明&#xff0c;涵盖 GraalVM 的配置、Spring Boot 3.x 的集成、使用示例及优缺点对比&#xff1a; 1. 预先编译&#xff08;AOT&#xff09;技术详解 1.1 核心概念 AOT&#xff08;Ahead-of-Time&#xff09…...

Video Encoder:多模态大模型如何看懂视频

写在前面 大型语言模型(LLM)已经掌握了理解文本的超能力,而多模态大模型(MLLM)则更进一步,让 AI 拥有了“看懂”图像的眼睛。但这还不够!真实世界是动态的、流动的,充满了运动、变化和声音。视频,正是承载这一切动态信息的关键媒介。 让 LLM 看懂视频,意味着 AI 需…...

leetcode0622. 设计循环队列-medium

1 题目&#xff1a;设计循环队列 官方标定难度&#xff1a;中 设计你的循环队列实现。 循环队列是一种线性数据结构&#xff0c;其操作表现基于 FIFO&#xff08;先进先出&#xff09;原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。 循环队列的一…...

专题十四:动态路由——OSPF

一、OSPF简介 开放式最短路径优先OSPF&#xff08;Open Shortest Path First&#xff09;是IETF组织开发的一个基于链路状态的内部网关协议&#xff08;Interior Gateway Protocol&#xff09;&#xff0c;采用DIjkstra算法&#xff0c;协议号是89。用于自治系统&#xff08;A…...

【蓝桥杯】第十六届蓝桥杯 JAVA B组记录

试题 A: 逃离高塔 很简单&#xff0c;签到题&#xff0c;但是需要注意精度&#xff0c;用int会有溢出风险 答案&#xff1a;202 package lanqiao.t1;import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWrit…...

一个项目的架构演进

1&#xff0c;单体架构 垂直升级&#xff1a;4核16GB -> 8核64G 水平扩展&#xff1a;一台服务器扩展成多台 存在以下几个问题 1&#xff0c;提升的性能是有限的 2&#xff0c;更新&#xff0c;维护成本非常高&#xff0c;对于系统中要修改或增加的功能&#xff0c;整个发…...

创建虚拟环境无法加载到pycharm当conda环境,只能为python环境

conda create -n myenv python3.8 然后&#xff0c;在pycharm中&#xff0c;点击 ..." 按钮并浏览到您的 Conda 环境路径。通常&#xff0c;Conda 环境路径位于 ~/.conda/envs/<Your Environment Name> 或 ~/miniconda3/envs/<Your Environment Name> 或 ~/an…...

暴雨打造智能化时代源动力

当清晨的智能管家为您调节室温、日间数字员工自动生成会议纪要、深夜AI外教仍在纠正发音……这不是科幻片&#xff0c;2025年的世界正被智能体悄然重塑。这些能听会想的数智化助理&#xff0c;正在医疗会诊、工业质检、金融风控等多个领域创造着价值。 那么&#xff0c;智能体…...

【ROS2】行为树:BehaviorTree

1、简介 与状态机不同,行为树强调执行动作,而不是状态之间的转换。 行为树是可组合的。可以重复使用简单的行为来构建复杂的行为。 在游戏领域,行为树已经比较流行了。主要用于维护游戏角色的各种动作和状态。 ROS2的导航框架Navigation2中引入了行为树来组织机器人的工作流…...

【HTTP】:应用层协议HTTP(1)

1.HTTP协议 虽然我们说,应用层协议是我们程序猿自己定的.但实际上,已经有大佬们定义了一些现成的,又非常好用的应用层协议,供我们直接参考使用.HTTP(超文本传输协议)就是其中之一。 在互联网世界中&#xff0c;HTTP&#xff08;HyperTextTransfer Protocol&#xff0c;超文本…...

Boost Graph Library (BGL) 介绍与使用示例

Boost Graph Library (BGL) 介绍与使用示例 Boost Graph Library (BGL) 是 Boost 库中用于图论计算的模块&#xff0c;提供了处理图数据结构的通用接口和多种图算法实现。 BGL 主要特性 提供多种图表示方式&#xff1a;邻接表、邻接矩阵等包含常用图算法&#xff1a;DFS、BF…...

数据结构--线性表

单链表的基本操作 1.清空单链表 链表仍然存在&#xff0c;但链表中无元素&#xff0c;成为空链表&#xff08;头指针和头链表仍存在&#xff09;算法思路&#xff1a;依次释放所有结点&#xff0c;并将头结点指针设置为空 2.返回表长 3.取值–取单链表中第i个元素 因为存储…...

电商用户购物行为分析:基于K-Means聚类与分类验证的完整流程

随着电商行业的快速发展,用户行为分析成为企业优化营销策略、提升用户体验的重要手段。通过分析用户的购物行为数据,企业可以挖掘出用户群体的消费特征和行为模式,从而制定更加精准的营销策略。本文将详细介绍一个基于Python实现的电商用户购物行为分析系统,涵盖数据预处理…...

《车辆人机工程-汽车驾驶显示装置》实验报告

汽思考题 汽车显示装置有哪些&#xff1f; 汽车显示装置是车辆与驾驶员、乘客交互的重要界面&#xff0c;主要用于信息展示、功能控制和安全辅助。以下是常见的汽车显示装置分类及具体类型&#xff1a; 一、驾驶舱核心显示装置 1. 仪表盘&#xff08;Instrument Cluster&am…...

三维点云投影二维图像的原理及实现

转自个人博客&#xff1a;三维点云投影二维图像的原理及实现 1. 概述 1.1 原理概述 三维点云模型是由深度相机采集深度信息和RGB信息进行生成的&#xff0c;深度相机能直接获取到深度图和二维RGB图像&#xff0c;也就是说利用相机原本的关系就可以把深度信息投影回二维图像&a…...

使用Golang打包jar应用

文章目录 背景Go 的 go:embed 功能介绍与打包 JAR 文件示例1. go:embed 基础介绍基本特性基本语法 2. 嵌入 JAR 文件示例项目结构代码实现 3. 高级用法&#xff1a;嵌入多个文件或目录4. 使用注意事项5. 实际应用场景6. 完整示例&#xff1a;运行嵌入的JAR 背景 想把自己的一个…...

MySQL数据过滤、转换与标准化

数据处理是数据库操作的重要组成部分&#xff0c;尤其是在大量数据中查找、转换和规范化目标信息的过程中。为了确保数据的有效性与一致性&#xff0c;MySQL提供了一系列数据过滤、转换与标准化的功能。 本教程将深入探讨数据过滤和转换的基本方法及应用&#xff0c;内容涵盖数…...

Linux中安装sentinel

拉取镜像 #我默认拉取最新的 sentinel 镜像 docker pull bladex/sentinel-dashboard 创建容器 docker run --name sentinel -d -p 8858:8858 bladex/sentinel-dashboard 检查是否成功 docker ps 浏览器访问 默认账号密码是 sentinel/sentinel 成功了 开放sentinel端口或者关…...

大模型压缩训练(知识蒸馏)

AI的计算结果不是一个数值&#xff0c;而是一个趋势 一、模型压缩简介 1、深度学习&#xff08;Deep Learning&#xff09;因其计算复杂度或参数冗余&#xff0c;在一些场景和设备上限制了相应的模型部署&#xff0c;需要借助模型压缩、优化加速、异构计算等方法突破瓶颈。 …...

Matlab绘制函数方程图形

Matlab绘制函数方程图形&#xff1a; 多项式计算: polyval 函数 Values of Polynomials: polyval ( ) 绘制方程式图形&#xff1a; 代码如下&#xff1a; >> a[9,-5,3,7]; x-2:0.01:5; fpolyval(a,x); plot(x,f,LineWidth,2); xlabel(x); ylabel(f(x))…...

dify windos,linux下载安装部署,提供百度云盘地址

dify下载安装 dify1.0.1 windos安装包百度云盘地址 通过网盘分享的文件&#xff1a;dify-1.0.1.zip 链接: 百度网盘 请输入提取码 提取码: 1234 dify安装包 linux安装包百度云盘地址 通过网盘分享的文件&#xff1a;dify-1.0.1.tar.gz 链接: 百度网盘 请输入提取码 提取码…...

优化方法介绍(一)

优化方法介绍(一) 本博客是一个系列博客,主要是介绍各种优化方法,使用 matlab 实现,包括方法介绍,公式推导和优化过程可视化 1 失败案例介绍 本文在编写最速下降法的时候使用了经典的求解函数框架,并使用了自适应步长(alpha)机制,即加入参数flag,当出现梯度下降的情…...

Centos7.9 升级内核,安装RTX5880驱动

系统镜像下载 https://vault.centos.org/7.9.2009/isos/x86_64/CentOS-7-x86_64-DVD-2009.iso 系统安装步骤省略 开始安装显卡驱动 远程登录查看内核 [root192 ~]# uname -a Linux 192.168.119.166 3.10.0-1160.el7.x86_64 #1 SMP Mon Oct 19 16:18:59 UTC 2020 x86_64 x8…...

计算轴承|滚动轴承故障频率

一、轴承故障频率概述 在旋转机械故障诊断中&#xff0c;轴承故障频率&#xff08;BPFO、BPFI、BSF、FTF&#xff09;是重要的分析依据。通过计算这些特征频率&#xff0c;可以帮助工程师&#xff1a; 识别轴承故障类型&#xff08;内圈/外圈/滚动体故障&#xff09;制定振动…...

Python 数据分析01 环境搭建教程

Python 数据分析01 环境搭建教程 一、安装 Python 环境 访问 Python 官方网站 Python 官网&#xff0c;选择适合你操作系统的 Python 版本进行下载。下载完成后&#xff0c;运行安装程序。在安装过程中&#xff0c;建议选择“Add Python to PATH”选项&#xff0c;这样可以在…...

程序化广告行业(80/89):近年发展动态与技术标准演进

程序化广告行业&#xff08;80/89&#xff09;&#xff1a;近年发展动态与技术标准演进 大家好&#xff01;在技术领域探索的过程中&#xff0c;我深刻认识到知识分享的力量&#xff0c;它能让我们在学习的道路上加速前行。写这篇博客&#xff0c;就是希望能和大家一起深入剖析…...

Node.js cluster模块详解

Node.js cluster 模块详解 cluster 模块允许你轻松创建共享同一服务器端口的子进程&#xff08;worker&#xff09;&#xff0c;充分利用多核 CPU 的性能。它是 Node.js 实现高并发的重要工具。 核心概念 主进程&#xff08;Master&#xff09;&#xff1a;负责管理工作进程…...

2025年认证杯数学建模C题完整分析论文(共39页)(含模型、可运行代码)

2025年认证杯数学建模竞赛C题完整分析论文 目录 摘要 一、问题重述 二、问题分析 三、模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1解析 4.1.2问题1模型建立 4.1.3问题1求解代码 4.1.4问题1求解结果 4.2问题2 4.2.1问题2解析 4.2.2问题2模型建…...

PostgreSQL 的 COPY 命令

PostgreSQL 的 COPY 命令 PostgreSQL 的 COPY 命令是高效数据导入导出的核心工具&#xff0c;性能远超常规 INSERT 语句。以下是 COPY 命令的深度解析&#xff1a; 一 COPY 命令基础 1.1 基本语法对比 命令类型语法示例执行位置文件访问权限服务器端COPYCOPY table FROM /p…...

MySQL进阶-存储引擎索引

目录 一&#xff1a;存储引擎 MySQL体系结构 存储引擎介绍 存储引擎特点 InnoDB MyISAM Memory 区别及特点 存储引擎选择 索引 索引概述 介绍 演示 特点 索引结构 概述 二叉树 B-Tree BTree Hash 索引分类 索引分类 聚集索引&二级索引 一&#xff1…...

为什么需要Refresh Token?

后端服务性能 一种方案是在服务器端保存 Token 状态&#xff0c;用户每次操作都会自动刷新&#xff08;推迟&#xff09; Token 的过期时间——Session 就是采用这种策略来保持用户登录状态的。然而仍然存在这样一个问题&#xff0c;在前后端分离、单页 App 这些情况下&#x…...

基于3A4000及CentOS的银河麒麟V10离线源码编译安装VLC

碰到过的一个具体问题&#xff1a; 源码安装vlc-3.0.x版本&#xff0c;需要注意的是&#xff0c;不要安装ffmpeg-5及以上的版本&#xff0c;即只支持ffmpeg-4的版本&#xff0c;因此&#xff0c;要安装vlc-3.0版本&#xff0c;一个重要的依赖时就会ffmpeg-4。报错没有revision…...

Windows for Redis 后台服务运行

下载 redis 安装包 地址&#xff1a;https://github.com/tporadowski/redis/releases 解压zip压缩包&#xff0c;执行 redis-server.exe 即可以窗口模式运行&#xff08;窗口关闭则服务关闭&#xff09; 运行窗口可以看到&#xff0c;端口是 6379 我这里使用 nvaicat 客服端测…...

前端工程化-包管理NPM-package.json 和 package-lock.json 详解

package.json 和 package-lock.json 详解 1.package.json 基本概念 package.json 是 Node.js 项目的核心配置文件&#xff0c;它定义了项目的基本信息、依赖项、脚本命令等。 主要字段 基本信息字段 name: 项目名称&#xff08;必填&#xff09; version: 项目版本&#xf…...

如何在 Linux 中彻底终止被 `Ctrl+Z` 挂起的进程?

问题场景 在 Linux 终端操作时&#xff0c;你是否曾遇到过这样的情况&#xff1f; 当运行一个命令&#xff08;如 ping www.baidu.com&#xff09;时&#xff0c;不小心按下了 CtrlZ&#xff0c;屏幕上显示类似以下内容&#xff1a; ^Z [2] 已停止 ping www.b…...

人工智能100问☞第3问:深度学习的核心原理是什么?

目录 一、通俗解释 二、专业解析 三、权威参考 深度学习的核心原理是​​通过构建多层神经网络结构,逐层自动提取并组合数据特征,利用反向传播算法优化参数,从而实现对复杂数据的高层次抽象和精准预测​​。 一、通俗解释 ​​深度学习的核心原理,就像是教计算机像婴儿…...

基于若依和elementui实现文件上传(导入Excel表)

基于若依和elementui实现文件上传&#xff08;导入Excel表&#xff09; 前端部分&#xff1a; 若依封装了Apache的poi功能&#xff0c;实现文件的上传和下载 若依使用的是JS语法&#xff0c;需要改造为JS语法才能使用 若依如何解决跨域的问题&#xff1a; 在前端的配置文件中…...

2025年第十六届蓝桥杯省赛真题解析 Java B组(简单经验分享)

之前一年拿了国二后&#xff0c;基本就没刷过题了&#xff0c;实力掉了好多&#xff0c;这次参赛只是为了学校的加分水水而已&#xff0c;希望能拿个省三吧 >_< 目录 1. 逃离高塔思路代码 2. 消失的蓝宝思路代码 3. 电池分组思路代码 4. 魔法科考试思路代码 5. 爆破思路…...

OpenHarmony人才认证证书

OpenHarmony人才认证体系目前支持初级工程师认证&#xff0c;要求了解OpenHarmony开源项目、生态进展及系统移植等基础知识&#xff0c;熟练掌握OpenHarmony的ArkUI、分布式软总线、分布式硬件、分布式数据管理等基础能力使用&#xff0c;具备基础的开发能力。 考试流程可参考O…...

Docker--利用dockerfile搭建mysql主从集群和redis集群

Docker镜像制作的命令 链接 Docker 镜像制作的注意事项 链接 搭建mysql主从集群 mysql主从同步的原理 MySQL主从同步&#xff08;Replication&#xff09;是一种实现数据冗余和高可用性的技术&#xff0c;通过将主数据库&#xff08;Master&#xff09;的变更操作同步到一个…...

LLaMA-Factory双卡4090微调DeepSeek-R1-Distill-Qwen-14B医学领域

unsloth单卡4090微调DeepSeek-R1-Distill-Qwen-14B医学领域后&#xff0c;跑通一下多卡微调。 1&#xff0c;准备2卡RTX 4090 2&#xff0c;准备数据集 医学领域 pip install -U huggingface_hub export HF_ENDPOINThttps://hf-mirror.com huggingface-cli download --resum…...

使用ZSH美化Windows系统Git Bash

此前&#xff0c;我们讲解了一种借助 Windows Subsystem for Linux&#xff08;WSL&#xff09;让用户在 Windows 操作系统中运用 Linux Shell 命令&#xff0c;进而高效地实现文件访问、编译等开发工作。 Windows系统命令行的最佳实践 | 听到微笑的博客 这种借助 Windows Su…...

如何使用PyCharm自动化测试

如何使用PyCharm自动化测试 1.打开PyCharm右击文件&#xff0c;点击新建项目 按照如图配置&#xff0c;然后点击创建 2.创建好后&#xff0c;点击文件&#xff0c;然后点击设置 按照如图步骤&#xff0c;查看selenium和webdriver-manager是否存在 3.以上都完成后按照如图创…...

56.评论日记

2025年4月12日22:06:08 小米事故下的众生相_哔哩哔哩_bilibili...

EMI滤波器和ESD保护等效参数汇总

EMI 共模抑制与ESD设计参考用,特别是工业和机器人&#xff0c;伺服器类产品&#xff0c;特别关注&#xff0c;提高产品稳定性 基带接口 通道数 线性小信号等效参数 数字端口时钟频率 备注 Rline Cline 电池反接 1 — 240Pf — 过压和电池反接保护 …...

java -jar与java -cp的区别

java -jar与java -cp 1、情景描述2、情景分析3、两者区别 通常情况下&#xff0c;我们会看到以下两种命令启动的Java程序&#xff1a; java -jar xxx.jar [args] java -cp xxx.jar mainclass [args]这两种用法有什么区别呢&#xff1f; 1、情景描述 1&#xff09;Java打包单个…...

蓝桥杯嵌入式十五届模拟三(串口、双ADC)

一.LED 先配置LED的八个引脚为GPIO_OutPut&#xff0c;锁存器PD2也是&#xff0c;然后都设置为起始高电平&#xff0c;生成代码时还要去解决引脚冲突问题 二.按键 按键配置&#xff0c;由原理图按键所对引脚要GPIO_Input 生成代码&#xff0c;在文件夹中添加code文件夹&#…...

04-算法打卡-数组-二分查找-leetcode(69)-第四天

1 题目地址 69. x 的平方根 - 力扣&#xff08;LeetCode&#xff09;69. x 的平方根 - 给你一个非负整数 x &#xff0c;计算并返回 x 的 算术平方根 。由于返回类型是整数&#xff0c;结果只保留 整数部分 &#xff0c;小数部分将被 舍去 。注意&#xff1a;不允许使用任何内…...