当前位置: 首页 > news >正文

MySQL进阶-存储引擎索引

目录

一:存储引擎

MySQL体系结构

存储引擎介绍

存储引擎特点

InnoDB

MyISAM

Memory

区别及特点

存储引擎选择

索引

索引概述

介绍

演示

特点

索引结构

概述

二叉树

B-Tree

B+Tree

Hash

索引分类

索引分类

聚集索引&二级索引

一:存储引擎

MySQL体系结构

1). 连接层

最上层是一些客户端和链接服务,包含本地sock 通信和大多数基于客户端/服务端工具实现的类似于 TCP/IP的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程 池的概念,为通过认证安全接入的客户端提供线程。同样在该层上可以实现基于SSL的安全链接。服务器也会为安全接入的每个客户端验证它所具有的操作权限。

2). 服务层

第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询, SQL的分析和优化,部 分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如 过程、函数等。在该层, 服务器会解 析查询并创建相应的内部解析树,并对其完成相应的优化如确定表的查询的顺序,是否利用索引等, 最后生成相应的执行操作。如果是select语句,服务器还会查询内部的缓存,如果缓存空间足够大, 这样在解决大量读操作的环境中能够很好的提升系统的性能。

3). 引擎层

存储引擎层, 存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API和存储引擎进行通 信。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。数据库 中的索引是在存储引擎层实现的。

4). 存储层

数据存储层, 主要是将数据(如 : redolog、 undolog、数据、索引、二进制日志、错误日志、查询 日志、慢查询日志等)存储在文件系统之上,并完成与存储引擎的交互。

和其他数据库相比, MySQL有点与众不同,它的架构可以在多种不同场景中应用并发挥良好作用。主要体现在存储引擎上,插件式的存储引擎架构,将查询处理和其他的系统任务以及数据的存储提取分离。 这种架构可以根据业务的需求和实际需要选择合适的存储引擎。

存储引擎介绍

大家可能没有听说过存储引擎,但是一定听过引擎这个词,引擎就是发动机,是一个机器的核心组件。 比如,对于舰载机、直升机、火箭来说,他们都有各自的引擎,是他们最为核心的组件。而我们在选择 引擎的时候,需要在合适的场景,选择合适的存储引擎,就像在直升机上,我们不能选择舰载机的引擎 一样。

而对于存储引擎,也是一样,他是mysql数据库的核心,我们也需要在合适的场景选择合适的存储引 擎。接下来就来介绍一下存储引擎。

存储引擎就是存储数据、建立索引、更新/查询数据等技术的实现方式 。存储引擎是基于表的,而不是 基于库的,所以存储引擎也可被称为表类型。我们可以在创建表的时候,来指定选择的存储引擎,如果 没有指定将自动选择默认的存储引擎。

1). 建表时指定存储引擎

2). 查询当前数据库支持的存储引擎

show engines;

示例演示 :

A. 查询建表语句 --- 默认存储引擎 : InnoDB

可以看到,创建表时,即使我们没有指定存储疫情,数据库也会自动选择默认的存储引擎。

B.创建表 my_myisam , 并指定MyISAM存储引擎

C.创建表 my_memory , 指定Memory存储引擎

存储引擎特点

上面我们介绍了什么是存储引擎,以及如何在建表时如何指定存储引擎,接下来我们就来介绍下来上面 重点提到的三种存储引擎 InnoDB、 MyISAM、 Memory的特点。

InnoDB

1). 介绍

InnoDB是一种兼顾高可靠性和高性能的通用存储引擎,在 MySQL 5.5 之后, InnoDB是默认的 MySQL 存储引擎。

2). 特点

  • DML操作遵循ACID模型,支持事务;

  • 行级锁,提高并发访问性能;

  • 支持外键FOREIGN KEY约束,保证数据的完整性和正确性;

3). 文件

xxx.ibd: xxx代表的是表名, innoDB引擎的每张表都会对应这样一个表空间文件,存储该表的表结 构( frm-早期的 、 sdi-新版的)、数据和索引。

4). 逻辑存储结构

  • 表空间 : InnoDB存储引擎逻辑结构的最高层, ibd文件其实就是表空间文件,在表空间中可以包含多个Segment段。

  • 段 : 表空间是由各个段组成的, 常见的段有数据段、索引段、回滚段等。 InnoDB中对于段的管理,都是引擎自身完成,不需要人为对其控制,一个段中包含多个区。

  • 区 : 区是表空间的单元结构,每个区的大小为1M。 默认情况下, InnoDB存储引擎页大小为16K, 即一个区中一共有64个连续的页。

  • 页 : 页是组成区的最小单元, 页也是InnoDB 存储引擎磁盘管理的最小单元,每个页的大小默认为 16KB。为了保证页的连续性, InnoDB 存储引擎每次从磁盘申请 4-5 个区。

  • 行 : InnoDB 存储引擎是面向行的,也就是说数据是按行进行存放的,在每一行中除了定义表时所指定的字段以外,还包含两个隐藏字段(后面会详细介绍)。

MyISAM

1). 介绍

MyISAM是MySQL早期的默认存储引擎。

2). 特点

  • 不支持事务,不支持外键

  • 支持表锁,不支持行锁

  • 访问速度快

3). 文件

xxx.frm(xxx.sdi):存储表结构信息

xxx.MYD: 存储数据

xxx.MYI: 存储索引

Memory

1). 介绍

Memory引擎的表数据时存储在内存中的,由于受到硬件问题、或断电问题的影响,只能将这些表作为临时表或缓存使用。

2). 特点

  • 内存存放

  • hash索引(默认)

3).文件

xxx.frm(xxx.sdi):存储表结构信息

区别及特点

InnoDB引擎与MyISAM引擎的区别 ?

① . InnoDB引擎 , 支持事务 , 而MyISAM不支持。

② . InnoDB引擎 , 支持行锁和表锁 , 而MyISAM仅支持表锁 , 不支持行锁。

③ . InnoDB引擎 , 支持外键 , 而MyISAM是不支持的。

存储引擎选择

在选择存储引擎时,应该根据应用系统的特点选择合适的存储引擎。对于复杂的应用系统,还可以根据 实际情况选择多种存储引擎进行组合。

  • InnoDB: 是Mysql的默认存储引擎,支持事务、外键。如果应用对事务的完整性有比较高的要求,在并发条件下要求数据的一致性,数据操作除了插入和查询之外,还包含很多的更新、删除操作,那么InnoDB存储引擎是比较合适的选择。

  • MyISAM : 如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性、并发性要求不是很高,那么选择这个存储引擎是非常合适的。

  • MEMORY:将所有数据保存在内存中,访问速度快,通常用于临时表及缓存。 MEMORY的缺陷就是对表的大小有限制,太大的表无法缓存在内存中,而且无法保障数据的安全性。

索引

索引概述

介绍

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足 特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构 上实现高级查找算法,这种数据结构就是索引。

演示

表结构及其数据如下:

假如我们要执行的SQL语句为 : select * from user where age = 45;

1). 无索引情况

在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为全表扫描,性能很低。

2). 有索引情况

如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建 立一个二叉树的索引结构。

此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。

特点

优势劣势
提高数据检索的效率,降低数据库 的IO成本索引列也是要占用空间的。
通过索引列对数据进行排序,降低 数据排序的成本,降低CPU的消耗。索引大大提高了查询效率,同时却也降低更新表的速度, 如对表进行INSERT、 UPDATE、 DELETE时,效率降低。

索引结构

概述

MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:

索引结构描述
B+Tree索引最常见的索引类型,大部分引擎都支持 B+ 树索引
Hash索引底层数据结构是用哈希表实现的 , 只有精确匹配索引列的查询才有效 , 不 支持范围查询
R-tree(空间索引)空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类 型,通常使用较少
Full-text(全文索引 )是一种通过建立倒排索引 ,快速匹配文档的方式。类似于 Lucene,Solr,ES

上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持 情况。

索引InnoDBMyISAMMemory
B+tree索引支持支持支持
Hash 索引不支持不支持支持
R-tree 索引不支持支持不支持
Full-text5.6版本之后支持支持不支持

二叉树

假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:

如果主键是顺序插入的,则会形成一个单向链表,结构如下:

所以,如果选择二叉树作为索引结构,会存在以下缺点:

  • 顺序插入时,会形成一个链表,查询性能大大降低。

  • 大数据量情况下,层级较深,检索速度慢。

此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数 据,最终形成的数据结构也是一颗平衡的二叉树 ,结构如下 :

但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:

  • 大数据量情况下,层级较深,检索速度慢。

所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是 B+Tree呢?在详解B+Tree之前,先来介绍一个B-Tree。

B-Tree

B-Tree, B树是一种多叉路衡查找树,相对于二叉树, B树每个节点可以有多个分支,即多叉。以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:

知识小贴士: 树的度数指的是一个节点的子节点个数

数据结构可视化的网站。B-Tree Visualization

B+Tree

B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4 (4阶)的b+tree为例,来看一 下其结构示意图:

我们可以看到,两部分:

  • 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。

  • 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。

数据结构可视化的网站来。 B+ Tree Visualization

Hash

MySQL中除了支持B+Tree索引,还支持一种索引类型---Hash索引。

1). 结构

哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。

2). 特点

A. Hash索引只能用于对等比较 (=, in),不支持范围查询(between, >, < , ...)

B. 无法利用索引完成排序操作

C. 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索 引

3). 存储引擎支持

在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能, hash索引是 InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。

思考题: 为什么InnoDB存储引擎选择使用B+tree索引结构?

A. 相对于二叉树,层级更少,搜索效率高; B. 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低; C. 相对Hash索引,B+tree支持范围匹配及排序操作;

索引分类

索引分类

在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。

分类含义特点关键字
主键索引针对于表中主键创建的索引默认自动创建 , 只能 有一个PRIMARY
唯一索引避免同一个表中某数据列中的值重复可以有多个UNIQUE
常规索引快速定位特定数据可以有多个
全文索引全文索引查找的是文本中的关键词,而不是比 较索引中的值可以有多个FULLTEXT

聚集索引&二级索引

而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:

分类含义特点
聚集索引 (Clustered Index)将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据必须有 ,而且只 有一个
二级索引 (Secondary Index)将数据与索引分开存储,索引结构的叶子节点关 联的是对应的主键可以存在多个

聚集索引选取规则 :

  • 如果存在主键,主键索引就是聚集索引。

  • 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。

  • 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索 引。

聚集索引和二级索引的具体结构如下:

接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。

具体过程如下 :

① . 由于是根据name字段进行查询,所以先根据name='Arm'到name字段的二级索引中进行匹配查 找。但是在二级索引中只能查找到 Arm 对应的主键值 10。

② . 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最 终找到10对应的行row。

③ . 最终拿到这一行的数据,直接返回即可。

相关文章:

MySQL进阶-存储引擎索引

目录 一&#xff1a;存储引擎 MySQL体系结构 存储引擎介绍 存储引擎特点 InnoDB MyISAM Memory 区别及特点 存储引擎选择 索引 索引概述 介绍 演示 特点 索引结构 概述 二叉树 B-Tree BTree Hash 索引分类 索引分类 聚集索引&二级索引 一&#xff1…...

为什么需要Refresh Token?

后端服务性能 一种方案是在服务器端保存 Token 状态&#xff0c;用户每次操作都会自动刷新&#xff08;推迟&#xff09; Token 的过期时间——Session 就是采用这种策略来保持用户登录状态的。然而仍然存在这样一个问题&#xff0c;在前后端分离、单页 App 这些情况下&#x…...

基于3A4000及CentOS的银河麒麟V10离线源码编译安装VLC

碰到过的一个具体问题&#xff1a; 源码安装vlc-3.0.x版本&#xff0c;需要注意的是&#xff0c;不要安装ffmpeg-5及以上的版本&#xff0c;即只支持ffmpeg-4的版本&#xff0c;因此&#xff0c;要安装vlc-3.0版本&#xff0c;一个重要的依赖时就会ffmpeg-4。报错没有revision…...

Windows for Redis 后台服务运行

下载 redis 安装包 地址&#xff1a;https://github.com/tporadowski/redis/releases 解压zip压缩包&#xff0c;执行 redis-server.exe 即可以窗口模式运行&#xff08;窗口关闭则服务关闭&#xff09; 运行窗口可以看到&#xff0c;端口是 6379 我这里使用 nvaicat 客服端测…...

前端工程化-包管理NPM-package.json 和 package-lock.json 详解

package.json 和 package-lock.json 详解 1.package.json 基本概念 package.json 是 Node.js 项目的核心配置文件&#xff0c;它定义了项目的基本信息、依赖项、脚本命令等。 主要字段 基本信息字段 name: 项目名称&#xff08;必填&#xff09; version: 项目版本&#xf…...

如何在 Linux 中彻底终止被 `Ctrl+Z` 挂起的进程?

问题场景 在 Linux 终端操作时&#xff0c;你是否曾遇到过这样的情况&#xff1f; 当运行一个命令&#xff08;如 ping www.baidu.com&#xff09;时&#xff0c;不小心按下了 CtrlZ&#xff0c;屏幕上显示类似以下内容&#xff1a; ^Z [2] 已停止 ping www.b…...

人工智能100问☞第3问:深度学习的核心原理是什么?

目录 一、通俗解释 二、专业解析 三、权威参考 深度学习的核心原理是​​通过构建多层神经网络结构,逐层自动提取并组合数据特征,利用反向传播算法优化参数,从而实现对复杂数据的高层次抽象和精准预测​​。 一、通俗解释 ​​深度学习的核心原理,就像是教计算机像婴儿…...

基于若依和elementui实现文件上传(导入Excel表)

基于若依和elementui实现文件上传&#xff08;导入Excel表&#xff09; 前端部分&#xff1a; 若依封装了Apache的poi功能&#xff0c;实现文件的上传和下载 若依使用的是JS语法&#xff0c;需要改造为JS语法才能使用 若依如何解决跨域的问题&#xff1a; 在前端的配置文件中…...

2025年第十六届蓝桥杯省赛真题解析 Java B组(简单经验分享)

之前一年拿了国二后&#xff0c;基本就没刷过题了&#xff0c;实力掉了好多&#xff0c;这次参赛只是为了学校的加分水水而已&#xff0c;希望能拿个省三吧 >_< 目录 1. 逃离高塔思路代码 2. 消失的蓝宝思路代码 3. 电池分组思路代码 4. 魔法科考试思路代码 5. 爆破思路…...

OpenHarmony人才认证证书

OpenHarmony人才认证体系目前支持初级工程师认证&#xff0c;要求了解OpenHarmony开源项目、生态进展及系统移植等基础知识&#xff0c;熟练掌握OpenHarmony的ArkUI、分布式软总线、分布式硬件、分布式数据管理等基础能力使用&#xff0c;具备基础的开发能力。 考试流程可参考O…...

Docker--利用dockerfile搭建mysql主从集群和redis集群

Docker镜像制作的命令 链接 Docker 镜像制作的注意事项 链接 搭建mysql主从集群 mysql主从同步的原理 MySQL主从同步&#xff08;Replication&#xff09;是一种实现数据冗余和高可用性的技术&#xff0c;通过将主数据库&#xff08;Master&#xff09;的变更操作同步到一个…...

LLaMA-Factory双卡4090微调DeepSeek-R1-Distill-Qwen-14B医学领域

unsloth单卡4090微调DeepSeek-R1-Distill-Qwen-14B医学领域后&#xff0c;跑通一下多卡微调。 1&#xff0c;准备2卡RTX 4090 2&#xff0c;准备数据集 医学领域 pip install -U huggingface_hub export HF_ENDPOINThttps://hf-mirror.com huggingface-cli download --resum…...

使用ZSH美化Windows系统Git Bash

此前&#xff0c;我们讲解了一种借助 Windows Subsystem for Linux&#xff08;WSL&#xff09;让用户在 Windows 操作系统中运用 Linux Shell 命令&#xff0c;进而高效地实现文件访问、编译等开发工作。 Windows系统命令行的最佳实践 | 听到微笑的博客 这种借助 Windows Su…...

如何使用PyCharm自动化测试

如何使用PyCharm自动化测试 1.打开PyCharm右击文件&#xff0c;点击新建项目 按照如图配置&#xff0c;然后点击创建 2.创建好后&#xff0c;点击文件&#xff0c;然后点击设置 按照如图步骤&#xff0c;查看selenium和webdriver-manager是否存在 3.以上都完成后按照如图创…...

56.评论日记

2025年4月12日22:06:08 小米事故下的众生相_哔哩哔哩_bilibili...

EMI滤波器和ESD保护等效参数汇总

EMI 共模抑制与ESD设计参考用,特别是工业和机器人&#xff0c;伺服器类产品&#xff0c;特别关注&#xff0c;提高产品稳定性 基带接口 通道数 线性小信号等效参数 数字端口时钟频率 备注 Rline Cline 电池反接 1 — 240Pf — 过压和电池反接保护 …...

java -jar与java -cp的区别

java -jar与java -cp 1、情景描述2、情景分析3、两者区别 通常情况下&#xff0c;我们会看到以下两种命令启动的Java程序&#xff1a; java -jar xxx.jar [args] java -cp xxx.jar mainclass [args]这两种用法有什么区别呢&#xff1f; 1、情景描述 1&#xff09;Java打包单个…...

蓝桥杯嵌入式十五届模拟三(串口、双ADC)

一.LED 先配置LED的八个引脚为GPIO_OutPut&#xff0c;锁存器PD2也是&#xff0c;然后都设置为起始高电平&#xff0c;生成代码时还要去解决引脚冲突问题 二.按键 按键配置&#xff0c;由原理图按键所对引脚要GPIO_Input 生成代码&#xff0c;在文件夹中添加code文件夹&#…...

04-算法打卡-数组-二分查找-leetcode(69)-第四天

1 题目地址 69. x 的平方根 - 力扣&#xff08;LeetCode&#xff09;69. x 的平方根 - 给你一个非负整数 x &#xff0c;计算并返回 x 的 算术平方根 。由于返回类型是整数&#xff0c;结果只保留 整数部分 &#xff0c;小数部分将被 舍去 。注意&#xff1a;不允许使用任何内…...

SpringBoot项目:部门管理系统

文章目录 1、工程搭建1.1 创建项目1.2 创建数据库1.3 准备基础代码1.4 准备mapper接口1.5 准备service层1.6 准备controller层2、接口开发2.1 查询部门2.1.1 接口开发1、工程搭建 1.1 创建项目 主要内容: 创建Springboot工程引入web开发起步依赖、mybatis、mysql驱动、lombok…...

MyBatis-Plus 扩展功能

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 逻辑删除一、配置逻辑删除字段方式一&#xff1a;全局配置&#xff08;推荐&#xff09;方式二&#xff1a;实体类注解配置 二、逻辑删除流程三、完整代码示例1. 实…...

service和endpoints是如何关联的?

在Kubernetes中&#xff0c;Service 和 Endpoints 是两个密切关联的对象&#xff0c;它们共同实现了服务发现和负载均衡的功能。以下是它们之间的关联和工作原理&#xff1a; 1. Service 的定义 Service 是一种抽象&#xff0c;定义了一组逻辑上相关的 Pod&#xff0c;以及用…...

MyBatis-plus 快速入门

提示&#xff1a;MyBatis-Plus&#xff08;MP&#xff09;是一个 MyBatis的增强版 文章目录 前言使用MybatisPlus的基本步骤1、引入MybatisPlus依赖代替Mybatis依赖2、定义Mapper接口并继承BaseMapper他是怎么知道哪张表&#xff0c;哪些字段呢 3、实体类注解4、根据需要添加配…...

【PySpark大数据分析概述】03 PySpark大数据分析

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PySpark大数据分析与应用 ⌋ ⌋ ⌋ PySpark作为Apache Spark的Python API&#xff0c;融合Python易用性与Spark分布式计算能力&#xff0c;专为大规模数据处理设计。支持批处理、流计算、机器学习 (MLlib) 和图计算 (GraphX)&am…...

C# --- IEnumerable 和 IEnumerator

C# --- IEnumerable 和 IEnumerator IEnumerableIEnumeratorIEnumerable 和 IEnumerator 的作用手动实现 IEnumerableIEnumerable vs. IQueryable为什么有了ienumerator还需要ienumerable IEnumerable 在C#中&#xff0c;IEnumerable 是一个核心接口&#xff0c;用于表示一个可…...

Excel VBA 运行时错误1004’:方法‘Open’作用于对象‘Workbooks’时失败 的解决方法

使用Excel编写VBA脚本时出现如下错误&#xff1a; 运行时错误1004’: 方法‘Open’作用于对象‘Workbooks’时失败 我的功能是打开一系列excel文件从中自动复制数据到汇总excel的各个指定的sheet中&#xff0c;来源的excel是从网站上下载的。 出现这个问题后从网上查找各种办…...

03-算法打卡-数组-二分查找-leetcode(34)-第三天

1 题目地址 34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣&#xff08;LeetCode&#xff09;34. 在排序数组中查找元素的第一个和最后一个位置 - 给你一个按照非递减顺序排列的整数数组 nums&#xff0c;和一个目标值 target。请你找出给定目标值在数组中的开始位置…...

利用python从零实现Byte Pair Encoding(BPE)

喜欢可以到我的主页订阅专栏哟(^U^)ノ~YO 第一章:自然语言处理与分词技术基础 1.1 自然语言处理的核心挑战 自然语言处理(Natural Language Processing, NLP)作为人工智能领域的重要分支,其核心目标是实现计算机对人类语言的理解与生成。在深度学习技术快速发展的今…...

Redis的分布式锁

Redis的分布式锁 一.分布式锁的简介二.分布式锁的实现1.基本实现2.引入过期时间3.引入校验ID4.引入Lua5.引入看门狗(watch dog)6.引入RedLock算法 一.分布式锁的简介 在一个分布式的系统中&#xff0c; 会涉及到多个节点访问一个公共资源的情况&#xff0c;此时就需要通过锁的…...

SpringBoot分布式项目中实现智能邮件提醒系统

一、应用场景与需求分析 在电商、OA、客服等系统中,邮件提醒是用户触达的重要方式。本文针对以下典型需求进行方案设计: 多类型支持:订单超时、服务到期、待办通知等场景动态内容:支持纯文本/HTML/模板引擎内容格式智能重发:24小时未处理自动升级提醒级别高可用性:分布式…...

LSTM-SVM长短期记忆神经网络结合支持向量机组合模型多特征分类预测/故障诊断,适合新手小白研究学习(Matlab完整源码和数据)

LSTM-SVM长短期记忆神经网络结合支持向量机组合模型多特征分类预测/故障诊断&#xff0c;适合新手小白研究学习&#xff08;Matlab完整源码和数据&#xff09; 目录 LSTM-SVM长短期记忆神经网络结合支持向量机组合模型多特征分类预测/故障诊断&#xff0c;适合新手小白研究学习…...

【图像处理基石】什么是抗锯齿(Anti-Aliasing)?

1. 抗锯齿的定义与作用 抗锯齿&#xff08;Anti-Aliasing, AA&#xff09;是一种用于消除数字图像中因采样不足导致的边缘锯齿现象的技术。锯齿&#xff08;Jaggies&#xff09;通常出现在高分辨率信号以低分辨率呈现时&#xff0c;例如3D图形渲染或图像缩放过程中。抗锯齿通过…...

C++曲线数据统一:如何高效插值并处理多条曲线的x值

在数据处理和科学计算中&#xff0c;我们经常会遇到需要对多条曲线进行统一x值处理的情况。例如&#xff0c;在实验数据记录中&#xff0c;不同传感器可能以不同的采样率记录数据&#xff0c;导致曲线的x值不一致。为了后续的分析和可视化&#xff0c;我们需要将这些曲线的x值统…...

训练模型的方式的两种方式:图像描述(Image Captioning)和对比学习(Contrastive Learning)原理及区别

图像描述&#xff08;Image Captioning&#xff09;和对比学习&#xff08;Contrastive Learning&#xff09;都是深度学习中用于训练模型的方式&#xff0c;但它们的目标、原理和实现方法都有很大不同。让我们分别看看它们的原理和区别。 1. 图像描述&#xff08;Image Capti…...

数据结构:哈希表 | C++中的set与map

上回说到&#xff0c;红黑树是提升了动态数据集中频繁插入或删除操作的性能。而哈希表(Hash Table)&#xff0c;则是解决了传统数组或链表查找数据必须要遍历的缺点。 哈希表 哈希表的特点就是能够让数据通过哈希函数存到表中&#xff0c;哈希函数能够将数据处理为表中位置的索…...

【unity游戏开发——Animator动画】Animator动画状态机复用——重写动画控制器 Animator Override Controller

注意&#xff1a;考虑到UGUI的内容比较多&#xff0c;我将UGUI的内容分开&#xff0c;并全部整合放在【unity游戏开发——Animator动画】专栏里&#xff0c;感兴趣的小伙伴可以前往逐一查看学习。 文章目录 一、状态机复用是什么&#xff1f;二、实战专栏推荐完结 一、状态机复…...

第九届 蓝桥杯 嵌入式 省赛

一、分析 1. LCD 显示 显示 存储位置、定时时间和当前状态存储位置&#xff1a;5个&#xff0c;来存储定时时间当前状态 定时器停止&#xff0c;Standby设置时间&#xff0c;Setting定时器运行&#xff0c;Runing定时器暂停&#xff0c;Pause 伪代码 LCD 显示 # 显示存储位…...

电流互感器的两相星形接线的建模与仿真

微♥“电击小子程高兴的MATLAB小屋”获取巨额优惠 1.模型简介 本仿真模型基于MATLAB/Simulink&#xff08;版本MATLAB 2016Rb&#xff09;软件。建议采用matlab2016 Rb及以上版本打开。&#xff08;若需要其他版本可联系代为转换&#xff09; 2.仿真模型 3.仿真结果 3.1一次…...

【征程 6】工具链 VP 示例中 Cmakelists 解读

1. 引言 在文章【征程 6】VP 简介与单算子实操中&#xff0c;介绍了 VP 是什么&#xff0c;并以单算子 rotate 为例&#xff0c;介绍了 VP API 使用方法。在【征程 6】工具链 VP 示例中日志打印解读 中介绍了 VP 单算子示例中用到的日志打印的头文件应该怎么写。接下来和大家一…...

制作像素风《饥荒》类游戏的整体蓝图和流程

游戏的制作过程和核心要素拆解成以下几个主要部分&#xff1a; 1. 核心概念与玩法设计 (蓝图构思) 游戏类型: 确定是纯粹的生存、带有冒险元素&#xff0c;还是有其他侧重&#xff1f;&#xff08;比如更强的战斗、建造或剧情&#xff09;核心循环: 玩家主要做什么&#xff1…...

Day22 -php开发01--留言板+知识点(超全局变量 文件包含 数据库操作 第三方插件)

环境要求&#xff1a;php7.0.9 小皮 navicat phpstorm24.1 知识点&#xff1a;会写&#xff08;留言板 留言板后台&#xff09; 超全局变量 三方插件的使用 文件包含 1、开启小皮并利用navicat新建一个数据库 注意&#xff1a;本地的服务mysql关闭后 才可打开小皮。属…...

履带小车+六轴机械臂(1)

基于单片机的可移动抓取机械手 采用的是一个履带底盘和六轴机械臂做的 已经实现的功能有&#xff1a;PS2手柄控制六个轴的舵机转动和控制两个直流减速电机的转动&#xff0c;以此来达到控制移动和抓取的目地&#xff0c;以及用手机APP连接蓝牙模块HC-05也能达到六个轴的舵机转…...

AI:深度学习之循环神经网络(RNN)

🔄 从零入门循环神经网络(RNN):原理详解+代码实战+未来展望 🚀 摘要:在人工智能蓬勃发展的当下,循环神经网络(Recurrent Neural Network, RNN)是处理序列数据的“记忆大师”🧠,正发挥着举足轻重的作用。从自然语言处理中的文本生成、机器翻译,到语音识别、时间…...

03-libVLC的视频播放器:控制(播放/暂停/停止/拖动条/声音)

libvlc_media_player_get_state(m_pMediaPlayer) 功能:获取当前媒体播放器的状态,返回值为libvlc_state_t枚举类型。常见状态值:libvlc_Playing:正在播放libvlc_Paused:已暂停libvlc_Stopped:已停止libvlc_Ended:播放结束libvlc_Error:发生错误注意事项:状态检测是异步…...

Python_仓库使用货拉拉物流运费计算1

仓库地址为广州 物料表里有各SKU的尺寸&#xff0c;长宽高 货拉拉收费明细表 根据订单的SKU的数量、尺寸、重量&#xff0c;去寻找最合适的货拉拉车型&#xff0c;并计算它所需的路费 import pandas as pd# 读取数据 df_111 pd.read_excel(订单明细表.xlsx) df_material …...

CATIA高效工作指南——常规配置篇(一)

一、CATIA无窗口启动优化 原理与实现 通过修改环境变量或启动参数&#xff0c;可禁用启动界面以提升加载速度。添加环境变量CATNOSTARTDOCUMENT1可跳过初始画面 进阶应用&#xff1a; 结合脚本实现静默启动&#xff1a;创建批处理文件&#xff08;.bat&#xff09;包含start …...

【AI提示词】金融信息抽取工程师工作流程

提示说明 专注于从金融行业的文本中提取关键信息&#xff0c;确保准确性和规范性。具备良好的文本处理能力和数据整理经验&#xff0c;能够处理复杂的信息结构。 提示词 # Role&#xff1a;金融信息抽取工程师## Background&#xff1a; 用户希望从金融行业的文本中严格提取…...

8、HTTPD服务--http协议介绍

目录 一、http协议 二、web服务 1、类型 2、cookie、session 三、HTTP协议特性 1、http/0.9 2、http/1.0 3、http/1.1 4、http/2 四、HTTP状态码、请求方法 1、状态码 2、请求方法 一、http协议 应用层协议作用 在客户端、web服务器传递数据 Hyper Text Transfer …...

React useEffect

在发送请求后执行代码 useEffect(副作用函数&#xff0c;依赖项数组) import { useEffect, useState } from "react";const URL http://geek.itheima.net/v1_0/channels function App() {// 创建状态数据const [list,setList] useState([])const [count,setCount] …...

部署Fish-Speech实现声音克隆及文本转语音

FishSpeech 是由Fish Audio团队开发的一款开源文本转语音&#xff08;TTS&#xff09;模型&#xff0c;支持多语言的语音合成和识别。它采用先进的深度学习技术&#xff0c;能够生成自然流畅的语音&#xff0c;并提供高质量的语音转文字功能。FishSpeech 支持声音克隆&#xff…...