当前位置: 首页 > news >正文

毕业设计-基于机器视觉的行人车辆跟踪出入双向检测计数

目录

前言

课题背景和意义

实现技术思路

实现效果图样例


前言


    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

大家好,这里是海浪学长毕设专题,本次分享的课题是

🎯机器视觉的行人进出双向计数系统

课题背景和意义

行人检测是近年来计算机视觉领域的研究热点,同时也是目标检测领域中的难点。其目的是识别和定位图像中存在的行人,在许多领域中都有广泛的应用。交通安全方面,无人驾驶汽车通过提前检测到行人及时避让来避免交通事故的发生;安防保护方面,通过行人检测来防止可疑人员进入;公共场所管理方面,通过行人检测统计人流量数据,优化人力物力等资源的分配。

对于目标检测的方法,从2013年Ross Girshick提出R-CNN开始,人们在短短几年内相继提出Fast R-CNN、Faster R-CNN、Mask R-CNN、SSD、YOLO等算法,其中两步检测的目标检测方法(R-CNN系列算法)需要先产生大量候选框之后再用卷积神经网络对候选框进行分类和回归处理;单步检测的方法(SSD、YOLO系列算法)则直接在卷积神经网络中使用回归的方法一步就预测出目标的位置以及目标的类别。虽然两步检测的目标检测方法在大多数的场景下精确率更高,但是它需要分两个步骤进行,因此,这种方法将耗费大量的时间成本和昂贵的硬件成本,不适合对视频文件进行实时的检测。而YOLO系列的网络速度更快,可以适应实时视频的检测,泛化能力更强。

对于人员跟踪,2016年Alex Bewley提出了简单在线实时跟踪算法,这种算法把传统的卡尔曼滤波和匈牙利算法结合到一起, 能在视频帧序列中很好地进行跨检测结果的关联, 而且它的速度比传统的算法快20倍左右,可以快速地对目标检测反馈的数据进行处理。

实现技术思路

环境要求

opencv模块。在计算机视觉项目的开发中,opencv作为较大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务。

pillow模块。PIL是理想的图像存档和批处理应用程序。您可以使用库创建缩略图,在文件格式、打印图像等之间进行转换。它提供了广泛的文件格式支持、高效的内部表示和相当强大的图像处理功能。核心图像库是为快速访问以几种基本像素格式存储的数据而设计的。为通用图像处理工具提供了坚实的基础。

Scipy库。Scipy是一个用于数学、科学、工程领域的常用软件包,可以处理插值、积分、优化、图像处理、常微分方程数值解的求解、信号处理等问题。它用于有效计算Numpy矩阵,使Numpy和Scipy协同工作,高效解决问题。

keras模块。Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化 。

算法设计

使用卷积神经网络对视频中的行人进行检测和跟踪。视频帧输入之后首先进入YOLOv3目标检测的网络,经过Darknet-53提取特征;其次,进行上采样和特征融合,再进行回归分析;再次,把得出的预测框信息输入SORT算法进行目标特征建模,匹配和跟踪;最后,输出结果。下图为算法流程设计图:

 

 行人检测

常见的两阶段检测首先是使用候选区域生成器生成的候选区集合,并从每个候选区中提取特征,然后使用区域分类器预测候选区域的类别。而YOLO作为单阶段检测器,则不用生成候选区域,直接对特征图的每个位置上的对象进行分类预测,效率更高。在这里使用labelme标注行人数据集,然后通过搭建好的YOLO算法产生模型并进行训练即可。

def yolo_body(inputs, num_anchors, num_classes):"""Create YOLO_V3 model CNN body in Keras."""darknet = Model(inputs, darknet_body(inputs))x, y1 = make_last_layers(darknet.output, 512, num_anchors*(num_classes+5))x = Concatenate()([x,darknet.layers[152].output])x, y2 = make_last_layers(x, 256, num_anchors*(num_classes+5))x = compose(DarknetConv2D_BN_Leaky(128, (1,1)),UpSampling2D(2))(x)x = Concatenate()([x,darknet.layers[92].output])x, y3 = make_last_layers(x, 128, num_anchors*(num_classes+5))return Model(inputs, [y1,y2,y3])

 Deepsort行人跟踪

行人多目标跟踪算法设计的步骤如下:

(1) 检测阶段:目标检测算法会分析每一个输入帧,并识别属于特定类别的对象,给出分类和坐标。

(2) 特征提取/运动轨迹预测阶段:采用一种或者多种特征提取算法用来提取表观特征,运动或者交互特征。此外,还可以使用轨迹预测器预测该目标的下一个位置。

(3) 相似度计算阶段:表观特征和运动特征可以用来计算两个目标之间的相似性。

(4) 关联阶段:使用计算得到的相似性作为依据,将属于同一目标的检测对象和轨迹关联起来,并给检测对象分配和轨迹相同的ID。

使用卡尔曼滤波类跟踪的估计状态系统和估计的方差或不确定性。用于预测。

这里dist_thresh为距离阈值。当超过阈值时,轨道将被删除,并创建新的轨道;Max_frames_to_skip为允许跳过的最大帧数对于跟踪对象未被检测到;max_trace_length为跟踪路径历史长度;trackIdCount为每个轨道对象的标识。

def Update(self, detections):if (len(self.tracks) == 0):for i in range(len(detections)):track = Track(detections[i], self.trackIdCount)self.trackIdCount += 1self.tracks.append(track)N = len(self.tracks)M = len(detections)cost = np.zeros(shape=(N, M)) for i in range(len(self.tracks)):for j in range(len(detections)):try:diff = self.tracks[i].prediction - detections[j]distance = np.sqrt(diff[0][0]*diff[0][0] +diff[1][0]*diff[1][0])cost[i][j] = distanceexcept:passcost = (0.5) * costassignment = []for i in range(len(row_ind)):assignment[row_ind[i]] = col_ind[i]un_assigned_tracks = []for i in range(len(assignment)):if (assignment[i] != -1):if (cost[i][assignment[i]] > self.dist_thresh):assignment[i] = -1un_assigned_tracks.append(i)passelse:self.tracks[i].skipped_frames += 1del_tracks = []

结果显示

将YOLO行人检测和deepsort算法结合,并通过设置基本阈值参数控制轨迹预测的欧式距离。通过搭建本项目可应用于城市商业街道、人行道、校园道路场景,使用其得出的人员流动数据,帮助公共交通和安全管理。

track_colors = get_colors_for_classes(max_colors)
result = np.asarray(image)
font = cv2.FONT_HERSHEY_SIMPLEX
result0 = result.copy()
result1=result.copy()
img_position=np.zeros([result.shape[0],result.shape[1],3])
if (len(centers) > 0):tracker.Update(centers)for i in range(len(tracker.tracks)):if (len(tracker.tracks[i].trace) > 1):x0, y0 = tracker.tracks[i].trace[-1][0][0], tracker.tracks[i].trace[-1][1][0]cv2.putText(result0, "ID: "+str(tracker.tracks[i].track_id-99), (int(x0), int(y0)), font, track_id_size,(255, 255, 255), 2)cv2.putText(result1, "ID: " + str(tracker.tracks[i].track_id - 99), (int(x0), int(y0)), font,track_id_size,(255, 255, 255), 2)color_random = tracker.tracks[i].track_id % 9cv2.circle(img_position, (int(x0), int(y0)), 1, track_colors[color_random], 8)result0=result0.copy()for j in range(len(tracker.tracks[i].trace) - 1):x1 = tracker.tracks[i].trace[j][0][0]y1 = tracker.tracks[i].trace[j][1][0]x2 = tracker.tracks[i].trace[j + 1][0][0]y2 = tracker.tracks[i].trace[j + 1][1][0]clr = tracker.tracks[i].track_id % 9distance = ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 0.5if distance < max_point_distance:cv2.line(result1, (int(x1), int(y1)), (int(x2), int(y2)),track_colors[clr], 4)result1=result1.copy()

实现效果图样例

 

我是海浪学长,创作不易,欢迎点赞、关注、收藏、留言。

毕设帮助,疑难解答,欢迎打扰!

最后

相关文章:

【C++】C++的四种强制类型转换

1、C语言中的类型转换 在C语言中&#xff0c;如果赋值运算符左右两侧类型不同&#xff0c;或者形参与实参类型不匹配&#xff0c;或者返回值类型与接收返回值类型不一致时&#xff0c;就需要发生类型转化&#xff0c;C语言中总共有两种形式的类型转换&#xff1a;隐式类型转换…...

STM32ADC单通道转换

STM32ADC单通道转换 1. 初始化 ADC功能初始化主要分三部分,GPIO初始化、ADC模式初始化与NVIC初始化。 1.1初始化GPIO void ADC_GPIO_Config(void) // 配置ADC通道引脚 {GPIO_InitTypeDef GPIO_InitStructure; // 定义GPI…...

联合省选2024游记

day -inf 福建的初中生参加个省选需要280去参加资格赛?ccf真有你的。资格赛没ak,有点弱啊。 day [-4,-1] 摆摆摆,写写水题 day 0 早上十点从学校出发,到厦门北站。11:15 的车。动车上竟然和王老师坐一块?/jk。一路上就聊聊有关文化课,竞赛之类的。 在车上看到好多山,好多…...

u-form里的border-bottom属性默认值失效

需要u-from和u-from-item同时设置border-bottom才能生效(默认显示)直接给:border-bottom="true"或者border-bottom都可 同时,u-input的border属性表示是否显示input的边框(默认显示)...

4-如何进行细分市场的分析-02 细分行业的构成和基本情况

如何快速摸清行业的构成&#xff0c;通常会看同行或自己做过的相似的行业&#xff0c;会根据不同的行业来采用不同的研究方法。对于成熟的行业和不同的行业都会有一些比较通用的研究方式。 假设我们是在分析某一个行业&#xff0c;在分析行业的时候它的本质还是市场分析&#…...

CSS复合选择器(三)

伪元素选择器 作用&#xff1a;选中元素中的一些特殊位置。 常用伪元素&#xff1a; ::first-letter 选中元素中的第一个文字。::first-line 选中元素中的第一行文字。::selection选中被鼠标选中的内容。::placeholder 选中输入框的提示文字。::before 在元素最开始的位置&…...

毕业设计-基于机器视觉的行人车辆跟踪出入双向检测计数

目录 前言 课题背景和意义 实现技术思路 实现效果图样例 前言 &#x1f4c5;大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科…...

linux 安装nginx

1.安装依赖包 //一键安装上面四个依赖 yum -y install gcc zlib zlib-devel pcre-devel openssl openssl-devel 2.下载并解压安装包 /或上传解压包 //创建一个文件夹 cd /usr/local mkdir nginx cd nginx //下载tar包 wget http://nginx.org/download/nginx-1.13.7.tar.gz t…...

javaee之黑马旅游网1

这是一个用来锻炼javaweb基础知识的项目&#xff0c;先来导入一些我们准备好的文件 下面这些东西是我们项目必备的&#xff0c;我们提前准备好了 &#xff0c;这个我会上传到我的资源&#xff0c;你们可以自己去下载 利用maven来创建一个项目 选择无骨架创建项目&#xff0c;域…...

【高并发基础】理解 MVCC 及提炼实现思想

文章目录1. 前言2. MVCC 概念2.1 MVCC 版本链2.2 MVCC trx_id2.3 MVCC Read View3. 提出问题4. 解决问题4.1 不读未提交的数据4.1.1 一般的并发情况4.1.2 特殊的并发情况4.1.3 剩下的并发情况4.2 如果自己修改了数据&#xff0c;要第一时间读到5. MySQL RC 使用 MVCC5.1 MVCC D…...

Flow-vue源码中的应用

认识 Flow Flow 是 facebook 出品的 JavaScript 静态类型检查工具。Vue.js 的源码利用了 Flow 做了静态类型检查&#xff0c;所以了解 Flow 有助于我们阅读源码。 #为什么用 Flow JavaScript 是动态类型语言&#xff0c;它的灵活性有目共睹&#xff0c;但是过于灵活的副作用…...

学习python第一天(数据类型)

关于Python的数据类型 Python数据类型包括&#xff1a; 数字类型&#xff0c;字符类型&#xff0c;布尔类型&#xff0c;空类型&#xff0c;列表类型&#xff0c;元组类型&#xff0c;字典类型 1、数字类型 包括&#xff1a;整型int 浮点型float(有小数位的都是是浮点型) 注…...

echarts:nuxt项目使用echarts

一、项目环境 nuxt 2.X vue2.X vuex webpack 二、安装 yarn add echarts 三、使用 3.1、plugins目录下创建echarts.js import Vue from vue import * as echarts from echarts // 引入echarts Vue.prototype.$echarts echarts // 引入组件&#xff08;将echarts注册为全…...

认证服务-----技术点及亮点

大技术 Nacos做注册中心 把新建的微服务注册到Nacos上去 两个步骤 在配置文件中配置应用名称、nacos的发现注册ip地址&#xff0c;端口号在启动类上用EnableDiscoveryClient注解开启注册功能 使用Redis存验证码信息 加入依赖配置地址和端口号即可 直接注入StringRedisTempla…...

【计算机毕业设计】74.家教平台系统源码

一、系统截图&#xff08;需要演示视频可以私聊&#xff09; 摘 要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐…...

Hbase的SQL接口之Phoenix使用心得

PHOENIX 官方定义 A SQL layer over HBase delivered as a client-embedded JDBC drivertargeting low latency queries over HBase data 不同于Hive on HBase的方式&#xff0c;Phoenix将Query Plan直接使用HBaseAPI实现&#xff0c;目的是规避MapReduce框架&#xff0c;减少…...

Springboot萌宠社交分享系统的设计与实现hfdwz计算机毕业设计-课程设计-期末作业-毕设程序代做

Springboot萌宠社交分享系统的设计与实现hfdwz计算机毕业设计-课程设计-期末作业-毕设程序代做 【免费赠送源码】Springboot萌宠社交分享系统的设计与实现hfdwz计算机毕业设计-课程设计-期末作业-毕设程序代做本源码技术栈&#xff1a; 项目架构&#xff1a;B/S架构 开发语言…...

线性代数与解析几何——Part4 欧式空间 酉空间

线性代数与解析几何——Part4 欧式空间 & 酉空间 1. 欧氏空间 1. 定义 & 性质2. 内积表示与标准正交基3. 欧氏空间的同构4. 欧氏空间的线性变换5. 欧氏空间的子空间 2. 酉空间 1. 定义 & 性质2. 酉变换3. Hermite变换4. 规范变换 1. 欧氏空间 1. 定义 & 性质…...

带头双向循环链表的实现

目录前言节点声明链表的初始化尾插打印链表头插尾删头删查找节点指定位置插入指定位置删除链表销毁前言 之前讲过单链表的实现&#xff0c;在实现的过程中&#xff0c;我们会发现每次删除或者在前面插入节点的时候&#xff0c;都要提前保存上一个节点的地址。这样做十分麻烦&a…...

07【C语言 趣味算法】最佳存款方案(采用 从后往前 递推解决)

目录 一、前情回顾二、Problem:最佳存款方案2.1 Description of the problem2.2 Analysis of the problem2.3 Algorithm design2.4 The complete code and the results of the run(完整的代码 以及 运行结果)一、前情回顾 06【C语言 & 趣味算法】牛顿迭代法求方程根(可…...

游戏开发36课 cocoscreator scrollview优化

在cocoscreator内&#xff0c;ScrollView控件封装的挺完美的了&#xff0c;不过对于一些对性能要求比较高的场景&#xff0c;会存在问题&#xff0c;以top100排行榜排行榜举例子 1、应用卡顿甚至崩溃 按照官方用例使用ScrollView&#xff0c;插入100个玩家的item&#xff0c;理…...

屏幕开发学习 -- 迪文串口屏

一 前言 最近学习了一款基于图形化开发的屏幕&#xff0c;在摸索一周后&#xff0c;基本熟悉了这款产品的一个开发过程&#xff0c;今天给大家分享一下迪文串口屏的学习过程&#xff0c;有不足之处&#xff0c;还请见谅&#x1f601;&#xff0c;包含了环境搭建和功能DEMO 二 …...

微机-------CPU与外设之间的数据传送方式

目录 一、无条件方式二、查询方式三、中断方式四、DMA方式一、无条件方式 外设要求:简单、数据变化缓慢。 外设被认为始终处于就绪状态。始终准备好数据或者始终准备好接收数据。 IN AL,数据端口 数据端口的地址通过CPU的地址总线送到地址译码器进行译码,同时该指令进行的是…...

从源码上解决rosdep update失败问题

&#xff08;一&#xff09;卸载官方的rosdep、rosdistro 卸载rosdistro # python2 sudo apt-get purge python-rosdistro# python3 sudo apt-get purge python3-rosdistro卸载rosdep # python2 sudo apt-get purge python-rosdep# python3 sudo apt-get purge python3-rosd…...

常用的shell命令

常用的shell命令 1、ls命令 功能&#xff1a;显示文件和目录的信息 ls 以默认方式显示当前目录文件列表 ls -a 显示所有文件包括隐藏文件 ls -l 显示文件属性&#xff0c;包括大小&#xff0c;日期&#xff0c;符号连接&#xff0c;是否可读写及是否可执行 ls -lh 显示文件的…...

新手入门SLAM必备资料

新手入门SLAM必备资料 文章目录 新手入门SLAM必备资料一、SLAM学习书籍1.必读经典2.有很多期,跟着会议一起出的文集3.入门书籍,简单实现及代码4.SLAM入门教材吐血推荐,对深入理解SLAM实质非常有帮助5.作者Joan Sola关于Graph-SLAM的教程,包含位姿变换、传感器模型、图优化以…...

如何选择和使用腾讯云服务器的方法新手教程

本文将介绍如何选择和使用腾讯云服务器的方法新手教程。云服务器能帮助快速构建更稳定、安全的应用&#xff0c;降低开发运维的难度和整体IT成本。腾讯云CVM云服务器提供多种类型的实例、操作系统和软件包。各实例中的 CPU、内存、硬盘和带宽可以灵活调整&#xff0c;以满足应用…...

亚马逊云科技re:Invent:Serverless是所有构想的核心

12月2日&#xff0c;2022亚马逊云科技re:Invent全球大会上&#xff0c;Amazon.com副总裁兼首席技术官Werner Vogels博士向开发者们展示了另一种可能。在一系列Serverless工具的帮助下&#xff0c;一些代码可以少写&#xff0c;因为未来你可能再也不需要写它们了。这恐怕是自云原…...

数据链路层(必备知识)

文章目录1、数据链路层的作用2、认识以太网<1>以太网帧格式<2>认识MAC地址<3>认识MTU<4>查看硬件地址和MTU3、ARP协议<1>什么是ARP协议<2>ARP数据报格式<3>ARP协议的工作机制4、其他重要协议或技术<1> DNS<2>NAT技术1、…...

【Spring系列】- Spring循环依赖

Spring循环依赖 &#x1f604;生命不息&#xff0c;写作不止 &#x1f525; 继续踏上学习之路&#xff0c;学之分享笔记 &#x1f44a; 总有一天我也能像各位大佬一样 &#x1f3c6; 一个有梦有戏的人 怒放吧德德 &#x1f31d;分享学习心得&#xff0c;欢迎指正&#xff0c;大…...

Python学习基础笔记二十一——迭代器

列表&#xff0c;我们使用for循环来取值&#xff0c;我们把每个值都取到&#xff0c;不需要关心每一个值的位置&#xff0c;因为只能顺序的取值&#xff0c;并不能跳过任何一个去取其他位置的值。那么我们为什么可以使用for循环来取值&#xff0c;for循环内部是怎么工作的呢&am…...

【云原生之Docker实战】使用docker部署IT资产管理系统GLPI

【云原生之Docker实战】使用docker部署IT资产管理系统GLPI 一、GLPI介绍1.GLPI简介2.GLPI功能二、检查本地docker环境1.检查docker版本2.检查docker状态三、下载GLPI镜像四、编辑docker-compose.yaml文件五、部署GLPI系统1.创建数据目录2.使用docker compose创建容器应用3.查看…...

【SSM框架 二】Spring

文章目录二、Spring1、简介2、IOC理论思想3、Hello Spring4、IOC创建对象的方式4.1 无参构造构造器注入4.2 有参构造器注入5、Spring的配置5.1 别名5.2 Bean的配置5.3 import6、DI依赖注入6.1 构造方法注入6.2 set方法注入6.3 扩展注入6.4、Bean的作用域7、Bean的自动装配7.1 正…...

基于java+ssm+vue+mysql的社区流浪猫狗救助网站

项目介绍 随着迅速的发展&#xff0c;宠物饲养也较以前发生很大的变化&#xff0c;社区流浪猫狗救助网站系统以其独有的优势脱颖而出。“社区流浪猫狗救助网站”是以JAVA程序设计语言课为基础的设计出适合社区流浪猫狗救助网站&#xff0c;其开发过程主要包括后台数据库的建立…...

推特营销引流入门指南

一、关注 当您关注另一个Twitter用户时&#xff0c;您进行订阅&#xff0c;即可立即阅读其内容分享。因此&#xff0c;请评估您关注的人&#xff0c;尤其是刚开始时。跟踪新用户的一种简单方法是找到他们的个人资料&#xff0c;然后单击“关注”按钮。 Twitter对于那些疯狂点…...

Seata概述基础

分布式事务原因&#xff1a; 单体架构的spring事务不能跨机器&#xff0c;不能跨数据源 分布式事务的概念&#xff1a; 一个业务流程&#xff0c;在分布式系统&#xff08;微服务&#xff09;中&#xff0c;每个业务模块都是一个分支&#xff0c;保证每个业务分支一起成功&am…...

Python学习基础笔记二十二——生成器

一个包含yield关键字的函数就是一个生成器函数。yield可以为我们从函数中返回值&#xff0c;但是yield又不同于return&#xff0c;return的执行意味着程序的结束&#xff0c;调用生成器函数不会得到返回的具体的值&#xff0c;而是得到一个可迭代的对象。每一次获取这个可迭代对…...

python -- PyQt5(designer)中文详细教程(四)事件和信号

事件 signals and slots也 被其他⼈翻译成信号和槽机制。 所有的应用都是事件驱动的。事件大部分都是由用户的行为产⽣的&#xff0c;当然也有其他的事件产生方式&#xff0c;比如网络的连接&#xff0c;窗口管理器或者定时器等。调⽤应⽤的exec_()⽅法时&#xff0c;应⽤会进⼊…...

你绝对想象不到的端对端通信的几种方式

一、前言 今天要和大家说的是我们常用的一些端对端的通信方式&#xff0c;这里我们会以python和php语言为主&#xff0c;举例说明客户端、浏览器端和服务器端通信&#xff0c;部分代码可能展示不全&#xff0c;不过我会放在文末链接供大家下载测试&#xff0c;下面我们先来让大…...

序列化--Serial

序列化&#xff1a;将数据结构或对象转换成二进制串的过程。 反序列化&#xff1a;将在序列化过程中所生成的二进制串转换成数据结构或者对象的过程。 Parcelable 与 Serializeable 的区别 SerializableParcelable通过IO对硬盘操作&#xff0c;速度较慢直接在内存操作&#x…...

BDD - SpecFlow ExternalData Plugin 导入外部测试数据

BDD - SpecFlow ExternalData Plugin 导入外部测试数据引言SpecFlow ExternalData 插件支持的数据源Tags实践创建一个 Class Libary Project添加 NuGet Packages添加测试数据源文件CSV 文件Excel 文件添加 Feature 文件实现 Step Definition执行Scenario 导入测试数据源Scenari…...

[Power Query] 日期和时间处理

Power Query查询编辑器为日期和时间数据提供了强大而快捷的处理方式 例1: 从日期中提取年、月份、日、季度、周、天等信息 数据源 步骤1:将数据源导入到Power BI Desktop&#xff0c;单击【转换数据】选项&#xff0c;进入Power Query查询编辑器界面 步骤2:选中"日期&qu…...

设计模式之抽象工厂模式

利用反射技术简单梳理抽象工厂模式 工厂模式实现 通常我们在实际工作中&#xff0c;经常遇到需要访问数据库的场景。 而常见的数据库又多种多样&#xff0c;怎么样针对不同的数据库来建立不同的数据库连接呢&#xff1f; 我们可以看下用抽象工厂模式加上反射技术来如何实现。…...

JavaWeb_第5章_会话技术_Cookie+Session

JavaWeb_第5章_会话技术_CookieSession 文章目录JavaWeb_第5章_会话技术_CookieSession1&#xff0c;会话跟踪技术的概述2&#xff0c;Cookie2.1 Cookie的基本使用2.2 Cookie的原理分析2.3 Cookie的使用细节2.3.1 Cookie的存活时间2.3.2 Cookie存储中文3&#xff0c;Session3.1…...

跟着实例学Go语言(一)

本教程全面涵盖了Go语言基础的各个方面。一共80个例子&#xff0c;每个例子对应一个语言特性点&#xff0c;非常适合新人快速上手。 教程代码示例来自go by example&#xff0c;文字部分来自本人自己的理解。 本文是教程系列的第一部分&#xff0c;共计20个例子、约1万字。 目…...

数据库基础 - 数据类型、关键字、cmd中操作数据库的命令

cmd中操作数据库的命令 mysql -hlocalhost -用户名 -密码 show database&#xff1b;查询数据库中的小数据库 show 数据库名&#xff1b;查询某一个小数据库 show 表名&#xff1b;查询表的结构 exit 退出数据类型 数值类型 int &#xff1a;整形 double&#xff1a;双精度&…...

2022SDNU-ACM结训赛题解

首先感谢一下各位出题人的精心准备、验题人的辛勤付出、以及选手的积极参加 题解 Problem A 柳予欣的归来【数学】 出题人&#xff1a; bhq 没想到一血是被打完山大的牛客比赛后来结训赛玩的wyx拿走的&#xff01; 题目描述&#xff1a; 计算(∑0<d<pd−1)m(\sum_{0…...

《人类简史》笔记三—— 历史从无正义

目录 一、尽管把人人生而平等喊得震天响&#xff0c;其实还是把人分成了上下等级 二、恶性循环 三、当男人究竟有什么好的&#xff1f; 一、尽管把人人生而平等喊得震天响&#xff0c;其实还是把人分成了上下等级 古时候&#xff1a; 上等人 平民和奴隶 现在&#xff1a;…...

Python实现基于用户的协同过滤推荐算法构建电影推荐系统

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 基于用户的协同过滤推荐&#xff08;User-based CF&#xff09;的原理假设&#xff1a;跟你喜好相似的人…...

阿里巴巴专场——第322场周赛题解

目录 模拟法&#xff1a;6253.回环句 排序后模拟&#xff1a;6254. 划分技能点相等的团队 BFS&#xff1a;6255. 两个城市间路径的最小分数 BFS&#xff1a;6256. 将节点分成尽可能多的组 模拟法&#xff1a;6253.回环句 这道题直接按照题目的意思暴力模拟即可&#xff1a;…...

【机器学习】支持向量回归

有任何的书写错误、排版错误、概念错误等&#xff0c;希望大家包含指正。 在阅读本篇之前建议先学习&#xff1a; 【机器学习】支持向量机【上】硬间隔 【机器学习】支持向量机【下】软间隔与核函数 支持向量回归 支持向量回归&#xff08;support vector regression&#xf…...

Linux安装mysql

1、 查看是否已经安装 Mysql rpm -qa | grep mysql 如果你查看出来有东西&#xff0c;可以使用下面命令将其删除 rpm -e 文件名 2 、下载官方 Mysql 包 wget -i -c http://dev.mysql.com/get/mysql57-community-release-el7-10.noarch.rpm 如果安装有提示&#xff1a;Cannot…...

JeecgBoot搭建(低代码)

环境安装 后端&#xff1a;JDK: 1.8 (小于11)、Maven: 3.5、MySql: 5.7、Redis: 3.2 前端&#xff1a;Node Js: 14.18 / 16、Npm: 5.6.0、Yarn: 1.21.1 、Pnpm 工具&#xff1a; IDEA、Navicat、Git、TortoiseGit拉取代码 后端&#xff1a;git clone https://gitee.com/jeecg/…...

【java】3-获取线程引用与线程的属性

1.获取线程的引用 在创建一个线程之后&#xff0c;我们很有必要去获取当前线程实例的引用&#xff0c;以便能够观察到线程的一些属性&#xff0c;或是对于当前线程进行一系列的操作 调用Thread类的静态方法currentThread&#xff0c;我们便能拿到当前线程的引用 Thread.curr…...

2022-12-04一周学习

这周基本上还是在对前端学习的更多一点&#xff0c;主要是之前没有重视vue3的学习,现在在补上来&#xff0c;学习了vue3的一些知识&#xff0c;前端的权限管理&#xff0c;设置路由守卫&#xff0c;pinia&#xff0c;还学习了redis的一些基本操作&#xff0c;之前只是照搬了别人…...

CG-34 浊度传感器 简单说明

产品概述 浊度传感器是一种智能监测水中悬浮物对光线透过时所发生的阻碍程度的仪器。允许在水中的测量点进行无人值守的操作。采用自清洗设计&#xff0c;可清除水中附着物以及气泡聚集而影响测量结果。具有优异的抗污染能力&#xff0c;即使恶劣的环境长期在线监测&#xff0c…...

学习linux从0到初级工程师-3

一、LNMP 1.1 搭建LNMP LNMP&#xff1a;LinuxNginxMysqlPHP LNMP优势&#xff1a; 1.web服务器一种&#xff0c;Nginx处理静态文件、索引文件&#xff0c;自动索引的效率非常高&#xff1b; 2.作为代理服务器,Nginx可以实现无缓存的反向代理加速&#xff0c;提高网站运行…...

在Linux上定时执行脚本

在Linux上定时执行脚本通常可以使用 ​cron​任务来实现。​cron​是一个系统服务&#xff0c;用于在预定时间自动执行命令或脚本。下面是如何在Linux上设置定时执行脚本的步骤&#xff1a; 编写脚本&#xff1a;首先&#xff0c;你需要编写需要定时执行的脚本文件&#xff0c;…...

web自动化笔记六:弹出框处理

1、弹出框类型&#xff1a; 1)、alert 警告框 2)、confirm 确认框 3)、prompt 提示框 2、弹出框处理方法&#xff08;方法三种弹出框操作都一样&#xff09; 1)、获取弹出框对象&#xff1a; alert driver.switch_to.ale…...

Kubernetes的五大开源存储项目

在Kubernetes中&#xff0c;关于数据的持久化管理是一种挑战&#xff0c;对此&#xff0c;社区提供了多种存储的解决方案&#xff0c;这些方案旨在简化和优化容器化应用程序的持久化数据管理。 现介绍 Kubernetes 的五大开源存储项目&#xff0c;带你了解开源存储解决方案的多…...

WPF 【十月的寒流】学习笔记(2):MVVM中是怎么实现通知的

文章目录 前言相关链接代码仓库项目配置代码初始代码ViewPersonViewModel 尝试老办法通知解决方案ObservableCollectionBindingListICollectionView 总结 前言 我们这次详细了解一下列表通知的底层是怎么实现的 相关链接 十月的寒流 MVVM实战技巧之&#xff1a;可被观测的集合…...

[数据集][目标检测]课堂举手阅读书写数据集VOC格式5015张3类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;5015 标注数量(xml文件个数)&#xff1a;5015 标注数量(txt文件个数)&#xff1a;5015 标注…...