当前位置: 首页 > news >正文

【从零开始学习JVM | 第三篇】虚拟机的垃圾回收学习(一)

堆空间的基本结构

Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时,Java 自动内存管理最核心的功能是 内存中对象的分配与回收。

Java 堆是垃圾收集器管理的主要区域,因此也被称作 GC 堆(Garbage Collected Heap)

从垃圾回收的角度来说,由于现在收集器基本都采用分代垃圾收集算法,所以 Java 堆被划分为了几个不同的区域,这样我们就可以根据各个区域的特点选择合适的垃圾收集算法。

在 JDK 7 版本及 JDK 7 版本之前,堆内存被通常分为下面三部分:

  1. 新生代内存(Young Generation)
  2. 老生代(Old Generation)
  3. 永久代(Permanent Generation)

下图所示的 Eden 区、两个 Survivor 区 S0 和 S1 都属于新生代,中间一层属于老年代,最下面一层属于永久代。

JDK 8 版本之后 PermGen(永久) 已被 Metaspace(元空间) 取代,元空间使用的是直接内存 。

内存分配和回收原则 

对象优先再Eden区分配

大多数情况下,对象在新生代中 Eden 区分配。当 Eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC。

当 Eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC。GC 期间虚拟机又发现 先前在Eden区的对象无法存入 Survivor 空间,所以只好通过 分配担保机制 把新生代的对象提前转移到老年代中去,老年代上的空间足够存放 先前在Eden区的对象,所以不会出现 Full GC。执行 Minor GC 后,后面分配的对象如果能够存在 Eden 区的话,还是会在 Eden 区分配内存。

大对象直接进入老年代 

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。

大对象直接进入老年代的行为是由虚拟机动态决定的,它与具体使用的垃圾回收器和相关参数有关。大对象直接进入老年代是一种优化策略,旨在避免将大对象放入新生代,从而减少新生代的垃圾回收频率和成本。

  • G1 垃圾回收器会根据 -XX:G1HeapRegionSize 参数设置的堆区域大小和 -XX:G1MixedGCLiveThresholdPercent 参数设置的阈值,来决定哪些对象会直接进入老年代。
  • Parallel Scavenge 垃圾回收器中,默认情况下,并没有一个固定的阈值(XX:ThresholdTolerance是动态调整的)来决定何时直接在老年代分配大对象。而是由虚拟机根据当前的堆内存情况和历史数据动态决定。

长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。

大部分情况,对象都会首先在 Eden 区域分配。如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间(s0 或者 s1)中,并将对象年龄设为 1(Eden 区->Survivor 区后对象的初始年龄变为 1)。

对象在 Survivor 中每熬过一次 MinorGC,年龄就增加 1 岁,当它的年龄增加到一定程度(默认为 15 岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

总结:

针对 HotSpot VM 的实现,它里面的 GC 其实准确分类只有两大种:

部分收集 (Partial GC):

  • 新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集;
  • 老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集;
  • 混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集。

整堆收集 (Full GC):收集整个 Java 堆和方法区。

死亡对象判断方法

堆中几乎放着所有的对象实例,对堆垃圾回收前的第一步就是要判断哪些对象已经死亡(即不能再被任何途径使用的对象)。

引用计数法

给对象中添加一个引用计数器:

  • 每当有一个地方引用它,计数器就加 1;
  • 当引用失效,计数器就减 1;
  • 任何时候计数器为 0 的对象就是不可能再被使用的。

这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间循环引用的问题。

所谓对象之间的相互引用问题,如下面代码所示:除了对象 objAobjB 相互引用着对方之外,这两个对象之间再无任何引用。但是他们因为互相引用对方,导致它们的引用计数器都不为 0,于是引用计数算法无法通知 GC 回收器回收他们。

可达性分析算法

这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的,需要被回收。

引用类型总结

无论是通过引用计数法判断对象引用数量,还是通过可达性分析法判断对象的引用链是否可达,判定对象的存活都与“引用”有关。

JDK1.2 之前,Java 中引用的定义很传统:如果 reference 类型的数据存储的数值代表的是另一块内存的起始地址,就称这块内存代表一个引用。

JDK1.2 以后,Java 对引用的概念进行了扩充,将引用分为强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱),强引用就是 Java 中普通的对象,而软引用、弱引用、虚引用在 JDK 中定义的类分别是 SoftReferenceWeakReferencePhantomReference

1.强引用(StrongReference)

强引用实际上就是程序代码中普遍存在的引用赋值,这是使用最普遍的引用,其代码如下

String strongReference = new String("abc");

如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空间不足,Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

2.软引用(SoftReference)

如果一个对象只具有软引用,那就类似于可有可无的生活用品。软引用代码如下

// 软引用
String str = new String("abc");
SoftReference<String> softReference = new SoftReference<String>(str);

如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。

软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA 虚拟机就会把这个软引用加入到与之关联的引用队列中。

3.弱引用(WeakReference)

如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用代码如下:

String str = new String("abc");
WeakReference<String> weakReference = new WeakReference<>(str);
str = null; //str变成软引用,可以被收集

4.虚引用(PhantomReference)

"虚引用"顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。虚引用代码如下:

String str = new String("abc");
ReferenceQueue queue = new ReferenceQueue();
// 创建虚引用,要求必须与一个引用队列关联
PhantomReference pr = new PhantomReference(str, queue);

虚引用主要用来跟踪对象被垃圾回收的活动

虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。

特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速 JVM 对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生

 

 

 

 

 

 

相关文章:

【从零开始学习JVM | 第三篇】虚拟机的垃圾回收学习(一)

堆空间的基本结构 Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时&#xff0c;Java 自动内存管理最核心的功能是 堆 内存中对象的分配与回收。 Java 堆是垃圾收集器管理的主要区域&#xff0c;因此也被称作 GC 堆&#xff08;Garbage Collected Heap&am…...

intellj idea 2024.1

参考资料 激活 https://www.microcharon.com/tech/5.htmlja-netfilter-all下载地址&#xff1a;https://drive.microcharon.com/OneDrive/Software/JetBrains%20ja-netfilter-all%20Build%202024.1.11.zip 步骤及问题 下载后&#xff1a;安全前确保旧版本的idea已经卸载。安…...

redis之缓存击穿

一、前言 本期我们聊一下缓存击穿&#xff0c;其实缓存击穿和缓存穿透很相似&#xff0c;区别就是&#xff0c;缓存穿透是一些黑客故意请求压根不存在的数据从而达到拖垮系统的目的&#xff0c;是恶意的&#xff0c;有针对性的。缓存击穿的情况是&#xff0c;数据确实存在&…...

Node.js中path模块详解

Node.js path 模块全部 API 详解 Node.js 的 path 模块提供了处理文件路径的工具函数&#xff0c;支持跨平台路径操作。以下是 path 模块的所有 API 详解&#xff1a; 1. 路径解析与操作 const path require(path);// 1. 路径连接 const fullPath path.join(__dirname, fi…...

重构艺术 | 内联与查询替代临时变量

重构艺术 | 内联与查询替代临时变量 在代码重构的殿堂里&#xff0c;临时变量常常扮演着双面角色&#xff1a;既是代码清晰的助力器&#xff0c;也可能成为代码腐败的温床。本文将深入探讨两种处理临时变量的重要手法&#xff1a;内联临时变量&#xff08;Inline Temp&#xf…...

数据分析-数据预处理

数据分析-数据预处理 处理重复值 duplicated( )查找重复值 import pandas as pd apd.DataFrame(data[[A,19],[B,19],[C,20],[A,19],[C,20]],columns[name,age]) print(a) print(--------------------------) aa.duplicated() print(a)只判断全局不判断每个 any() import p…...

Java基础 4.12

1.方法的重载&#xff08;OverLoad&#xff09; 基本介绍 Java中允许同一个类&#xff0c;多个同名方法的存在&#xff0c;但要求形参列表不一致&#xff01; 如 System.out.println(); out是PrintStream类型 重载的好处 减轻了起名的麻烦减轻了记名的麻烦 2.重载的快速入…...

PostgreSQL有类似oracle的move表吗

PostgreSQL有类似oracle的move表吗 PostgreSQL 提供了类似 Oracle MOVE 表功能的重组操作&#xff0c;但实现方式和具体命令有所不同。以下是详细对比和 PostgreSQL 中的实现方案&#xff1a; 一 Oracle MOVE 与 PostgreSQL 对比 特性Oracle MOVEPostgreSQL 等效操作主要用途…...

AUTO-RAG: AUTONOMOUS RETRIEVAL-AUGMENTED GENERATION FOR LARGE LANGUAGE MODELS

Auto-RAG&#xff1a;用于大型语言模型的自主检索增强生成 单位&#xff1a;中科院计算所 代码&#xff1a; https://github.com/ictnlp/Auto-RAG 拟解决问题&#xff1a;通过手动构建规则或者few-shot prompting产生的额外推理开销。 贡献&#xff1a;提出一种以LLM决策为中…...

ABC-CNN-GRU-Attention、CNN-GRU-Attention、ABC-CNN-GRU和CNN-GRU四类对比模型多变量时序预测

人工蜂群算法四模型对比&#xff01;ABC-CNN-GRU-Attention系列四模型多变量时序预测 目录 人工蜂群算法四模型对比&#xff01;ABC-CNN-GRU-Attention系列四模型多变量时序预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 本研究针对多变量时间序列预测任务&#xf…...

ssh 免密登录服务器(vscode +ssh 免密登录)

每次打开vscode连接服务器都需要输入密码&#xff0c;特别繁琐。 然后自己在网上翻阅了一下教程&#xff0c;发现说的内容比较啰嗦&#xff0c;而且个人感觉非常有误导性倾向。 因此自己直接干脆写一个简便易懂的教程算了。 &#xff08;以经过本人亲测&#xff0c;真实可靠&am…...

Elasticsearch 系列专题 - 第七篇:实战项目

理论学习固然重要,但实战才能真正巩固知识。本篇将通过两个项目,带你从需求分析到实现,体验 Elasticsearch 在真实场景中的应用。 1. 项目一:日志分析系统 1.1 需求分析与架构设计 需求: 实时采集服务器日志。按时间和日志级别(INFO、ERROR)分析。可视化错误趋势。架构…...

C++初阶-类和对象(上)

本章内容相对于之后的类和对象中和下都比较简单&#xff0c;但是整体还是有些难度的。 目录 1.类的定义 1.1类定义格式 1.2访问限定符 1.3类域 2.实例化 2.1实例化概念 2.2对象大小 3.this指针 4.练习 4.1选择题1 4.2选择题2 5.总结 1.类的定义 1.1类定义格式 &am…...

(十九)安卓开发中的Application类的使用详解

在 Android 开发中&#xff0c;Application 类是一个全局的单例类&#xff0c;代表应用进程本身。它常用于初始化全局资源、维护应用级别的状态和注册全局生命周期回调。以下是详细讲解和代码示例&#xff1a; 一、自定义 Application 类 1. 创建子类 public class MyApplica…...

算法思想之位运算(一)

欢迎拜访&#xff1a;雾里看山-CSDN博客 本篇主题&#xff1a;算法思想之位运算(一) 发布时间&#xff1a;2025.4.12 隶属专栏&#xff1a;算法 目录 滑动窗口算法介绍六大基础位运算符常用模板总结 例题位1的个数题目链接题目描述算法思路代码实现 比特位计数题目链接题目描述…...

十八、TCP多线程、多进程并发服务器

1、TCP多线程并发服务器 服务端&#xff1a; #include<stdio.h> #include <arpa/inet.h> #include<stdlib.h> #include<string.h> #include <sys/types.h> /* See NOTES */ #include <sys/socket.h> #include <pthread.h>…...

『生成内容溯源系统』详解

生成内容溯源系统详解 1. 定义与核心目标 生成内容溯源系统&#xff08;Generative Content Provenance System&#xff09;是指能够追踪AI生成内容的来源、生成过程、版权归属及修改历史的技术体系。其核心目标是&#xff1a; 验证真实性&#xff1a;证明内容由特定AI模型生…...

mac 解压 nsz 文件

nsz 地址 下载 nsz PIP 套餐 使用以下命令安装仅限 Console 的版本&#xff1a; pip3 install --upgrade nsz使用以下命令安装 GUI 版本&#xff1a; pip3 install --upgrade nsz[gui]解压 nsz 文件 nsz -D 文件路径...

Python进阶(3):函数(接上篇)

上一篇我们初步介绍python中函数的定义与调用 Python进阶(2):函数-CSDN博客 这里继续: 关键字参数: 形参1实参1,形参2实参2,...... 关键字参数是指使用形式参数的名字来确定输入的参数值。通过该方式指定实际参数时,不再需要与形式参数的位置完全一致。只要将参数名写正确…...

卒/兵过河前的判断和走法触发器优化

兵(卒)&#xff1a;兵(卒)在未过河前&#xff0c;只能向前一步步走&#xff0c;过河以后&#xff0c;除不能后退外&#xff0c;允许左右移动&#xff0c;但也只能一次一步。 迷你世界地图已上传 优化...

生物信息Rust-01

前言-为什么想学Rust&#xff1f; 一直想多学一门编译语言&#xff0c;主要有几个原因吧&#xff08;1. 看到一位老师实验室要求需要掌握一门编译语言&#xff1b;2. 自己享想试着开发一些实用的生信工具&#xff0c;感觉自己现在相比于数据分析&#xff0c;探索生物学层面的意…...

基于HTML + jQuery + Bootstrap 4实现(Web)地铁票价信息生成系统

地铁票价信息表生成系统 1. 需求分析 1.1 背景 地铁已经成为大多数人出行的首选,北京地铁有多条运营线路, 截至 2019 年 12 月,北京市轨道交通路网运营线路达 23 条、总里程 699.3 公里、车站 405 座。2019 年,北京地铁年乘客量达到 45.3 亿人次,日均客流为 1241.1 万人次…...

智慧水务项目(八)基于Django 5.1 版本PyScada详细安装实战

一、说明 PyScada&#xff0c;一个基于Python和Django框架的开源SCADA&#xff08;数据采集与监视控制系统&#xff09;系统&#xff0c;采用HTML5技术打造人机界面&#xff08;HMI&#xff09;。它兼容多种工业协议&#xff0c;如Modbus TCP/IP、RTU、ASCII等&#xff0c;并具…...

DeepSeek在消防救援领域的应用解决方案

DeepSeek在消防救援领域的应用解决方案 一、火灾风险动态感知与早期预警 火灾风险动态感知与早期预警是智慧消防的关键环节&#xff0c;DeepSeek通过多模态数据分析&#xff0c;融合烟雾传感器、热成像摄像头和气体浓度检测等数据&#xff0c;能够识别传统阈值法难以捕捉的火…...

VSCode CMake调试CPP程序

文章目录 1 安装C与CMake插件2 配置CMakeLists.txt3 使用CMake编译调试3.1 编译3.2 调试 4 自定义构建调试参考 1 安装C与CMake插件 C插件 CMake插件 2 配置CMakeLists.txt 编写测试程序 #include<iostream>int main(int argc, char const *argv[]) {int a 1, b 2;i…...

AI Agent工程师认证-学习笔记(3)——【多Agent】MetaGPT

学习链接&#xff1a;【多Agent】MetaGPT学习教程 源代码链接&#xff08;觉得很好&#xff0c;star一下&#xff09;&#xff1a;GitHub - 基于MetaGPT的多智能体入门与开发教程 MetaGPT链接&#xff1a;GitHub - MetaGPT 前期准备 1、获取MetaGPT &#xff08;1&#xff…...

Spring AI 结构化输出详解

一、Spring AI 结构化输出的定义与核心概念 Spring AI 提供了一种强大的功能&#xff0c;允许开发者将大型语言模型&#xff08;LLM&#xff09;的输出从字符串转换为结构化格式&#xff0c;如 JSON、XML 或 Java 对象。这种结构化输出能力对于依赖可靠解析输出值的下游应用程…...

AMGCL库使用示例

AMGCL库使用示例 AMGCL是一个用于解决大规模稀疏线性方程组的C库&#xff0c;它实现了代数多重网格(AMG)预处理器和Krylov子空间迭代求解器。下面是一些AMGCL的使用示例。 基本示例&#xff1a;求解稀疏线性系统 #include <iostream> #include <vector> #includ…...

关于 Java 预先编译(AOT)技术的详细说明,涵盖 GraalVM 的配置、Spring Boot 3.x 的集成、使用示例及优缺点对比

以下是关于 Java 预先编译&#xff08;AOT&#xff09;技术的详细说明&#xff0c;涵盖 GraalVM 的配置、Spring Boot 3.x 的集成、使用示例及优缺点对比&#xff1a; 1. 预先编译&#xff08;AOT&#xff09;技术详解 1.1 核心概念 AOT&#xff08;Ahead-of-Time&#xff09…...

Video Encoder:多模态大模型如何看懂视频

写在前面 大型语言模型(LLM)已经掌握了理解文本的超能力,而多模态大模型(MLLM)则更进一步,让 AI 拥有了“看懂”图像的眼睛。但这还不够!真实世界是动态的、流动的,充满了运动、变化和声音。视频,正是承载这一切动态信息的关键媒介。 让 LLM 看懂视频,意味着 AI 需…...

leetcode0622. 设计循环队列-medium

1 题目&#xff1a;设计循环队列 官方标定难度&#xff1a;中 设计你的循环队列实现。 循环队列是一种线性数据结构&#xff0c;其操作表现基于 FIFO&#xff08;先进先出&#xff09;原则并且队尾被连接在队首之后以形成一个循环。它也被称为“环形缓冲器”。 循环队列的一…...

专题十四:动态路由——OSPF

一、OSPF简介 开放式最短路径优先OSPF&#xff08;Open Shortest Path First&#xff09;是IETF组织开发的一个基于链路状态的内部网关协议&#xff08;Interior Gateway Protocol&#xff09;&#xff0c;采用DIjkstra算法&#xff0c;协议号是89。用于自治系统&#xff08;A…...

【蓝桥杯】第十六届蓝桥杯 JAVA B组记录

试题 A: 逃离高塔 很简单&#xff0c;签到题&#xff0c;但是需要注意精度&#xff0c;用int会有溢出风险 答案&#xff1a;202 package lanqiao.t1;import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWrit…...

一个项目的架构演进

1&#xff0c;单体架构 垂直升级&#xff1a;4核16GB -> 8核64G 水平扩展&#xff1a;一台服务器扩展成多台 存在以下几个问题 1&#xff0c;提升的性能是有限的 2&#xff0c;更新&#xff0c;维护成本非常高&#xff0c;对于系统中要修改或增加的功能&#xff0c;整个发…...

创建虚拟环境无法加载到pycharm当conda环境,只能为python环境

conda create -n myenv python3.8 然后&#xff0c;在pycharm中&#xff0c;点击 ..." 按钮并浏览到您的 Conda 环境路径。通常&#xff0c;Conda 环境路径位于 ~/.conda/envs/<Your Environment Name> 或 ~/miniconda3/envs/<Your Environment Name> 或 ~/an…...

暴雨打造智能化时代源动力

当清晨的智能管家为您调节室温、日间数字员工自动生成会议纪要、深夜AI外教仍在纠正发音……这不是科幻片&#xff0c;2025年的世界正被智能体悄然重塑。这些能听会想的数智化助理&#xff0c;正在医疗会诊、工业质检、金融风控等多个领域创造着价值。 那么&#xff0c;智能体…...

【ROS2】行为树:BehaviorTree

1、简介 与状态机不同,行为树强调执行动作,而不是状态之间的转换。 行为树是可组合的。可以重复使用简单的行为来构建复杂的行为。 在游戏领域,行为树已经比较流行了。主要用于维护游戏角色的各种动作和状态。 ROS2的导航框架Navigation2中引入了行为树来组织机器人的工作流…...

【HTTP】:应用层协议HTTP(1)

1.HTTP协议 虽然我们说,应用层协议是我们程序猿自己定的.但实际上,已经有大佬们定义了一些现成的,又非常好用的应用层协议,供我们直接参考使用.HTTP(超文本传输协议)就是其中之一。 在互联网世界中&#xff0c;HTTP&#xff08;HyperTextTransfer Protocol&#xff0c;超文本…...

Boost Graph Library (BGL) 介绍与使用示例

Boost Graph Library (BGL) 介绍与使用示例 Boost Graph Library (BGL) 是 Boost 库中用于图论计算的模块&#xff0c;提供了处理图数据结构的通用接口和多种图算法实现。 BGL 主要特性 提供多种图表示方式&#xff1a;邻接表、邻接矩阵等包含常用图算法&#xff1a;DFS、BF…...

数据结构--线性表

单链表的基本操作 1.清空单链表 链表仍然存在&#xff0c;但链表中无元素&#xff0c;成为空链表&#xff08;头指针和头链表仍存在&#xff09;算法思路&#xff1a;依次释放所有结点&#xff0c;并将头结点指针设置为空 2.返回表长 3.取值–取单链表中第i个元素 因为存储…...

电商用户购物行为分析:基于K-Means聚类与分类验证的完整流程

随着电商行业的快速发展,用户行为分析成为企业优化营销策略、提升用户体验的重要手段。通过分析用户的购物行为数据,企业可以挖掘出用户群体的消费特征和行为模式,从而制定更加精准的营销策略。本文将详细介绍一个基于Python实现的电商用户购物行为分析系统,涵盖数据预处理…...

《车辆人机工程-汽车驾驶显示装置》实验报告

汽思考题 汽车显示装置有哪些&#xff1f; 汽车显示装置是车辆与驾驶员、乘客交互的重要界面&#xff0c;主要用于信息展示、功能控制和安全辅助。以下是常见的汽车显示装置分类及具体类型&#xff1a; 一、驾驶舱核心显示装置 1. 仪表盘&#xff08;Instrument Cluster&am…...

三维点云投影二维图像的原理及实现

转自个人博客&#xff1a;三维点云投影二维图像的原理及实现 1. 概述 1.1 原理概述 三维点云模型是由深度相机采集深度信息和RGB信息进行生成的&#xff0c;深度相机能直接获取到深度图和二维RGB图像&#xff0c;也就是说利用相机原本的关系就可以把深度信息投影回二维图像&a…...

使用Golang打包jar应用

文章目录 背景Go 的 go:embed 功能介绍与打包 JAR 文件示例1. go:embed 基础介绍基本特性基本语法 2. 嵌入 JAR 文件示例项目结构代码实现 3. 高级用法&#xff1a;嵌入多个文件或目录4. 使用注意事项5. 实际应用场景6. 完整示例&#xff1a;运行嵌入的JAR 背景 想把自己的一个…...

MySQL数据过滤、转换与标准化

数据处理是数据库操作的重要组成部分&#xff0c;尤其是在大量数据中查找、转换和规范化目标信息的过程中。为了确保数据的有效性与一致性&#xff0c;MySQL提供了一系列数据过滤、转换与标准化的功能。 本教程将深入探讨数据过滤和转换的基本方法及应用&#xff0c;内容涵盖数…...

Linux中安装sentinel

拉取镜像 #我默认拉取最新的 sentinel 镜像 docker pull bladex/sentinel-dashboard 创建容器 docker run --name sentinel -d -p 8858:8858 bladex/sentinel-dashboard 检查是否成功 docker ps 浏览器访问 默认账号密码是 sentinel/sentinel 成功了 开放sentinel端口或者关…...

大模型压缩训练(知识蒸馏)

AI的计算结果不是一个数值&#xff0c;而是一个趋势 一、模型压缩简介 1、深度学习&#xff08;Deep Learning&#xff09;因其计算复杂度或参数冗余&#xff0c;在一些场景和设备上限制了相应的模型部署&#xff0c;需要借助模型压缩、优化加速、异构计算等方法突破瓶颈。 …...

Matlab绘制函数方程图形

Matlab绘制函数方程图形&#xff1a; 多项式计算: polyval 函数 Values of Polynomials: polyval ( ) 绘制方程式图形&#xff1a; 代码如下&#xff1a; >> a[9,-5,3,7]; x-2:0.01:5; fpolyval(a,x); plot(x,f,LineWidth,2); xlabel(x); ylabel(f(x))…...

dify windos,linux下载安装部署,提供百度云盘地址

dify下载安装 dify1.0.1 windos安装包百度云盘地址 通过网盘分享的文件&#xff1a;dify-1.0.1.zip 链接: 百度网盘 请输入提取码 提取码: 1234 dify安装包 linux安装包百度云盘地址 通过网盘分享的文件&#xff1a;dify-1.0.1.tar.gz 链接: 百度网盘 请输入提取码 提取码…...

优化方法介绍(一)

优化方法介绍(一) 本博客是一个系列博客,主要是介绍各种优化方法,使用 matlab 实现,包括方法介绍,公式推导和优化过程可视化 1 失败案例介绍 本文在编写最速下降法的时候使用了经典的求解函数框架,并使用了自适应步长(alpha)机制,即加入参数flag,当出现梯度下降的情…...