当前位置: 首页 > news >正文

OpenGL学习笔记(五):Textures 纹理

文章目录

  • 纹理坐标
  • 纹理环绕方式
  • 纹理过滤——处理纹理分辨率低的情况
  • 多级渐远纹理Mipmap——处理纹理分辨率高的情况
  • 加载与创建纹理 ( <stb_image.h> )
  • 生成纹理
  • 应用纹理
  • 纹理单元
  • 练习1
  • 练习2
  • 练习3
  • 练习4


通过上一篇着色部分的学习,我们可以为每个顶点添加颜色来增加图形的细节,从而创建出有趣的图像。当需要给图形赋予真实颜色的时候,不大可能为每一个顶点指定一个颜色,通常会采用纹理贴图。

本篇开始学习使用纹理(Texture)来添加物体的细节。我们要做的工作是告诉OpenGL该怎样对纹理采样。

纹理相关原理参考:GAMES101学习笔记(五):Texture 纹理(纹理映射、重心坐标、纹理贴图)

纹理坐标

为了能够把纹理映射(Map)到三角形上,我们需要指定三角形的每个顶点各自对应纹理的哪个部分。

每个顶点就会关联着一个纹理坐标(Texture Coordinate),用来标明该从纹理图像的哪个部分采样(采集片段颜色)。之后在图形的其它片段上进行片段插值(Fragment Interpolation)。

纹理坐标在x和y轴上,范围为0到1之间(2D纹理图像)。使用纹理坐标获取纹理颜色叫做采样(Sampling)。
纹理坐标的原点(0, 0)在纹理图片的左下角,终止于(1, 1),即纹理图片的右上角。

float texCoords[] = {0.0f, 0.0f, // 左下角1.0f, 0.0f, // 右下角0.5f, 1.0f  // 上中
};

下面的图片展示了如何把纹理坐标映射到三角形上的:
在这里插入图片描述
顶点结构将更新为如下:

float vertices[] = {// positions        // colors			// texCoords0.5f, -0.5f, 0.0f,  1.0f, 0.0f, 0.0f,  0.0f, 0.0f,		// bottom right-0.5f, -0.5f, 0.0f,  0.0f, 1.0f, 0.0f,  1.0f, 0.0f,		// bottom left0.0f,  0.5f, 0.0f,  0.0f, 0.0f, 1.0f,  0.5f, 1.0f   	// top 
};

由于我们添加了一个额外的顶点属性,我们必须告诉OpenGL我们新的顶点格式:
在这里插入图片描述

纹理环绕方式

纹理坐标的范围通常是从(0, 0)到(1, 1),那如果纹理坐标设置在范围之外会发生什么?
OpenGL默认的行为是重复这个纹理图像(我们基本上忽略浮点纹理坐标的整数部分)OpenGL也提供了更多的选择

环绕方式描述
GL_REPEAT对纹理的默认行为。重复纹理图像。
GL_MIRRORED_REPEATGL_REPEAT一样,但每次重复图片是镜像放置的。
GL_CLAMP_TO_EDGE纹理坐标会被约束在0到1之间,超出的部分会重复纹理坐标的边缘,产生一种边缘被拉伸的效果。
GL_CLAMP_TO_BORDER超出的坐标为用户指定的边缘颜色。

当纹理坐标超出默认范围时,每个选项都有不同的视觉效果输出:
在这里插入图片描述
可以使用glTexParameter函数对单独的一个坐标轴设置(st(如果是使用3D纹理那么还有一个r)它们和xyz是等价的):

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_MIRRORED_REPEAT);
  • 第一个参数指定了纹理目标;我们使用的是2D纹理,因此纹理目标是GL_TEXTURE_2D
  • 第二个参数需要我们指定设置的选项与应用的纹理轴。我们打算配置的是WRAP选项,并且指定S和T轴。
  • 最后一个参数需要我们传递一个环绕方式(Wrapping),即上面表格中的4种方式。

如果我们选择GL_CLAMP_TO_BORDER选项,我们还需要指定一个边缘的颜色。这需要使用glTexParameter函数的fv后缀形式:

float borderColor[] = { 1.0f, 1.0f, 0.0f, 1.0f };
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);

纹理过滤——处理纹理分辨率低的情况

OpenGL需要知道怎样将纹理像素(Texture Pixel,也叫Texel)映射到纹理坐标。但

  • 纹理坐标的精度是无限的,可以是任意浮点值。(纹理坐标不依赖于分辨率Resolution)
  • 纹理像素是有限的(图片分辨率)

当物体很大但是纹理的分辨率很低的时候,就会出现锯齿现象。
在GAMES101课程中我们了解了双线性插值和双三次插值的方式来做抗锯齿。

OpenGL有对于纹理过滤(Texture Filtering)的选项。纹理过滤有很多个选项,但是现在我们只讨论最重要的两种:

  • GL_NEAREST(也叫邻近过滤,Nearest Neighbor Filtering)
    OpenGL默认的纹理过滤方式。当设置为GL_NEAREST的时候,OpenGL会选择中心点最接近纹理坐标的那个像素。

  • GL_LINEAR(也叫线性过滤,(Bi)linear Filtering)
    它会基于纹理坐标附近的纹理像素,计算出一个插值,近似出这些纹理像素之间的颜色。一个纹理像素的中心距离纹理坐标越近,那么这个纹理像素的颜色对最终的样本颜色的贡献越大。

  • GL_LINEAR可以产生更真实的输出,但有些开发者更喜欢8-bit风格,所以他们会用GL_NEAREST选项

当进行放大(Magnify)和缩小(Minify)操作的时候可以设置纹理过滤的选项,比如你可以在纹理被缩小的时候使用邻近过滤,被放大时使用线性过滤。我们需要使用glTexParameter函数为放大和缩小指定过滤方式。这段代码看起来会和纹理环绕方式的设置很相似:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

多级渐远纹理Mipmap——处理纹理分辨率高的情况

想象一下,假设我们有一个包含着上千物体的大房间,每个物体上都有纹理。有些物体会很远,但其纹理会拥有与近处物体同样高的分辨率。由于远处的物体可能只产生很少的片段,OpenGL从高分辨率纹理中为这些片段获取正确的颜色值就很困难,因为它需要对一个跨过纹理很大部分的片段只拾取一个纹理颜色。在小物体上这会产生不真实的感觉,更不用说对它们使用高分辨率纹理浪费内存的问题了。

OpenGL使用一种叫做 多级渐远纹理(Mipmap) 的概念来解决这个问题,它简单来说就是一系列的纹理图像,后一个纹理图像是前一个的二分之一。多级渐远纹理背后的理念很简单:距观察者的距离超过一定的阈值,OpenGL会使用不同的多级渐远纹理,即最适合物体的距离的那个。由于距离远,解析度不高也不会被用户注意到。同时,多级渐远纹理另一加分之处是它的性能非常好。让我们看一下多级渐远纹理是什么样子的:

在这里插入图片描述
使用glGenerateMipmap函数,在创建完一个纹理后调用它OpenGL就会生成Mipmap。后面的教程中会看到该如何使用它。

在渲染中切换多级渐远纹理级别(Level)时,OpenGL在两个不同级别的多级渐远纹理层之间会产生不真实的生硬边界。就像普通的纹理过滤一样,切换多级渐远纹理级别时你也可以在两个不同多级渐远纹理级别之间使用NEARESTLINEAR过滤。为了指定不同多级渐远纹理级别之间的过滤方式,可以使用下面四个选项中的一个代替原有的过滤方式:

过滤方式描述
GL_NEAREST_MIPMAP_NEAREST使用最邻近的多级渐远纹理来匹配像素大小,并使用邻近插值进行纹理采样
GL_LINEAR_MIPMAP_NEAREST使用最邻近的多级渐远纹理级别,并使用线性插值进行采样
GL_NEAREST_MIPMAP_LINEAR在两个最匹配像素大小的多级渐远纹理之间进行线性插值,使用邻近插值进行采样
GL_LINEAR_MIPMAP_LINEAR在两个邻近的多级渐远纹理之间使用线性插值,并使用线性插值进行采样

就像纹理过滤一样,我们可以使用glTexParameteri将过滤方式设置为前面四种提到的方法之一:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

一个常见的错误是,将放大过滤的选项设置为多级渐远纹理过滤选项之一。这样没有任何效果
因为多级渐远纹理主要是使用在纹理被缩小的情况下的,纹理放大不会使用多级渐远纹理
为放大过滤设置多级渐远纹理的选项会产生一个GL_INVALID_ENUM错误代码。

加载与创建纹理 ( <stb_image.h> )

接下来我们加载本地图片在OpenGL中创建纹理,这里我们使用一个支持多种流行格式的图像加载库stb_image.h库。

stb_image.h是Sean Barrett的一个非常流行的单头文件图像加载库,它能够加载大部分流行的文件格式,并且能够很简单得整合到你的工程之中。stb_image.h可以在这里下载。

在工程中包含该库时,需要定义宏:

#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"

使用stb_image.hstbi_load函数加载一张木箱的图片:

int width, height, nrChannels;
unsigned char *data = stbi_load("container.jpg", &width, &height, &nrChannels, 0);

stbi_load函数原型:

unsigned char *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp)

首先接受一个图像文件的路径作为输入。接下来它需要三个int作为它的第二、第三和第四个参数,stb_image.h将会用图像的宽度高度颜色通道的个数填充这三个变量。我们之后生成纹理的时候会用到的图像的宽度和高度。

生成纹理

和之前生成的其他OpenGL对象一样,纹理也是使用ID引用的。

使用glGenTextures创建纹理:

unsigned int texture;
glGenTextures(1, &texture);
  • 第一个参数:生成纹理的数量
  • 第二个参数:一个unsigned int数组,用于存储指定数量的纹理

像其他对象一样,我们需要绑定它,让之后任何的纹理指令都可以配置当前绑定的纹理:

glBindTexture(GL_TEXTURE_2D, texture);

纹理绑定之后,我们可以使用前面载入的图片数据生成一个纹理了。

通过glTexImage2D来生成:

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
stbi_image_free(data);
  • 第一个参数指定了纹理目标(Target)
    设置为GL_TEXTURE_2D意味着会生成与当前绑定的纹理对象在同一个目标上的纹理(任何绑定到GL_TEXTURE_1DGL_TEXTURE_3D的纹理不会受到影响)。
  • 第二个参数为纹理指定多级渐远纹理的级别,如果你希望单独手动设置每个多级渐远纹理的级别的话。这里我们填0,也就是基本级别。
  • 第三个参数指定纹理储存格式。我们的图像只有RGB值,因此我们也把纹理储存为RGB值。
  • 第四个参数指定最终的纹理的宽度。
  • 第五个参数指定最终的纹理的高度。
  • 第六个参数应该总是被设为0(历史遗留的问题)
  • 第七个参数定义了源图的格式。使用RGB值加载这个图像
  • 第八个参数定义了源图的数据类型。把它们储存为char(byte)数组,我们将会传入对应值。
  • 最后一个参数是真正的图像数据。

当调用glTexImage2D时,当前绑定的纹理对象就会被附加上纹理图像数据。目前只加载基本级别(Base-level)的纹理图像。
如果要使用多级渐远纹理,在生成纹理之后还要调用glGenerateMipmap,这会为当前绑定的纹理自动生成所有需要的多级渐远纹理。
绑定好纹理之后,就可以使用stbi_image_free释放图像内存了。


生成一个纹理的完整过程:

unsigned int texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
// 为当前绑定的纹理对象设置环绕、过滤方式
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);   
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// 加载并生成纹理
int width, height, nrChannels;
unsigned char *data = stbi_load("container.jpg", &width, &height, &nrChannels, 0);
if (data)
{glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);
}
else
{std::cout << "Failed to load texture" << std::endl;
}
stbi_image_free(data);

应用纹理

接下来,我们会使用之前绘制的矩形来应用纹理,更新顶点数据:

float vertices[] = {
//    ---- 位置 ----       ---- 颜色 ----     - 纹理坐标 -0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   1.0f, 1.0f,   // 右上0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, 0.0f,   // 右下-0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 0.0f,   // 左下-0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 1.0f    // 左上
};

由于我们添加了一个额外的顶点属性,我们必须告诉OpenGL我们新的顶点格式:

glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
glEnableVertexAttribArray(2);

在这里插入图片描述

注意,我们同样需要调整前面两个顶点属性的步长参数为8 * sizeof(float)


调整顶点着色器,使其能够接受顶点坐标aTexCoord为一个顶点属性,并把坐标传给片段着色器:

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;out vec3 ourColor;
out vec2 TexCoord;void main()
{gl_Position = vec4(aPos, 1.0);ourColor = aColor;TexCoord = aTexCoord;
}

调整片段着色器,把输出变量TexCoord作为输入变量。

片段着色器也应该能访问纹理对象,但是我们怎样能把纹理对象传给片段着色器呢?

GLSL有一个供纹理对象使用的内建数据类型,叫做采样器(Sampler),它以纹理类型作为后缀,比如sampler1D、sampler3D,或在我们的例子中的sampler2D。我们可以简单声明一个uniform sampler2D把一个纹理添加到片段着色器中,稍后我们会把纹理赋值给这个uniform。

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform sampler2D ourTexture;void main()
{FragColor = texture(ourTexture, TexCoord);
}

使用GLSL内建的texture函数来采样纹理的颜色,它第一个参数是纹理采样器,第二个参数是对应的纹理坐标texture函数会使用之前设置的纹理参数对相应的颜色值进行采样。这个片段着色器的输出就是纹理的(插值)纹理坐标上的(过滤后的)颜色。


现在只剩下在调用glDrawElements之前绑定纹理了,它会自动把纹理赋值给片段着色器的采样器:

glBindTexture(GL_TEXTURE_2D, texture);
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);

效果如下图: (完整源码参考)

在这里插入图片描述

纹理单元

sampler2D变量是个uniform,但我们没有用glUniform给它赋值。
实际上可以使用glUniform1i给纹理采样器分配一个位置值,这样的话我们能够在一个片段着色器中设置多个纹理。
一个纹理的这个位置值通常称为一个纹理单元(Texture Unit)

纹理的默认纹理单元是0(默认的激活状态),所以前面部分我们没有分配一个位置值。但并非所有图形驱动程序都指定了默认纹理单元。

纹理单元的主要目的是让我们在着色器中可以使用多于一个的纹理。通过把纹理单元赋值给采样器,我们可以一次绑定多个纹理,只要我们首先激活对应的纹理单元。就像glBindTexture一样,我们可以使用glActiveTexture激活纹理单元,传入我们需要使用的纹理单元:

glActiveTexture(GL_TEXTURE0); // 在绑定纹理之前先激活纹理单元
glBindTexture(GL_TEXTURE_2D, texture);

激活纹理单元之后,接下来的glBindTexture函数调用会绑定这个纹理到当前激活的纹理单元,纹理单元GL_TEXTURE0默认总是被激活,所以我们在前面的例子里当我们使用glBindTexture的时候,无需激活任何纹理单元。但当我们想要应用多个纹理时,就要先激活对应的纹理单元,

OpenGL至少保证有16个纹理单元供你使用,也就是说你可以激活从GL_TEXTURE0GL_TEXTRUE15。它们都是按顺序定义的,所以我们也可以通过GL_TEXTURE0 + 8的方式获得GL_TEXTURE8,这在当我们需要循环一些纹理单元的时候会很有用。


编辑片段着色器来接收另一个采样器,最终输出颜色是两个纹理的结合:

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform sampler2D texture1;
uniform sampler2D texture2;void main()
{FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);
}

GLSL内建的mix函数需要接受两个值作为参数,并对它们根据第三个参数进行线性插值。如果第三个值是0.0,它会返回第一个输入;如果是1.0,会返回第二个输入值。0.2会返回80%的第一个输入颜色和20%的第二个输入颜色,即返回两个纹理的混合色。


现在载入并创建另一个纹理,第二个纹理我们使用一张笑脸表情图片:

unsigned char *data = stbi_load("awesomeface.png", &width, &height, &nrChannels, 0);
if (data)
{glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);
}

注意,我们现在要读取一张包含alpha(透明度)通道的.png图片,这意味着我们现在需要使用GL_RGBA参数,指定该图片数据包含了alpha通道;否则OpenGL将无法正确解析图片数据。

为了使用第二个纹理(以及第一个),我们必须改变一点渲染流程:

  • 先绑定两个纹理到对应的纹理单元
  • 然后定义哪个uniform采样器对应哪个纹理单元:
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture1);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texture2);glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);

我们还要通过使用glUniform1i设置每个采样器的方式告诉OpenGL每个着色器采样器属于哪个纹理单元。我们只需要设置一次即可,所以这个会放在渲染循环的前面:

ourShader.use(); // 不要忘记在设置uniform变量之前激活着色器程序!
glUniform1i(glGetUniformLocation(ourShader.ID, "texture1"), 0); // 手动设置
ourShader.setInt("texture2", 1); // 或者使用着色器类设置while(...) 
{[...]
}

通过使用glUniform1i设置采样器,我们保证了每个uniform采样器对应着正确的纹理单元。你应该能得到下面的结果:
在这里插入图片描述
纹理上下颠倒了!这是因为OpenGL要求y轴0.0坐标是在图片的底部的,但是图片的y轴0.0坐标通常在顶部
stb_image.h能够在图像加载时帮助我们翻转y轴,只需要在加载任何图像前加入以下语句即可:

stbi_set_flip_vertically_on_load(true);

(完整代码参考)

在这里插入图片描述

练习1

修改片段着色器,仅让笑脸图案朝另一个方向看

//FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);// 修改片段着色器,仅让笑脸图案朝另一个方向看
FragColor = mix(texture(texture1, TexCoord), texture(texture2, vec2(1.0 - TexCoord.x, TexCoord.y)), 0.2);
}

在这里插入图片描述

练习2

尝试用不同的纹理环绕方式,设定一个从0.0f到2.0f范围内的(而不是原来的0.0f到1.0f)纹理坐标。
试试看能不能在箱子的角落放置4个笑脸:参考解答

在这里插入图片描述

在这里插入图片描述

练习3

尝试在矩形上只显示纹理图像的中间一部分,修改纹理坐标,达到能看见单个的像素的效果。尝试使用GL_NEAREST的纹理过滤方式让像素显示得更清晰:参考解答

在这里插入图片描述

练习4

使用一个uniform变量作为mix函数的第三个参数来改变两个纹理可见度,使用上和下键来改变箱子或笑脸的可见度:参考解答

处理键盘输入:

void processInput(GLFWwindow *window)
{if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS){mixValue += 0.001f; // change this value accordingly (might be too slow or too fast based on system hardware)if(mixValue >= 1.0f)mixValue = 1.0f;}if (glfwGetKey(window, GLFW_KEY_DOWN) == GLFW_PRESS){mixValue -= 0.001f; // change this value accordingly (might be too slow or too fast based on system hardware)if (mixValue <= 0.0f)mixValue = 0.0f;}
}

修改片段着色器:

#version 330 core
out vec4 FragColor;in vec3 ourColor;
in vec2 TexCoord;uniform float mixValue;// texture samplers
uniform sampler2D texture1;
uniform sampler2D texture2;void main()
{// linearly interpolate between both texturesFragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), mixValue);
}

在渲染循环中,实时修改mixValue的值

ourShader.setFloat("mixValue", mixValue);

相关文章:

OpenGL学习笔记(五):Textures 纹理

文章目录 纹理坐标纹理环绕方式纹理过滤——处理纹理分辨率低的情况多级渐远纹理Mipmap——处理纹理分辨率高的情况加载与创建纹理 &#xff08; <stb_image.h> &#xff09;生成纹理应用纹理纹理单元练习1练习2练习3练习4 通过上一篇着色部分的学习&#xff0c;我们可以…...

【Pytorch和Keras】使用transformer库进行图像分类

目录 一、环境准备二、基于Pytorch的预训练模型1、准备数据集2、加载预训练模型3、 使用pytorch进行模型构建 三、基于keras的预训练模型四、模型测试五、参考 现在大多数的模型都会上传到huggface平台进行统一的管理&#xff0c;transformer库能关联到huggface中对应的模型&am…...

2025年Android开发趋势全景解读

文章目录 一、界面开发&#xff1a;从"手写代码"到"智能拼装"1.1 Jetpack Compose实战进化1.2 淘汰XML布局的三大信号 二、AI融合开发&#xff1a;无需炼丹的普惠智能2.1 设备端AI三大杀手级应用2.2 成本对比&#xff1a;设备端VS云端AI 三、跨平台演进&am…...

Python NumPy(12):NumPy 字节交换、NumPy 副本和视图、NumPy 矩阵库(Matrix)

1 NumPy 字节交换 在几乎所有的机器上&#xff0c;多字节对象都被存储为连续的字节序列。字节顺序&#xff0c;是跨越多字节的程序对象的存储规则。 大端模式&#xff1a;指数据的高字节保存在内存的低地址中&#xff0c;而数据的低字节保存在内存的高地址中&#xff0c;这样的…...

【Vaadin flow 实战】第5讲-使用常用UI组件绘制页面元素

vaadin flow官方提供的UI组件文档地址是 https://vaadin.com/docs/latest/components这里&#xff0c;我简单实战了官方提供的一些免费的UI组件&#xff0c;使用案例如下&#xff1a; Accordion 手风琴 Accordion 手风琴效果组件 Accordion 手风琴-测试案例代码 Slf4j PageT…...

第三篇:模型压缩与量化技术——DeepSeek如何在边缘侧突破“小而强”的算力困局

——从算法到芯片的全栈式优化实践 随着AI应用向移动终端与物联网设备渗透&#xff0c;模型轻量化成为行业核心挑战。DeepSeek通过自研的“算法-编译-硬件”协同优化体系&#xff0c;在保持模型性能的前提下&#xff0c;实现参数量与能耗的指数级压缩。本文从技术原理、工程实…...

搜索与图论复习2最短路

单源最短路---所有边权是正数(Dijkstra算法O(n^2)--稠密图(邻接矩阵)和堆优化的Dijkstra算法O(mlogn)--稀疏图(邻接表)) 或存在负边权(Bellman-ford贝尔曼福特算法O(nm)和SPFA一般O(m) 最坏O(nm) ) 多源最短路---Floyd算法O(n^3) 一、迪杰斯特拉算法(Dijkstra)&#xff1a;1…...

redis集群理论详解

一. Redis集群发展历程 本片文章只介绍集群理论知识&#xff0c;不包含Redis集群搭建教程 教程文章请点击docker搭建redis集群&#xff08;三主三从&#xff09; 阶段一&#xff1a;单机版Redis 优点&#xff1a; 简单&#xff1a;易于部署和使用&#xff0c;适合小型项目或初期…...

本地缓存~

前言 Caffeine是使用Java8对Guava缓存的重写版本&#xff0c;在Spring Boot 2.0中取而代之&#xff0c;基于LRU算法实现&#xff0c;支持多种缓存过期策略。 以下摘抄于https://github.com/ben-manes/caffeine/wiki/Benchmarks-zh-CN 基准测试通过使用Java microbenchmark ha…...

SpringBoot 整合 SpringMVC:SpringMVC的注解管理

分类&#xff1a; 中央转发器(DispatcherServlet)控制器视图解析器静态资源访问消息转化器格式化静态资源管理 中央转发器&#xff1a; 中央转发器被 SpringBoot 自动接管&#xff0c;不需要我们在 web.xml 中配置&#xff1a; <servlet><servlet-name>chapter2&l…...

YOLO11/ultralytics:环境搭建

前言 人工智能物体识别行业应该已经饱和了吧&#xff1f;或许现在并不是一个好的入行时候。 最近看到了各种各样相关的扩展应用&#xff0c;为了理解它&#xff0c;我不得不去尝试了解一下。 我选择了git里非常受欢迎的yolo系列&#xff0c;并尝试了最新版本YOLO11或者叫它ultr…...

扩散模型(三)

相关阅读&#xff1a; 扩散模型&#xff08;一&#xff09; 扩散模型&#xff08;二&#xff09; Latent Variable Space 潜在扩散模型&#xff08;LDM&#xff1b;龙巴赫、布拉特曼等人&#xff0c;2022 年&#xff09;在潜在空间而非像素空间中运行扩散过程&#xff0c;这…...

探索数学:从起源到未来的无尽旅程

数学的定义与本质 数学&#xff0c;这门古老而又充满魅力的学科&#xff0c;自人类文明诞生之初便如影随形。然而&#xff0c;要精准地定义数学并非易事&#xff0c;不同的学者从各自的视角出发&#xff0c;给出了多样的阐释。 亚里士多德将数学定义为 “数量科学”&#xff…...

OpenAI发布o3-mini:免费推理模型,DeepSeek引发的反思

引言 在人工智能领域&#xff0c;OpenAI再次引领潮流&#xff0c;推出了全新的推理模型系列——o3-mini。这一系列包括low、medium和high三个版本&#xff0c;旨在进一步推动低成本推理的发展。与此同时&#xff0c;OpenAI的CEO奥特曼也在Reddit的“有问必答”活动中罕见地公开…...

React中使用箭头函数定义事件处理程序

React中使用箭头函数定义事件处理程序 为什么使用箭头函数&#xff1f;1. 传递动态参数2. 避免闭包问题3. 确保每个方块的事件处理程序是独立的4. 代码可读性和维护性 示例代码总结 在React开发中&#xff0c;处理事件是一个常见的任务。特别是当我们需要传递动态参数时&#x…...

自制虚拟机(C/C++)(三、做成标准GUI Windows软件,扩展指令集,直接支持img软盘)

开源地址:VMwork 要使终端不弹出&#xff0c; #pragma comment(linker, "/subsystem:windows /ENTRY:mainCRTStartup") 还要实现jmp near 0x01类似的 本次的main.cpp #include <graphics.h> #include <conio.h> #include <windows.h> #includ…...

C# 语言基础全面解析

.NET学习资料 .NET学习资料 .NET学习资料 一、引言 C# 是一种功能强大、面向对象且类型安全的编程语言&#xff0c;由微软开发&#xff0c;广泛应用于各种类型的软件开发&#xff0c;从桌面应用、Web 应用到游戏开发等领域。本文将全面介绍 C# 语言的基础知识&#xff0c;帮…...

MySQL的覆盖索引

MySQL的覆盖索引 前言 当一个索引包含了查询所需的全部字段时&#xff0c;就可以提高查询效率&#xff0c;这样的索引又被称之为覆盖索引。 以MySQL常见的三种存储引擎为例&#xff1a;InnoDB、MyISAM、Memory&#xff0c;对于覆盖索引提高查询效率的方式均不同&#xff0c;…...

Hutool工具类

Hutool 是一个非常流行的 Java 工具类库&#xff0c;它提供了丰富的功能来简化开发中的常见任务&#xff0c;比如文件操作、加密、日期处理、字符串操作、数据库工具等。它是一个轻量级的工具库&#xff0c;可以减少开发者编写常用代码的工作量&#xff0c;提高开发效率。 主要…...

C++模板编程——可变参函数模板之折叠表达式

目录 1. 什么是折叠表达式 2. 一元左折 3. 一元右折 4. 二元左折 5. 二元右折 6. 后记 上一节主要讲解了可变参函数模板和参数包展开&#xff0c;这一节主要讲一下折叠表达式。 1. 什么是折叠表达式 折叠表达式是C17中引入的概念&#xff0c;引入折叠表达式的目的是为了…...

使用MATLAB进行雷达数据采集可视化

本文使用轮趣科技N10雷达&#xff0c;需要源码可在后台私信或者资源自取 1. 项目概述 本项目旨在通过 MATLAB 读取 N10 激光雷达 的数据&#xff0c;并进行 实时 3D 点云可视化。数据通过 串口 传输&#xff0c;并经过解析后转换为 三维坐标点&#xff0c;最终使用 pcplayer 进…...

【Linux系统】信号:信号保存 / 信号处理、内核态 / 用户态、操作系统运行原理(中断)

理解Linux系统内进程信号的整个流程可分为&#xff1a; 信号产生 信号保存 信号处理 上篇文章重点讲解了 信号的产生&#xff0c;本文会讲解信号的保存和信号处理相关的概念和操作&#xff1a; 两种信号默认处理 1、信号处理之忽略 ::signal(2, SIG_IGN); // ignore: 忽略#…...

在C语言多线程环境中使用互斥量

如果有十个银行账号通过不同的十条线程同时向同一个账号转账时&#xff0c;如果没有很好的机制保证十个账号依次存入&#xff0c;那么这些转账可能出问题。我们可以通过互斥量来解决。 C标准库提供了这个互斥量&#xff0c;只需要引入threads.头文件。 互斥量就像是一把锁&am…...

PHP代码审计学习02

目录 代码审计一般思路 Beescms代码审计&#xff08;upload&#xff09; Finecms基于前台MVC任意文件上传挖掘思路 CLTPHP基于thinkphp5框架的文件上传挖掘思路 今天来看PHP有框架MVC类&#xff0c;文件上传&#xff0c;断点调试挖掘。 同样还是有关键字搜索和功能点抓包两…...

基于微信小程序的医院预约挂号系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

大厂面试题备份20250201

20250201 面试策略 如果三面往后遇到传说中让人忍受不了的业余面试官&#xff0c;就舔着苟过去&#xff0c;入职大概率见不着他&#xff0c;但一二面遇到&#xff0c;反问环节就主动说不够match&#xff0c;让释放流程。 机器/深度学习 百面机器学习 5.4 通用CS 计算机网…...

Spring Boot 实例解析:HelloWorld 探究

POM 文件剖析&#xff1a; 父项目&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring‐boot‐starter‐parent</artifactId><version>1.5.9.RELEASE</version> </parent> 他的父项目是 <…...

【课题推荐】基于t分布的非高斯滤波框架在水下自主导航中的应用研究

水下自主导航系统在海洋探测、环境监测及水下作业等领域具有广泛的应用。然而&#xff0c;复杂的水下环境常常导致传感器输出出现野值噪声&#xff0c;这些噪声会严重影响导航信息融合算法的精度&#xff0c;甚至导致系统发散。传统的卡尔曼滤波算法基于高斯噪声假设&#xff0…...

【C++语言】卡码网语言基础课系列----12. 位置互换

文章目录 练习题目位置互换具体代码实现 小白寄语诗词共勉 练习题目 位置互换 题目描述&#xff1a; 给定一个长度为偶数位的字符串&#xff0c;请编程实现字符串的奇偶位互换。 输入描述&#xff1a; 输入包含多组测试数据。 输入的第一行是一个整数n&#xff0c;表示有测试…...

洛谷的更多功能(不会像其他文章那样复杂且仅支持Edge浏览器)

第一步&#xff1a;下载《洛谷美化 (1).zip》文件夹。 会出现这样的文件夹&#xff1a; 注意&#xff1a;Edge.txt和洛谷前提1.txt是一样的哟&#xff01; 第二步&#xff1a;篡改猴 先打开Edge.txt或者是洛谷前提1.txt文件&#xff0c;打开后复制粘贴到你的Edge浏览器并打开…...

C++编程语言:抽象机制:模板(Bjarne Stroustrup)

目录 23.1 引言和概观(Introduction and Overview) 23.2 一个简单的字符串模板(A Simple String Template) 23.2.1 模板的定义(Defining a Template) 23.2.2 模板实例化(Template Instantiation) 23.3 类型检查(Type Checking) 23.3.1 类型等价(Type Equivalence) …...

女生年薪12万,算不算属于高收入人群

在繁华喧嚣的都市中&#xff0c;我们时常会听到关于收入、高薪与生活质量等话题的讨论。尤其是对于年轻女性而言&#xff0c;薪资水平不仅关乎个人价值的体现&#xff0c;更直接影响到生活质量与未来的规划。那么&#xff0c;女生年薪12万&#xff0c;是否可以被划入高收入人群…...

2181、合并零之间的节点

2181、[中等] 合并零之间的节点 1、问题描述&#xff1a; 给你一个链表的头节点 head &#xff0c;该链表包含由 0 分隔开的一连串整数。链表的 开端 和 末尾 的节点都满足 Node.val 0 。 对于每两个相邻的 0 &#xff0c;请你将它们之间的所有节点合并成一个节点&#xff…...

Immutable设计 SimpleDateFormat DateTimeFormatter

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 理解不可变设计模式&#xff0c;时间format有线程安全要求的注意使用DateTimeFormatter 目录 ImmutableSimpleDateFormat 非线程安全可以synchronized解决&a…...

【网络】传输层协议TCP(重点)

文章目录 1. TCP协议段格式2. 详解TCP2.1 4位首部长度2.2 32位序号与32位确认序号&#xff08;确认应答机制&#xff09;2.3 超时重传机制2.4 连接管理机制(3次握手、4次挥手 3个标志位)2.5 16位窗口大小&#xff08;流量控制&#xff09;2.6 滑动窗口2.7 3个标志位 16位紧急…...

17.[前端开发]Day17-形变-动画-vertical-align

1 transform CSS属性 - transform transform的用法 表示一个或者多个 不用记住全部的函数&#xff0c;只用掌握这四个常用的函数即可 位移 - translate <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta ht…...

LeetCode435周赛T2贪心

题目描述 给你一个由字符 N、S、E 和 W 组成的字符串 s&#xff0c;其中 s[i] 表示在无限网格中的移动操作&#xff1a; N&#xff1a;向北移动 1 个单位。S&#xff1a;向南移动 1 个单位。E&#xff1a;向东移动 1 个单位。W&#xff1a;向西移动 1 个单位。 初始时&#…...

陆游的《诗人苦学说》:从藻绘到“功夫在诗外”(中英双语)mastery lies beyond poetry

陆游的《诗人苦学说》&#xff1a;从藻绘到“功夫在诗外” 今天看万维钢的《万万没想到》一书&#xff0c;看到陆游的功夫在诗外的句子&#xff0c;特意去查找这首诗的原文。故而有此文。 我国学人还往往过分强调“功夫在诗外”这句陆游的名言&#xff0c;认为提升综合素质是一…...

AI模型平台之——ModelScope(魔搭)

ModelScope 是什么&#xff1f; ModelScope 是一个由阿里巴巴达摩院推出的开源模型库和工具集&#xff0c;旨在为开发者提供高效、便捷的机器学习模型和工具。ModelScope 提供了丰富的预训练模型、数据集和工具&#xff0c;支持多种任务和应用场景&#xff0c;如自然语言处理、…...

GIt使用笔记大全

Git 使用笔记大全 1. 安装 Git 在终端或命令提示符中&#xff0c;输入以下命令检查是否已安装 Git&#xff1a; git --version如果未安装&#xff0c;可以从 Git 官方网站 下载并安装适合你操作系统的版本。 2. 配置 Git 首次使用 Git 时&#xff0c;需要配置用户名和邮箱…...

42【文件名的编码规则】

我们在学习的过程中&#xff0c;写出数据或读取数据时需要考虑编码类型 火山采用&#xff1a;UTF-16 易语言采用&#xff1a;GBK php采用&#xff1a;UTF-8 那么我们写出的文件名应该是何种编码的&#xff1f;比如火山程序向本地写出一个“测试.txt”&#xff0c;理论上这个“测…...

Linux网络 HTTPS 协议原理

概念 HTTPS 也是一个应用层协议&#xff0c;不过 是在 HTTP 协议的基础上引入了一个加密层。因为 HTTP的内容是明文传输的&#xff0c;明文数据会经过路由器、wifi 热点、通信服务运营商、代理服务器等多个物理节点&#xff0c;如果信息在传输过程中被劫持&#xff0c;传输的…...

Vue.js组件开发-实现全屏手风琴幻灯片切换特效

使用 Vue 实现全屏手风琴幻灯片切换特效 步骤概述 创建 Vue 项目&#xff1a;使用 Vue CLI 创建一个新的 Vue 项目。设计组件结构&#xff1a;创建一个手风琴幻灯片组件&#xff0c;包含幻灯片项和切换逻辑。实现样式&#xff1a;使用 CSS 实现全屏和手风琴效果。添加交互逻辑…...

数据库、数据仓库、数据湖有什么不同

数据库、数据仓库和数据湖是三种不同的数据存储和管理技术&#xff0c;它们在用途、设计目标、数据处理方式以及适用场景上存在显著差异。以下将从多个角度详细说明它们之间的区别&#xff1a; 1. 数据结构与存储方式 数据库&#xff1a; 数据库主要用于存储结构化的数据&…...

MLM之MiniCPM-o:MiniCPM-o的简介(涉及MiniCPM-o 2.6和MiniCPM-V 2.6)、安装和使用方法、案例应用之详细攻略

MLM之MiniCPM-o&#xff1a;MiniCPM-o的简介(涉及MiniCPM-o 2.6和MiniCPM-V 2.6)、安装和使用方法、案例应用之详细攻略 目录 MiniCPM-o的简介 0、更新日志 1、MiniCPM-o系列模型特点 MiniCPM-o 2.6 的主要特点 MiniCPM-V 2.6的主要特点 2、MiniCPM-o系列模型架构 MiniC…...

【Conda 和 虚拟环境详细指南】

Conda 和 虚拟环境的详细指南 什么是 Conda&#xff1f; Conda 是一个开源的包管理和环境管理系统&#xff0c;支持多种编程语言&#xff08;如Python、R等&#xff09;&#xff0c;最初由Continuum Analytics开发。 主要功能&#xff1a; 包管理&#xff1a;安装、更新、删…...

Rust 控制流语法详解

Rust 控制流语法详解 控制流是编程语言中用于控制代码执行顺序的重要机制。Rust 提供了多种控制流语法&#xff0c;包括条件判断&#xff08;if、else if&#xff09;、循环&#xff08;loop、while、for&#xff09;等。本文将详细介绍这些语法&#xff0c;并通过示例展示它们…...

VLC-Qt: Qt + libVLC 的开源库

参考链接 https://blog.csdn.net/u012532263/article/details/102737874...

洛谷 P5146 最大差值 C语言

P5146 最大差值 - 洛谷 | 计算机科学教育新生态 题目描述 HKE 最近热衷于研究序列&#xff0c;有一次他发现了一个有趣的问题&#xff1a; 对于一个序列 A1​,A2​,…,An​&#xff0c;找出两个数 i,j&#xff08;1≤i<j≤n&#xff09;&#xff0c;使得 Aj​−Ai​ 最大。…...

Zabbix 推送告警 消息模板 美化(钉钉Webhook机器人、邮件)

目前网络上已经有很多关于Zabbix如何推送告警信息到钉钉机器人、到邮件等文章。 但是在搜索下来&#xff0c;发现缺少了对告警信息的美化的文章。 本文不赘述如何对Zabbix对接钉钉、对接邮件&#xff0c;仅介绍我采用的美化消息模板的内容。 活用AI工具可以减轻很多学习、脑力负…...