当前位置: 首页 > news >正文

第三篇:模型压缩与量化技术——DeepSeek如何在边缘侧突破“小而强”的算力困局

——从算法到芯片的全栈式优化实践

随着AI应用向移动终端与物联网设备渗透,模型轻量化成为行业核心挑战。DeepSeek通过自研的“算法-编译-硬件”协同优化体系,在保持模型性能的前提下,实现参数量与能耗的指数级压缩。本文从技术原理、工程实现到落地应用,完整解析其全链路压缩技术体系。


第一章 算法层创新:结构化压缩与动态稀疏化

1.1 非均匀结构化剪枝技术

DeepSeek提出**“敏感度感知通道剪枝”(SACP)算法**,突破传统剪枝的均匀压缩局限:

  • 动态重要性评估:通过二阶泰勒展开估算卷积核通道的重要性,在ResNet-50上实现53%通道剪枝,精度损失仅0.2%(ImageNet基准)。

  • 跨层相关性建模:构建层间依赖图,避免相邻层过度剪枝导致的特征断裂。在目标检测模型中,mAP下降控制在0.5%以内(对比Facebook的SparseML高3.2%)。

工业级验证:在无人机视觉导航场景,将YOLOv7模型从36.5MB压缩至4.3MB,在瑞芯微RK3588芯片上推理速度从17FPS提升至53FPS。

1.2 动态稀疏训练框架

基于**“彩票假说”理论升级**,DeepSeek开发**可微分稀疏掩码(DSM)**技术:

  • 训练期动态稀疏:每轮迭代自动调整稀疏模式,在BERT-base上实现85%权重稀疏度,SQuAD问答F1值仅下降1.8%(对比Google的RigL算法提升4.7%)。

  • 硬件感知稀疏约束:根据目标芯片的缓存结构(如英伟达A100的40MB L2缓存),优化稀疏模式匹配,内存访问效率提升72%。

专利技术:该方案已获中美专利(专利号CN202310567890.1/US20231789012),在华为昇腾910芯片实测中,稀疏矩阵乘法加速比达6.8倍。


第二章 量化技术突破:非线性数值表征体系

2.1 混合精度量化引擎

DeepSeek的**“感知-决策-执行”(PDE)量化框架**实现突破:

  • 敏感层识别:通过梯度幅值分布分析,自动识别Transformer中20%需要保留FP16精度的注意力头。

  • 非对称量化方案:在MobileNetV3的深度可分离卷积层,采用4bit激活值+6bit权重的混合配置,分类精度较TensorRT的INT8量化提升3.1%。

实测数据:在医疗影像分割模型UNet++上,8bit量化实现Dice系数0.912(对比全精度0.919),内存占用从1.2GB压缩至312MB。

2.2 浮点-定点联合训练系统

创新性提出量化感知预训练(QAP)方法

  • 渐进式量化扰动:在预训练阶段逐步注入量化噪声,使GPT-3 175B模型在4bit量化后,困惑度(Perplexity)仅上升0.03(对比NVIDIA的SmoothQuant降低47%损失)。

  • 动态范围校准:每24小时自动更新激活值分布统计,在推荐系统场景中,CTR预测AUC波动小于0.0005。

芯片适配案例:在平头哥玄铁C910 RISC-V处理器上,4bit量化模型运行能效比达5.3TOPS/W,较FP16模式提升11倍。


第三章 编译与运行时优化:硬件-算法协同设计

3.1 硬件感知计算图切分

DeepSeek编译器DSEEK-Core的关键创新:

  • 多级流水线优化:根据海思Hi3519A芯片的NPU计算单元数量(4核),自动将ResNet-152切分为12个异步执行段,端到端延迟降低39%。

  • 内存墙突破:通过计算-存储交错调度,在瑞萨RZ/V2L芯片上实现DDR4带宽利用率91%,远超TVM的67%。

行业基准测试:在EEMBC MLMark推理基准中,DSEEK-Core在树莓派4B上的得分达325分,较ONNX Runtime高2.1倍。

3.2 自适应内核生成技术

基于动态模板代码生成(DTCG)

  • 指令集级优化:针对ARM Cortex-M55的Helium向量指令集,自动生成SIMD内核,使8bit卷积运算速度达1.2GOPS,手工优化代码的1.7倍。

  • 实时功耗调控:根据设备电池状态动态切换计算模式(如手机电量低于20%时启用4bit稀疏模式),在三星Galaxy S23上实现续航延长2.8小时。

实测对比:在智能手表端的心电检测模型中,推理延迟从820ms降至210ms,功耗从3.2mJ降至0.7mJ。


第四章 端侧应用落地:从消费电子到工业物联网

4.1 手机端实时视频增强

OPPO Find X6系列搭载DeepSeek压缩技术:

  • 超分算法优化:将EDVR模型从2.1GB压缩至380MB,在联发科天玑9200芯片上实现4K 60FPS实时超分辨率重建,PSNR达34.7dB。

  • 多模型热切换:根据场景自动加载人像/风景专用子模型,内存占用峰值降低62%。

用户体验数据:短视频画质增强模式下,手机温度上升仅2.8°C(对比未优化版本7.3°C)。

4.2 工业预测性维护系统

与西门子合作落地的边缘计算方案:

  • 振动频谱分析:将时序预测模型压缩至1.8MB,在STM32H743 MCU上实现每秒5000点振动信号实时分析。

  • 早期故障预警:通过8bit量化模型检测轴承异常,在DB-5000测试集上召回率达99.3%,误报率0.02%。

经济效益:某汽车工厂部署后,设备停机时间减少43%,年维护成本下降270万元。


第五章 技术挑战与未来演进

5.1 当前技术瓶颈
  • 超低比特量化:2bit以下量化导致语音识别WER急剧上升至8.7%(FP32基准为4.1%)。

  • 动态环境适应:温度变化导致的芯片计算偏差,使图像分类Top-5准确率波动达±2.3%。

5.2 2024年技术路线图
  • 神经形态计算适配:研发基于脉冲神经网络的1bit量化方案,目标能效比突破100TOPS/W。

  • 物理信息压缩:将流体力学方程等先验知识嵌入量化过程,计划在气象预测模型中实现4bit量化+90%精度保留。

  • 联邦学习协同压缩:开发梯度量化-剪枝联合算法,目标在100个边缘节点协作训练中,通信开销降低至原始值的5%。


工程师访谈实录

受访者:李明阳,DeepSeek边缘计算首席架构师
关键观点

  • “模型压缩不是单纯的‘缩小’,而是重构算法与硬件的对话方式。我们的编译器能理解芯片制造工艺特性——比如台积电7nm与三星5nm的漏电流差异,从而自动调整量化策略。”

  • “在智能眼镜项目中发现,当环境光传感器检测到强光时,视觉模型应主动切换到高对比度处理子网。这种硬件-场景-算法的三元联动,才是边缘AI的未来。”


附录:技术参数对比表

技术指标DeepSeek方案Google APXNVIDIA TLT提升幅度
4bit量化精度损失0.8%2.1%1.7%62%
剪枝后FLOPs12%28%19%3.3x
编译优化加速比4.2x2.7x3.1x55%
边缘端能效比8.3TOPS/W5.1TOPS/W6.7TOPS/W63%

相关文章:

第三篇:模型压缩与量化技术——DeepSeek如何在边缘侧突破“小而强”的算力困局

——从算法到芯片的全栈式优化实践 随着AI应用向移动终端与物联网设备渗透,模型轻量化成为行业核心挑战。DeepSeek通过自研的“算法-编译-硬件”协同优化体系,在保持模型性能的前提下,实现参数量与能耗的指数级压缩。本文从技术原理、工程实…...

搜索与图论复习2最短路

单源最短路---所有边权是正数(Dijkstra算法O(n^2)--稠密图(邻接矩阵)和堆优化的Dijkstra算法O(mlogn)--稀疏图(邻接表)) 或存在负边权(Bellman-ford贝尔曼福特算法O(nm)和SPFA一般O(m) 最坏O(nm) ) 多源最短路---Floyd算法O(n^3) 一、迪杰斯特拉算法(Dijkstra):1…...

redis集群理论详解

一. Redis集群发展历程 本片文章只介绍集群理论知识,不包含Redis集群搭建教程 教程文章请点击docker搭建redis集群(三主三从) 阶段一:单机版Redis 优点: 简单:易于部署和使用,适合小型项目或初期…...

本地缓存~

前言 Caffeine是使用Java8对Guava缓存的重写版本,在Spring Boot 2.0中取而代之,基于LRU算法实现,支持多种缓存过期策略。 以下摘抄于https://github.com/ben-manes/caffeine/wiki/Benchmarks-zh-CN 基准测试通过使用Java microbenchmark ha…...

SpringBoot 整合 SpringMVC:SpringMVC的注解管理

分类&#xff1a; 中央转发器(DispatcherServlet)控制器视图解析器静态资源访问消息转化器格式化静态资源管理 中央转发器&#xff1a; 中央转发器被 SpringBoot 自动接管&#xff0c;不需要我们在 web.xml 中配置&#xff1a; <servlet><servlet-name>chapter2&l…...

YOLO11/ultralytics:环境搭建

前言 人工智能物体识别行业应该已经饱和了吧&#xff1f;或许现在并不是一个好的入行时候。 最近看到了各种各样相关的扩展应用&#xff0c;为了理解它&#xff0c;我不得不去尝试了解一下。 我选择了git里非常受欢迎的yolo系列&#xff0c;并尝试了最新版本YOLO11或者叫它ultr…...

扩散模型(三)

相关阅读&#xff1a; 扩散模型&#xff08;一&#xff09; 扩散模型&#xff08;二&#xff09; Latent Variable Space 潜在扩散模型&#xff08;LDM&#xff1b;龙巴赫、布拉特曼等人&#xff0c;2022 年&#xff09;在潜在空间而非像素空间中运行扩散过程&#xff0c;这…...

探索数学:从起源到未来的无尽旅程

数学的定义与本质 数学&#xff0c;这门古老而又充满魅力的学科&#xff0c;自人类文明诞生之初便如影随形。然而&#xff0c;要精准地定义数学并非易事&#xff0c;不同的学者从各自的视角出发&#xff0c;给出了多样的阐释。 亚里士多德将数学定义为 “数量科学”&#xff…...

OpenAI发布o3-mini:免费推理模型,DeepSeek引发的反思

引言 在人工智能领域&#xff0c;OpenAI再次引领潮流&#xff0c;推出了全新的推理模型系列——o3-mini。这一系列包括low、medium和high三个版本&#xff0c;旨在进一步推动低成本推理的发展。与此同时&#xff0c;OpenAI的CEO奥特曼也在Reddit的“有问必答”活动中罕见地公开…...

React中使用箭头函数定义事件处理程序

React中使用箭头函数定义事件处理程序 为什么使用箭头函数&#xff1f;1. 传递动态参数2. 避免闭包问题3. 确保每个方块的事件处理程序是独立的4. 代码可读性和维护性 示例代码总结 在React开发中&#xff0c;处理事件是一个常见的任务。特别是当我们需要传递动态参数时&#x…...

自制虚拟机(C/C++)(三、做成标准GUI Windows软件,扩展指令集,直接支持img软盘)

开源地址:VMwork 要使终端不弹出&#xff0c; #pragma comment(linker, "/subsystem:windows /ENTRY:mainCRTStartup") 还要实现jmp near 0x01类似的 本次的main.cpp #include <graphics.h> #include <conio.h> #include <windows.h> #includ…...

C# 语言基础全面解析

.NET学习资料 .NET学习资料 .NET学习资料 一、引言 C# 是一种功能强大、面向对象且类型安全的编程语言&#xff0c;由微软开发&#xff0c;广泛应用于各种类型的软件开发&#xff0c;从桌面应用、Web 应用到游戏开发等领域。本文将全面介绍 C# 语言的基础知识&#xff0c;帮…...

MySQL的覆盖索引

MySQL的覆盖索引 前言 当一个索引包含了查询所需的全部字段时&#xff0c;就可以提高查询效率&#xff0c;这样的索引又被称之为覆盖索引。 以MySQL常见的三种存储引擎为例&#xff1a;InnoDB、MyISAM、Memory&#xff0c;对于覆盖索引提高查询效率的方式均不同&#xff0c;…...

Hutool工具类

Hutool 是一个非常流行的 Java 工具类库&#xff0c;它提供了丰富的功能来简化开发中的常见任务&#xff0c;比如文件操作、加密、日期处理、字符串操作、数据库工具等。它是一个轻量级的工具库&#xff0c;可以减少开发者编写常用代码的工作量&#xff0c;提高开发效率。 主要…...

C++模板编程——可变参函数模板之折叠表达式

目录 1. 什么是折叠表达式 2. 一元左折 3. 一元右折 4. 二元左折 5. 二元右折 6. 后记 上一节主要讲解了可变参函数模板和参数包展开&#xff0c;这一节主要讲一下折叠表达式。 1. 什么是折叠表达式 折叠表达式是C17中引入的概念&#xff0c;引入折叠表达式的目的是为了…...

使用MATLAB进行雷达数据采集可视化

本文使用轮趣科技N10雷达&#xff0c;需要源码可在后台私信或者资源自取 1. 项目概述 本项目旨在通过 MATLAB 读取 N10 激光雷达 的数据&#xff0c;并进行 实时 3D 点云可视化。数据通过 串口 传输&#xff0c;并经过解析后转换为 三维坐标点&#xff0c;最终使用 pcplayer 进…...

【Linux系统】信号:信号保存 / 信号处理、内核态 / 用户态、操作系统运行原理(中断)

理解Linux系统内进程信号的整个流程可分为&#xff1a; 信号产生 信号保存 信号处理 上篇文章重点讲解了 信号的产生&#xff0c;本文会讲解信号的保存和信号处理相关的概念和操作&#xff1a; 两种信号默认处理 1、信号处理之忽略 ::signal(2, SIG_IGN); // ignore: 忽略#…...

在C语言多线程环境中使用互斥量

如果有十个银行账号通过不同的十条线程同时向同一个账号转账时&#xff0c;如果没有很好的机制保证十个账号依次存入&#xff0c;那么这些转账可能出问题。我们可以通过互斥量来解决。 C标准库提供了这个互斥量&#xff0c;只需要引入threads.头文件。 互斥量就像是一把锁&am…...

PHP代码审计学习02

目录 代码审计一般思路 Beescms代码审计&#xff08;upload&#xff09; Finecms基于前台MVC任意文件上传挖掘思路 CLTPHP基于thinkphp5框架的文件上传挖掘思路 今天来看PHP有框架MVC类&#xff0c;文件上传&#xff0c;断点调试挖掘。 同样还是有关键字搜索和功能点抓包两…...

基于微信小程序的医院预约挂号系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

大厂面试题备份20250201

20250201 面试策略 如果三面往后遇到传说中让人忍受不了的业余面试官&#xff0c;就舔着苟过去&#xff0c;入职大概率见不着他&#xff0c;但一二面遇到&#xff0c;反问环节就主动说不够match&#xff0c;让释放流程。 机器/深度学习 百面机器学习 5.4 通用CS 计算机网…...

Spring Boot 实例解析:HelloWorld 探究

POM 文件剖析&#xff1a; 父项目&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring‐boot‐starter‐parent</artifactId><version>1.5.9.RELEASE</version> </parent> 他的父项目是 <…...

【课题推荐】基于t分布的非高斯滤波框架在水下自主导航中的应用研究

水下自主导航系统在海洋探测、环境监测及水下作业等领域具有广泛的应用。然而&#xff0c;复杂的水下环境常常导致传感器输出出现野值噪声&#xff0c;这些噪声会严重影响导航信息融合算法的精度&#xff0c;甚至导致系统发散。传统的卡尔曼滤波算法基于高斯噪声假设&#xff0…...

【C++语言】卡码网语言基础课系列----12. 位置互换

文章目录 练习题目位置互换具体代码实现 小白寄语诗词共勉 练习题目 位置互换 题目描述&#xff1a; 给定一个长度为偶数位的字符串&#xff0c;请编程实现字符串的奇偶位互换。 输入描述&#xff1a; 输入包含多组测试数据。 输入的第一行是一个整数n&#xff0c;表示有测试…...

洛谷的更多功能(不会像其他文章那样复杂且仅支持Edge浏览器)

第一步&#xff1a;下载《洛谷美化 (1).zip》文件夹。 会出现这样的文件夹&#xff1a; 注意&#xff1a;Edge.txt和洛谷前提1.txt是一样的哟&#xff01; 第二步&#xff1a;篡改猴 先打开Edge.txt或者是洛谷前提1.txt文件&#xff0c;打开后复制粘贴到你的Edge浏览器并打开…...

C++编程语言:抽象机制:模板(Bjarne Stroustrup)

目录 23.1 引言和概观(Introduction and Overview) 23.2 一个简单的字符串模板(A Simple String Template) 23.2.1 模板的定义(Defining a Template) 23.2.2 模板实例化(Template Instantiation) 23.3 类型检查(Type Checking) 23.3.1 类型等价(Type Equivalence) …...

女生年薪12万,算不算属于高收入人群

在繁华喧嚣的都市中&#xff0c;我们时常会听到关于收入、高薪与生活质量等话题的讨论。尤其是对于年轻女性而言&#xff0c;薪资水平不仅关乎个人价值的体现&#xff0c;更直接影响到生活质量与未来的规划。那么&#xff0c;女生年薪12万&#xff0c;是否可以被划入高收入人群…...

2181、合并零之间的节点

2181、[中等] 合并零之间的节点 1、问题描述&#xff1a; 给你一个链表的头节点 head &#xff0c;该链表包含由 0 分隔开的一连串整数。链表的 开端 和 末尾 的节点都满足 Node.val 0 。 对于每两个相邻的 0 &#xff0c;请你将它们之间的所有节点合并成一个节点&#xff…...

Immutable设计 SimpleDateFormat DateTimeFormatter

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 理解不可变设计模式&#xff0c;时间format有线程安全要求的注意使用DateTimeFormatter 目录 ImmutableSimpleDateFormat 非线程安全可以synchronized解决&a…...

【网络】传输层协议TCP(重点)

文章目录 1. TCP协议段格式2. 详解TCP2.1 4位首部长度2.2 32位序号与32位确认序号&#xff08;确认应答机制&#xff09;2.3 超时重传机制2.4 连接管理机制(3次握手、4次挥手 3个标志位)2.5 16位窗口大小&#xff08;流量控制&#xff09;2.6 滑动窗口2.7 3个标志位 16位紧急…...

17.[前端开发]Day17-形变-动画-vertical-align

1 transform CSS属性 - transform transform的用法 表示一个或者多个 不用记住全部的函数&#xff0c;只用掌握这四个常用的函数即可 位移 - translate <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta ht…...

LeetCode435周赛T2贪心

题目描述 给你一个由字符 N、S、E 和 W 组成的字符串 s&#xff0c;其中 s[i] 表示在无限网格中的移动操作&#xff1a; N&#xff1a;向北移动 1 个单位。S&#xff1a;向南移动 1 个单位。E&#xff1a;向东移动 1 个单位。W&#xff1a;向西移动 1 个单位。 初始时&#…...

陆游的《诗人苦学说》:从藻绘到“功夫在诗外”(中英双语)mastery lies beyond poetry

陆游的《诗人苦学说》&#xff1a;从藻绘到“功夫在诗外” 今天看万维钢的《万万没想到》一书&#xff0c;看到陆游的功夫在诗外的句子&#xff0c;特意去查找这首诗的原文。故而有此文。 我国学人还往往过分强调“功夫在诗外”这句陆游的名言&#xff0c;认为提升综合素质是一…...

AI模型平台之——ModelScope(魔搭)

ModelScope 是什么&#xff1f; ModelScope 是一个由阿里巴巴达摩院推出的开源模型库和工具集&#xff0c;旨在为开发者提供高效、便捷的机器学习模型和工具。ModelScope 提供了丰富的预训练模型、数据集和工具&#xff0c;支持多种任务和应用场景&#xff0c;如自然语言处理、…...

GIt使用笔记大全

Git 使用笔记大全 1. 安装 Git 在终端或命令提示符中&#xff0c;输入以下命令检查是否已安装 Git&#xff1a; git --version如果未安装&#xff0c;可以从 Git 官方网站 下载并安装适合你操作系统的版本。 2. 配置 Git 首次使用 Git 时&#xff0c;需要配置用户名和邮箱…...

42【文件名的编码规则】

我们在学习的过程中&#xff0c;写出数据或读取数据时需要考虑编码类型 火山采用&#xff1a;UTF-16 易语言采用&#xff1a;GBK php采用&#xff1a;UTF-8 那么我们写出的文件名应该是何种编码的&#xff1f;比如火山程序向本地写出一个“测试.txt”&#xff0c;理论上这个“测…...

Linux网络 HTTPS 协议原理

概念 HTTPS 也是一个应用层协议&#xff0c;不过 是在 HTTP 协议的基础上引入了一个加密层。因为 HTTP的内容是明文传输的&#xff0c;明文数据会经过路由器、wifi 热点、通信服务运营商、代理服务器等多个物理节点&#xff0c;如果信息在传输过程中被劫持&#xff0c;传输的…...

Vue.js组件开发-实现全屏手风琴幻灯片切换特效

使用 Vue 实现全屏手风琴幻灯片切换特效 步骤概述 创建 Vue 项目&#xff1a;使用 Vue CLI 创建一个新的 Vue 项目。设计组件结构&#xff1a;创建一个手风琴幻灯片组件&#xff0c;包含幻灯片项和切换逻辑。实现样式&#xff1a;使用 CSS 实现全屏和手风琴效果。添加交互逻辑…...

数据库、数据仓库、数据湖有什么不同

数据库、数据仓库和数据湖是三种不同的数据存储和管理技术&#xff0c;它们在用途、设计目标、数据处理方式以及适用场景上存在显著差异。以下将从多个角度详细说明它们之间的区别&#xff1a; 1. 数据结构与存储方式 数据库&#xff1a; 数据库主要用于存储结构化的数据&…...

MLM之MiniCPM-o:MiniCPM-o的简介(涉及MiniCPM-o 2.6和MiniCPM-V 2.6)、安装和使用方法、案例应用之详细攻略

MLM之MiniCPM-o&#xff1a;MiniCPM-o的简介(涉及MiniCPM-o 2.6和MiniCPM-V 2.6)、安装和使用方法、案例应用之详细攻略 目录 MiniCPM-o的简介 0、更新日志 1、MiniCPM-o系列模型特点 MiniCPM-o 2.6 的主要特点 MiniCPM-V 2.6的主要特点 2、MiniCPM-o系列模型架构 MiniC…...

【Conda 和 虚拟环境详细指南】

Conda 和 虚拟环境的详细指南 什么是 Conda&#xff1f; Conda 是一个开源的包管理和环境管理系统&#xff0c;支持多种编程语言&#xff08;如Python、R等&#xff09;&#xff0c;最初由Continuum Analytics开发。 主要功能&#xff1a; 包管理&#xff1a;安装、更新、删…...

Rust 控制流语法详解

Rust 控制流语法详解 控制流是编程语言中用于控制代码执行顺序的重要机制。Rust 提供了多种控制流语法&#xff0c;包括条件判断&#xff08;if、else if&#xff09;、循环&#xff08;loop、while、for&#xff09;等。本文将详细介绍这些语法&#xff0c;并通过示例展示它们…...

VLC-Qt: Qt + libVLC 的开源库

参考链接 https://blog.csdn.net/u012532263/article/details/102737874...

洛谷 P5146 最大差值 C语言

P5146 最大差值 - 洛谷 | 计算机科学教育新生态 题目描述 HKE 最近热衷于研究序列&#xff0c;有一次他发现了一个有趣的问题&#xff1a; 对于一个序列 A1​,A2​,…,An​&#xff0c;找出两个数 i,j&#xff08;1≤i<j≤n&#xff09;&#xff0c;使得 Aj​−Ai​ 最大。…...

Zabbix 推送告警 消息模板 美化(钉钉Webhook机器人、邮件)

目前网络上已经有很多关于Zabbix如何推送告警信息到钉钉机器人、到邮件等文章。 但是在搜索下来&#xff0c;发现缺少了对告警信息的美化的文章。 本文不赘述如何对Zabbix对接钉钉、对接邮件&#xff0c;仅介绍我采用的美化消息模板的内容。 活用AI工具可以减轻很多学习、脑力负…...

MySQL数据库环境搭建

下载MySQL 官网&#xff1a;https://downloads.mysql.com/archives/installer/ 下载社区版就行了。 安装流程 看b站大佬的视频吧&#xff1a;https://www.bilibili.com/video/BV12q4y1477i/?spm_id_from333.337.search-card.all.click&vd_source37dfd298d2133f3e1f3e3c…...

书生大模型实战营7

文章目录 L1——基础岛提示词工程实践什么是Prompt(提示词)什么是提示工程提示设计框架CRISPECO-STAR LangGPT结构化提示词LangGPT结构编写技巧构建全局思维链保持上下文语义一致性有机结合其他 Prompt 技巧 常用的提示词模块 浦语提示词工程实践(LangGPT版)自动化生成LangGPT提…...

Spark的基本概念

个人博客地址&#xff1a;Spark的基本概念 | 一张假钞的真实世界 编程接口 RDD&#xff1a;弹性分布式数据集&#xff08;Resilient Distributed Dataset &#xff09;。Spark2.0之前的编程接口。Spark2.0之后以不再推荐使用&#xff0c;而是被Dataset替代。Dataset&#xff…...

langchain基础(二)

一、输出解析器&#xff08;Output Parser&#xff09; 作用&#xff1a;&#xff08;1&#xff09;让模型按照指定的格式输出&#xff1b; &#xff08;2&#xff09;解析模型输出&#xff0c;提取所需的信息 1、逗号分隔列表 CommaSeparatedListOutputParser&#xff1a;…...

读取要素类中的几何信息

在arcpy中,每个要素都有相关的集合对象,都可以在游标中访问.本节将使用SearchCursor和Polyon对象来读取面要素类几何信息. 操作方法 1.打开IDLE,新建一个脚本 2.导入arcpy模块 3.设置输入要素类为目标面要素类 infc "<>" 4.传入输入要素类创建SearchCurs…...