当前位置: 首页 > news >正文

Python NumPy(12):NumPy 字节交换、NumPy 副本和视图、NumPy 矩阵库(Matrix)

1 NumPy 字节交换

        在几乎所有的机器上,多字节对象都被存储为连续的字节序列。字节顺序,是跨越多字节的程序对象的存储规则。

  • 大端模式:指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;这和我们的阅读习惯一致。

  • 小端模式:指数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低。

        例如在 C 语言中,一个类型为 int 的变量 x 地址为 0x100,那么其对应地址表达式&x的值为 0x100。且x的四个字节将被存储在存储器的 0x100, 0x101, 0x102, 0x103位置。

        numpy.ndarray.byteswap() 函数将 ndarray 中每个元素中的字节进行大小端转换。

import numpy as npa = np.array([1, 256, 8755], dtype=np.int16)
print('我们的数组是:')
print(a)
print('以十六进制表示内存中的数据:')
print(map(hex, a))
# byteswap() 函数通过传入 true 来原地交换
print('调用 byteswap() 函数:')
print(a.byteswap(True))
print('十六进制形式:')
print(map(hex, a))
# 我们可以看到字节已经交换了

2 NumPy 副本和视图

        副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。

视图一般发生在:

  • numpy 的切片操作返回原数据的视图。
  • 调用 ndarray 的 view() 函数产生一个视图。

副本一般发生在:

  • Python 序列的切片操作,调用deepCopy()函数。
  • 调用 ndarray 的 copy() 函数产生一个副本。

2.1 无复制

        简单的赋值不会创建数组对象的副本。 相反,它使用原始数组的相同id()来访问它。 id()返回 Python 对象的通用标识符,类似于 C 中的指针。此外,一个数组的任何变化都反映在另一个数组上。 例如,一个数组的形状改变也会改变另一个数组的形状。

import numpy as npa = np.arange(6)
print('我们的数组是:')
print(a)
print('调用 id() 函数:')
print(id(a))
print('a 赋值给 b:')
b = a
print(b)
print('b 拥有相同 id():')
print(id(b))
print('修改 b 的形状:')
b.shape = 3, 2
print(b)
print('a 的形状也修改了:')
print(a)

2.2 视图或浅拷贝

        ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数变化不会改变原始数据的维数。

import numpy as np# 最开始 a 是个 3X2 的数组
a = np.arange(6).reshape(3, 2)
print('数组 a:')
print(a)
print('创建 a 的视图:')
b = a.view()
print(b)
print('两个数组的 id() 不同:')
print('a 的 id():')
print(id(a))
print('b 的 id():')
print(id(b))
# 修改 b 的形状,并不会修改 a
b.shape = 2, 3
print('b 的形状:')
print(b)
print('a 的形状:')
print(a)

        使用切片创建视图修改数据会影响到原始数组:

import numpy as nparr = np.arange(12)
print('我们的数组:')
print(arr)
print('创建切片:')
a = arr[3:]
b = arr[3:]
a[1] = 123
b[2] = 234
print(arr)
print(id(a), id(b), id(arr[3:]))

        变量 a,b 都是 arr 的一部分视图,对视图的修改会直接反映到原数据中。但是我们观察 a,b 的 id,他们是不同的,也就是说,视图虽然指向原数据,但是他们和赋值引用还是有区别的。

2.3 副本或深拷贝

        ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

import numpy as npa = np.array([[10, 10], [2, 3], [4, 5]])
print('数组 a:')
print(a)
print('创建 a 的深层副本:')
b = a.copy()
print('数组 b:')
print(b)
# b 与 a 不共享任何内容
print('我们能够写入 b 来写入 a 吗?')
print(b is a)
print('修改 b 的内容:')
b[0, 0] = 100
print('修改后的数组 b:')
print(b)
print('a 保持不变:')
print(a)

3 NumPy 矩阵库(Matrix)

        NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象。一个 m x n 的矩阵是一个由 m 行(row)n 列(column)元素排列成的矩形阵列。矩阵里的元素可以是数字、符号或数学式。以下是一个由 6 个数字元素构成的 2 行 3 列的矩阵:

3.1 转置矩阵

        NumPy 中除了可以使用 numpy.transpose 函数来对换数组的维度,还可以使用 T 属性。例如有个 m 行 n 列的矩阵,使用 t() 函数就能转换为 n 行 m 列的矩阵。

import numpy as npa = np.arange(12).reshape(3, 4)print('原数组:')
print(a)
print('\n')print('转置数组:')
print(a.T)

3.2 matlib.empty()

        matlib.empty() 函数返回一个新的矩阵,语法格式为:

numpy.matlib.empty(shape, dtype, order)
  • shape: 定义新矩阵形状的整数或整数元组
  • Dtype: 可选,数据类型
  • order: C(行序优先) 或者 F(列序优先)
import numpy.matlib
import numpy as npprint(np.matlib.empty((2, 2)))
# 填充为随机数据

3.3 numpy.matlib.zeros()

        numpy.matlib.zeros() 函数创建一个以 0 填充的矩阵。

import numpy.matlib
import numpy as npprint(np.matlib.zeros((2, 2)))

3.4 numpy.matlib.ones()

        numpy.matlib.ones()函数创建一个以 1 填充的矩阵。

import numpy.matlib
import numpy as npprint(np.matlib.ones((2, 2)))

3.5 numpy.matlib.eye()

        numpy.matlib.eye() 函数返回一个矩阵,对角线元素为 1,其他位置为零。

numpy.matlib.eye(n, M,k, dtype)
  • n: 返回矩阵的行数
  • M: 返回矩阵的列数,默认为 n
  • k: 对角线的索引
  • dtype: 数据类型
import numpy.matlib
import numpy as npprint(np.matlib.eye(n=3, M=4, k=0, dtype=float))

3.6 numpy.matlib.identity()

        numpy.matlib.identity() 函数返回给定大小的单位矩阵。单位矩阵是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为 1,除此以外全都为 0。

import numpy.matlib
import numpy as np# 大小为 5,类型位浮点型
print(np.matlib.identity(5, dtype=float))

3.7 numpy.matlib.rand()

        numpy.matlib.rand() 函数创建一个给定大小的矩阵,数据是随机填充的。

import numpy.matlib
import numpy as npprint(np.matlib.rand(3, 3))

        矩阵总是二维的,而 ndarray 是一个 n 维数组。 两个对象都是可互换的。

import numpy.matlib
import numpy as npi = np.matrix('1,2;3,4')
print(i)j = np.asarray(i)
print(j)k = np.asmatrix(j)
print(k)

相关文章:

Python NumPy(12):NumPy 字节交换、NumPy 副本和视图、NumPy 矩阵库(Matrix)

1 NumPy 字节交换 在几乎所有的机器上,多字节对象都被存储为连续的字节序列。字节顺序,是跨越多字节的程序对象的存储规则。 大端模式:指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的…...

【Vaadin flow 实战】第5讲-使用常用UI组件绘制页面元素

vaadin flow官方提供的UI组件文档地址是 https://vaadin.com/docs/latest/components这里,我简单实战了官方提供的一些免费的UI组件,使用案例如下: Accordion 手风琴 Accordion 手风琴效果组件 Accordion 手风琴-测试案例代码 Slf4j PageT…...

第三篇:模型压缩与量化技术——DeepSeek如何在边缘侧突破“小而强”的算力困局

——从算法到芯片的全栈式优化实践 随着AI应用向移动终端与物联网设备渗透,模型轻量化成为行业核心挑战。DeepSeek通过自研的“算法-编译-硬件”协同优化体系,在保持模型性能的前提下,实现参数量与能耗的指数级压缩。本文从技术原理、工程实…...

搜索与图论复习2最短路

单源最短路---所有边权是正数(Dijkstra算法O(n^2)--稠密图(邻接矩阵)和堆优化的Dijkstra算法O(mlogn)--稀疏图(邻接表)) 或存在负边权(Bellman-ford贝尔曼福特算法O(nm)和SPFA一般O(m) 最坏O(nm) ) 多源最短路---Floyd算法O(n^3) 一、迪杰斯特拉算法(Dijkstra):1…...

redis集群理论详解

一. Redis集群发展历程 本片文章只介绍集群理论知识,不包含Redis集群搭建教程 教程文章请点击docker搭建redis集群(三主三从) 阶段一:单机版Redis 优点: 简单:易于部署和使用,适合小型项目或初期…...

本地缓存~

前言 Caffeine是使用Java8对Guava缓存的重写版本,在Spring Boot 2.0中取而代之,基于LRU算法实现,支持多种缓存过期策略。 以下摘抄于https://github.com/ben-manes/caffeine/wiki/Benchmarks-zh-CN 基准测试通过使用Java microbenchmark ha…...

SpringBoot 整合 SpringMVC:SpringMVC的注解管理

分类&#xff1a; 中央转发器(DispatcherServlet)控制器视图解析器静态资源访问消息转化器格式化静态资源管理 中央转发器&#xff1a; 中央转发器被 SpringBoot 自动接管&#xff0c;不需要我们在 web.xml 中配置&#xff1a; <servlet><servlet-name>chapter2&l…...

YOLO11/ultralytics:环境搭建

前言 人工智能物体识别行业应该已经饱和了吧&#xff1f;或许现在并不是一个好的入行时候。 最近看到了各种各样相关的扩展应用&#xff0c;为了理解它&#xff0c;我不得不去尝试了解一下。 我选择了git里非常受欢迎的yolo系列&#xff0c;并尝试了最新版本YOLO11或者叫它ultr…...

扩散模型(三)

相关阅读&#xff1a; 扩散模型&#xff08;一&#xff09; 扩散模型&#xff08;二&#xff09; Latent Variable Space 潜在扩散模型&#xff08;LDM&#xff1b;龙巴赫、布拉特曼等人&#xff0c;2022 年&#xff09;在潜在空间而非像素空间中运行扩散过程&#xff0c;这…...

探索数学:从起源到未来的无尽旅程

数学的定义与本质 数学&#xff0c;这门古老而又充满魅力的学科&#xff0c;自人类文明诞生之初便如影随形。然而&#xff0c;要精准地定义数学并非易事&#xff0c;不同的学者从各自的视角出发&#xff0c;给出了多样的阐释。 亚里士多德将数学定义为 “数量科学”&#xff…...

OpenAI发布o3-mini:免费推理模型,DeepSeek引发的反思

引言 在人工智能领域&#xff0c;OpenAI再次引领潮流&#xff0c;推出了全新的推理模型系列——o3-mini。这一系列包括low、medium和high三个版本&#xff0c;旨在进一步推动低成本推理的发展。与此同时&#xff0c;OpenAI的CEO奥特曼也在Reddit的“有问必答”活动中罕见地公开…...

React中使用箭头函数定义事件处理程序

React中使用箭头函数定义事件处理程序 为什么使用箭头函数&#xff1f;1. 传递动态参数2. 避免闭包问题3. 确保每个方块的事件处理程序是独立的4. 代码可读性和维护性 示例代码总结 在React开发中&#xff0c;处理事件是一个常见的任务。特别是当我们需要传递动态参数时&#x…...

自制虚拟机(C/C++)(三、做成标准GUI Windows软件,扩展指令集,直接支持img软盘)

开源地址:VMwork 要使终端不弹出&#xff0c; #pragma comment(linker, "/subsystem:windows /ENTRY:mainCRTStartup") 还要实现jmp near 0x01类似的 本次的main.cpp #include <graphics.h> #include <conio.h> #include <windows.h> #includ…...

C# 语言基础全面解析

.NET学习资料 .NET学习资料 .NET学习资料 一、引言 C# 是一种功能强大、面向对象且类型安全的编程语言&#xff0c;由微软开发&#xff0c;广泛应用于各种类型的软件开发&#xff0c;从桌面应用、Web 应用到游戏开发等领域。本文将全面介绍 C# 语言的基础知识&#xff0c;帮…...

MySQL的覆盖索引

MySQL的覆盖索引 前言 当一个索引包含了查询所需的全部字段时&#xff0c;就可以提高查询效率&#xff0c;这样的索引又被称之为覆盖索引。 以MySQL常见的三种存储引擎为例&#xff1a;InnoDB、MyISAM、Memory&#xff0c;对于覆盖索引提高查询效率的方式均不同&#xff0c;…...

Hutool工具类

Hutool 是一个非常流行的 Java 工具类库&#xff0c;它提供了丰富的功能来简化开发中的常见任务&#xff0c;比如文件操作、加密、日期处理、字符串操作、数据库工具等。它是一个轻量级的工具库&#xff0c;可以减少开发者编写常用代码的工作量&#xff0c;提高开发效率。 主要…...

C++模板编程——可变参函数模板之折叠表达式

目录 1. 什么是折叠表达式 2. 一元左折 3. 一元右折 4. 二元左折 5. 二元右折 6. 后记 上一节主要讲解了可变参函数模板和参数包展开&#xff0c;这一节主要讲一下折叠表达式。 1. 什么是折叠表达式 折叠表达式是C17中引入的概念&#xff0c;引入折叠表达式的目的是为了…...

使用MATLAB进行雷达数据采集可视化

本文使用轮趣科技N10雷达&#xff0c;需要源码可在后台私信或者资源自取 1. 项目概述 本项目旨在通过 MATLAB 读取 N10 激光雷达 的数据&#xff0c;并进行 实时 3D 点云可视化。数据通过 串口 传输&#xff0c;并经过解析后转换为 三维坐标点&#xff0c;最终使用 pcplayer 进…...

【Linux系统】信号:信号保存 / 信号处理、内核态 / 用户态、操作系统运行原理(中断)

理解Linux系统内进程信号的整个流程可分为&#xff1a; 信号产生 信号保存 信号处理 上篇文章重点讲解了 信号的产生&#xff0c;本文会讲解信号的保存和信号处理相关的概念和操作&#xff1a; 两种信号默认处理 1、信号处理之忽略 ::signal(2, SIG_IGN); // ignore: 忽略#…...

在C语言多线程环境中使用互斥量

如果有十个银行账号通过不同的十条线程同时向同一个账号转账时&#xff0c;如果没有很好的机制保证十个账号依次存入&#xff0c;那么这些转账可能出问题。我们可以通过互斥量来解决。 C标准库提供了这个互斥量&#xff0c;只需要引入threads.头文件。 互斥量就像是一把锁&am…...

PHP代码审计学习02

目录 代码审计一般思路 Beescms代码审计&#xff08;upload&#xff09; Finecms基于前台MVC任意文件上传挖掘思路 CLTPHP基于thinkphp5框架的文件上传挖掘思路 今天来看PHP有框架MVC类&#xff0c;文件上传&#xff0c;断点调试挖掘。 同样还是有关键字搜索和功能点抓包两…...

基于微信小程序的医院预约挂号系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

大厂面试题备份20250201

20250201 面试策略 如果三面往后遇到传说中让人忍受不了的业余面试官&#xff0c;就舔着苟过去&#xff0c;入职大概率见不着他&#xff0c;但一二面遇到&#xff0c;反问环节就主动说不够match&#xff0c;让释放流程。 机器/深度学习 百面机器学习 5.4 通用CS 计算机网…...

Spring Boot 实例解析:HelloWorld 探究

POM 文件剖析&#xff1a; 父项目&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring‐boot‐starter‐parent</artifactId><version>1.5.9.RELEASE</version> </parent> 他的父项目是 <…...

【课题推荐】基于t分布的非高斯滤波框架在水下自主导航中的应用研究

水下自主导航系统在海洋探测、环境监测及水下作业等领域具有广泛的应用。然而&#xff0c;复杂的水下环境常常导致传感器输出出现野值噪声&#xff0c;这些噪声会严重影响导航信息融合算法的精度&#xff0c;甚至导致系统发散。传统的卡尔曼滤波算法基于高斯噪声假设&#xff0…...

【C++语言】卡码网语言基础课系列----12. 位置互换

文章目录 练习题目位置互换具体代码实现 小白寄语诗词共勉 练习题目 位置互换 题目描述&#xff1a; 给定一个长度为偶数位的字符串&#xff0c;请编程实现字符串的奇偶位互换。 输入描述&#xff1a; 输入包含多组测试数据。 输入的第一行是一个整数n&#xff0c;表示有测试…...

洛谷的更多功能(不会像其他文章那样复杂且仅支持Edge浏览器)

第一步&#xff1a;下载《洛谷美化 (1).zip》文件夹。 会出现这样的文件夹&#xff1a; 注意&#xff1a;Edge.txt和洛谷前提1.txt是一样的哟&#xff01; 第二步&#xff1a;篡改猴 先打开Edge.txt或者是洛谷前提1.txt文件&#xff0c;打开后复制粘贴到你的Edge浏览器并打开…...

C++编程语言:抽象机制:模板(Bjarne Stroustrup)

目录 23.1 引言和概观(Introduction and Overview) 23.2 一个简单的字符串模板(A Simple String Template) 23.2.1 模板的定义(Defining a Template) 23.2.2 模板实例化(Template Instantiation) 23.3 类型检查(Type Checking) 23.3.1 类型等价(Type Equivalence) …...

女生年薪12万,算不算属于高收入人群

在繁华喧嚣的都市中&#xff0c;我们时常会听到关于收入、高薪与生活质量等话题的讨论。尤其是对于年轻女性而言&#xff0c;薪资水平不仅关乎个人价值的体现&#xff0c;更直接影响到生活质量与未来的规划。那么&#xff0c;女生年薪12万&#xff0c;是否可以被划入高收入人群…...

2181、合并零之间的节点

2181、[中等] 合并零之间的节点 1、问题描述&#xff1a; 给你一个链表的头节点 head &#xff0c;该链表包含由 0 分隔开的一连串整数。链表的 开端 和 末尾 的节点都满足 Node.val 0 。 对于每两个相邻的 0 &#xff0c;请你将它们之间的所有节点合并成一个节点&#xff…...

Immutable设计 SimpleDateFormat DateTimeFormatter

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 理解不可变设计模式&#xff0c;时间format有线程安全要求的注意使用DateTimeFormatter 目录 ImmutableSimpleDateFormat 非线程安全可以synchronized解决&a…...

【网络】传输层协议TCP(重点)

文章目录 1. TCP协议段格式2. 详解TCP2.1 4位首部长度2.2 32位序号与32位确认序号&#xff08;确认应答机制&#xff09;2.3 超时重传机制2.4 连接管理机制(3次握手、4次挥手 3个标志位)2.5 16位窗口大小&#xff08;流量控制&#xff09;2.6 滑动窗口2.7 3个标志位 16位紧急…...

17.[前端开发]Day17-形变-动画-vertical-align

1 transform CSS属性 - transform transform的用法 表示一个或者多个 不用记住全部的函数&#xff0c;只用掌握这四个常用的函数即可 位移 - translate <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta ht…...

LeetCode435周赛T2贪心

题目描述 给你一个由字符 N、S、E 和 W 组成的字符串 s&#xff0c;其中 s[i] 表示在无限网格中的移动操作&#xff1a; N&#xff1a;向北移动 1 个单位。S&#xff1a;向南移动 1 个单位。E&#xff1a;向东移动 1 个单位。W&#xff1a;向西移动 1 个单位。 初始时&#…...

陆游的《诗人苦学说》:从藻绘到“功夫在诗外”(中英双语)mastery lies beyond poetry

陆游的《诗人苦学说》&#xff1a;从藻绘到“功夫在诗外” 今天看万维钢的《万万没想到》一书&#xff0c;看到陆游的功夫在诗外的句子&#xff0c;特意去查找这首诗的原文。故而有此文。 我国学人还往往过分强调“功夫在诗外”这句陆游的名言&#xff0c;认为提升综合素质是一…...

AI模型平台之——ModelScope(魔搭)

ModelScope 是什么&#xff1f; ModelScope 是一个由阿里巴巴达摩院推出的开源模型库和工具集&#xff0c;旨在为开发者提供高效、便捷的机器学习模型和工具。ModelScope 提供了丰富的预训练模型、数据集和工具&#xff0c;支持多种任务和应用场景&#xff0c;如自然语言处理、…...

GIt使用笔记大全

Git 使用笔记大全 1. 安装 Git 在终端或命令提示符中&#xff0c;输入以下命令检查是否已安装 Git&#xff1a; git --version如果未安装&#xff0c;可以从 Git 官方网站 下载并安装适合你操作系统的版本。 2. 配置 Git 首次使用 Git 时&#xff0c;需要配置用户名和邮箱…...

42【文件名的编码规则】

我们在学习的过程中&#xff0c;写出数据或读取数据时需要考虑编码类型 火山采用&#xff1a;UTF-16 易语言采用&#xff1a;GBK php采用&#xff1a;UTF-8 那么我们写出的文件名应该是何种编码的&#xff1f;比如火山程序向本地写出一个“测试.txt”&#xff0c;理论上这个“测…...

Linux网络 HTTPS 协议原理

概念 HTTPS 也是一个应用层协议&#xff0c;不过 是在 HTTP 协议的基础上引入了一个加密层。因为 HTTP的内容是明文传输的&#xff0c;明文数据会经过路由器、wifi 热点、通信服务运营商、代理服务器等多个物理节点&#xff0c;如果信息在传输过程中被劫持&#xff0c;传输的…...

Vue.js组件开发-实现全屏手风琴幻灯片切换特效

使用 Vue 实现全屏手风琴幻灯片切换特效 步骤概述 创建 Vue 项目&#xff1a;使用 Vue CLI 创建一个新的 Vue 项目。设计组件结构&#xff1a;创建一个手风琴幻灯片组件&#xff0c;包含幻灯片项和切换逻辑。实现样式&#xff1a;使用 CSS 实现全屏和手风琴效果。添加交互逻辑…...

数据库、数据仓库、数据湖有什么不同

数据库、数据仓库和数据湖是三种不同的数据存储和管理技术&#xff0c;它们在用途、设计目标、数据处理方式以及适用场景上存在显著差异。以下将从多个角度详细说明它们之间的区别&#xff1a; 1. 数据结构与存储方式 数据库&#xff1a; 数据库主要用于存储结构化的数据&…...

MLM之MiniCPM-o:MiniCPM-o的简介(涉及MiniCPM-o 2.6和MiniCPM-V 2.6)、安装和使用方法、案例应用之详细攻略

MLM之MiniCPM-o&#xff1a;MiniCPM-o的简介(涉及MiniCPM-o 2.6和MiniCPM-V 2.6)、安装和使用方法、案例应用之详细攻略 目录 MiniCPM-o的简介 0、更新日志 1、MiniCPM-o系列模型特点 MiniCPM-o 2.6 的主要特点 MiniCPM-V 2.6的主要特点 2、MiniCPM-o系列模型架构 MiniC…...

【Conda 和 虚拟环境详细指南】

Conda 和 虚拟环境的详细指南 什么是 Conda&#xff1f; Conda 是一个开源的包管理和环境管理系统&#xff0c;支持多种编程语言&#xff08;如Python、R等&#xff09;&#xff0c;最初由Continuum Analytics开发。 主要功能&#xff1a; 包管理&#xff1a;安装、更新、删…...

Rust 控制流语法详解

Rust 控制流语法详解 控制流是编程语言中用于控制代码执行顺序的重要机制。Rust 提供了多种控制流语法&#xff0c;包括条件判断&#xff08;if、else if&#xff09;、循环&#xff08;loop、while、for&#xff09;等。本文将详细介绍这些语法&#xff0c;并通过示例展示它们…...

VLC-Qt: Qt + libVLC 的开源库

参考链接 https://blog.csdn.net/u012532263/article/details/102737874...

洛谷 P5146 最大差值 C语言

P5146 最大差值 - 洛谷 | 计算机科学教育新生态 题目描述 HKE 最近热衷于研究序列&#xff0c;有一次他发现了一个有趣的问题&#xff1a; 对于一个序列 A1​,A2​,…,An​&#xff0c;找出两个数 i,j&#xff08;1≤i<j≤n&#xff09;&#xff0c;使得 Aj​−Ai​ 最大。…...

Zabbix 推送告警 消息模板 美化(钉钉Webhook机器人、邮件)

目前网络上已经有很多关于Zabbix如何推送告警信息到钉钉机器人、到邮件等文章。 但是在搜索下来&#xff0c;发现缺少了对告警信息的美化的文章。 本文不赘述如何对Zabbix对接钉钉、对接邮件&#xff0c;仅介绍我采用的美化消息模板的内容。 活用AI工具可以减轻很多学习、脑力负…...

MySQL数据库环境搭建

下载MySQL 官网&#xff1a;https://downloads.mysql.com/archives/installer/ 下载社区版就行了。 安装流程 看b站大佬的视频吧&#xff1a;https://www.bilibili.com/video/BV12q4y1477i/?spm_id_from333.337.search-card.all.click&vd_source37dfd298d2133f3e1f3e3c…...

书生大模型实战营7

文章目录 L1——基础岛提示词工程实践什么是Prompt(提示词)什么是提示工程提示设计框架CRISPECO-STAR LangGPT结构化提示词LangGPT结构编写技巧构建全局思维链保持上下文语义一致性有机结合其他 Prompt 技巧 常用的提示词模块 浦语提示词工程实践(LangGPT版)自动化生成LangGPT提…...

Spark的基本概念

个人博客地址&#xff1a;Spark的基本概念 | 一张假钞的真实世界 编程接口 RDD&#xff1a;弹性分布式数据集&#xff08;Resilient Distributed Dataset &#xff09;。Spark2.0之前的编程接口。Spark2.0之后以不再推荐使用&#xff0c;而是被Dataset替代。Dataset&#xff…...