机器学习优化算法:从梯度下降到Adam及其实验改进
机器学习优化算法:从梯度下降到Adam及其实验改进
在机器学习和深度学习领域,模型的训练过程本质上是一个优化问题。优化算法的作用是通过调整模型参数,使得模型在给定的数据
集上实现最优性能。而优化算法的效率和效果直接决定了模型的收敛速度和最终表现。
一、优化算法的基本概念
-
目标函数与损失函数
在机器学习中,我们通常定义一个目标函数(Objective Function),它衡量了模型预测值与真实值之间的差异。这个差异通常
被称为损失(Loss)。我们的目标是通过调整模型参数,使得这个损失最小化。 -
优化器的作用
优化算法负责根据当前的损失计算梯度,并更新模型参数以减小损失。常见的优化算法包括梯度下降(Gradient Descent)、随
机梯度下降(Stochastic Gradient Descent, SGD)、Adam(Adaptive Moment Estimation)等。 -
参数更新规则
参数更新是优化器的核心步骤。基本的更新公式可以表示为:
θ t + 1 = θ t − η ⋅ g t \theta_{t+1} = \theta_t - \eta \cdot g_t θt+1=θt−η⋅gt其中, θ t \theta_t θt 表示第 t t t 步的参数, η \eta η 是学习率(Learning Rate), g t g_t gt 是当前步的梯度。
二、基础优化算法
-
梯度下降(Gradient Descent, GD)
梯度下降是一种简单而直观的优化算法。它通过计算损失函数相对于模型参数的梯度,沿着负梯度方向更新参数以最小化损失。
-
优点:
- 简单易懂。
- 能够保证在凸函数的情况下收敛到全局最优解。
-
缺点:
- 需要计算整个数据集的梯度,计算量大,尤其是在大数据集上效率低下。
- 收敛速度较慢。
-
-
随机梯度下降(Stochastic Gradient Descent, SGD)
为了提高梯度下降的效率,研究者提出了随机梯度下降。SGD每次只使用一个样本或者一小部分样本(小批量)来计算梯度,从而
加速了参数更新的过程。-
优点:
- 计算速度快。
- 能够处理大规模数据集。
-
缺点:
- 由于仅依赖于单个样本的信息,梯度估计可能不稳定,导致优化过程震荡。
-
三、自适应学习率方法
-
AdaGrad(Adaptive Gradient)
AdaGrad是一种自适应学习率的方法。它通过历史梯度信息自动调整每个参数的学习率。具体来说,对于每个参数
(\theta_i),其学习率的调整如下:
η i = η 0 G i i + ϵ \eta_i = \frac{\eta_0}{\sqrt{G_{ii} + \epsilon}} ηi=Gii+ϵη0
其中, G i i G_{ii} Gii 是梯度在第 ( i ) (i) (i)个参数方向上的累积平方和。
-
优点:
- 自动处理稀疏特征。
- 在某些任务上表现良好。
-
缺点:
- 可能会过早降低学习率,导致收敛速度变慢。
-
AdaDelta
AdaDelta是对AdaGrad的一种改进。它引入了两个自适应参数:动量(momentum)和逐步衰减(decaying average of
gradients)。动量的计算公式为:
v t = β 1 v t − 1 + ( 1 − β 1 ) g t v_t = \beta_1 v_{t-1} + (1 - \beta_1) g_t vt=β1vt−1+(1−β1)gt
而梯度平方的估计则使用指数加权平均:
s t = β 2 s t − 1 + ( 1 − β 2 ) g t 2 s_t = \beta_2 s_{t-1} + (1 - \beta_2) g_t^2 st=β2st−1+(1−β2)gt2
参数更新公式为:
θ t + 1 = θ t − v t s t + ϵ \theta_{t+1} = \theta_t - \frac{\sqrt{v_t}}{\sqrt{s_t + \epsilon}} θt+1=θt−st+ϵvt
-
RMSProp(Root Mean Square Propagation)
RMSProp也是一种自适应学习率方法,它使用指数加权移动平均来估计梯度的平方。
参数更新公式为:
v t = β 2 v t − 1 + ( 1 − β 2 ) g t 2 v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 vt=β2vt−1+(1−β2)gt2
θ t + 1 = θ t − η ⋅ g t v t + ϵ \theta_{t+1} = \theta_t - \eta \cdot \frac{g_t}{\sqrt{v_t + \epsilon}} θt+1=θt−η⋅vt+ϵgt
四、Adam优化算法
-
Adam的提出
Adam(Adaptive Moment Estimation)结合了动量和自适应学习率的思想,是一种非常高效的优化算法。它同时维护梯度的一阶
矩估计和二阶矩估计。 -
具体实现
- 一阶矩估计:
m t = β 1 m t − 1 + ( 1 − β 1 ) g t m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t mt=β1mt−1+(1−β1)gt
-
二阶矩估计:
v t = β 2 v t − 1 + ( 1 − β 2 ) g t 2 v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 vt=β2vt−1+(1−β2)gt2
参数更新公式为:
θ t + 1 = θ t − η ⋅ m t v t + ϵ \theta_{t+1} = \theta_t - \eta \cdot \frac{m_t}{\sqrt{v_t + \epsilon}} θt+1=θt−η⋅vt+ϵmt
-
Adam的变体
-
Adamax:将二阶矩估计替换为超参数化的估计,使得优化过程更加稳定。
-
AMSGrad:引入了梯度的上界估计,可以保证全局收敛性。
-
五、实验比较与调参技巧
-
常见调参问题
-
学习率选择:
学习率的选择对模型性能影响巨大。过大的学习率可能导致参数震荡,无法收敛;过小的学习率则会使得训练过程过于缓慢。
-
动量的使用:
动量可以帮助加速优化过程,并在一定程度上缓解梯度消失或爆炸问题。
-
梯度裁剪(Gradient Clipping):
对于某些任务,尤其是深度网络中,梯度可能会变得非常大或者非常小。梯度裁剪可以限制梯度的大小,防止参数更新幅度过
大。
-
-
实验比较
为了验证不同优化算法的效果,我们可以在一个简单的神经网络上进行实验,比如训练一个多层感知机(MLP)用于分类任务。
-
数据集选择:
MNIST手写数字识别是一个常用的测试平台。
-
模型结构:
使用两层全连接网络,输入维度为784(28x28),输出类别数为10。
-
训练过程:
分别使用GD、SGD、AdaGrad、RMSProp、Adam等优化算法进行训练,记录训练过程中的损失值和准确率变化。
-
-
调参技巧
-
学习率衰减:
在训练过程中,可以采用学习率衰减策略(如指数衰减),以逐步降低学习率。
-
批量归一化(Batch Normalization):
批量归一化可以在一定程度上加速训练过程,并且能够帮助模型更快地收敛。
-
混合优化器:
在某些情况下,可以结合不同的优化算法,或者在训练过程中动态调整优化策略。
-
六、高级主题与研究方向
-
大规模分布式训练
随着深度学习模型规模的不断扩大,单机训练已经难以满足需求。如何在分布式环境下高效地进行模型训练,成为了优化算法研
究的重要方向。 -
模型压缩与加速
在保证模型性能的前提下,如何减少模型参数量和计算复杂度,也是当前的研究热点。优化算法在这类任务中扮演着重要角色。
-
自适应优化器
最近的一些研究开始尝试设计更加智能的优化算法,这些算法能够根据训练过程中的动态信息自动调整参数设置,而无需手动调
参。
七、总结与展望
-
总结
从简单的梯度下降到现代的各种自适应优化算法,深度学习优化技术的发展极大地推动了人工智能的进步。不同优化算法有其各
自的优缺点,在实际应用中需要根据具体任务和数据特点进行选择。 -
展望
随着计算能力的提升和新问题的出现,优化算法的研究将会继续深入。未来可能会涌现出更多高效、智能的优化方法,为深度学
习的发展提供强有力的支持。
相关文章:
机器学习优化算法:从梯度下降到Adam及其实验改进
机器学习优化算法:从梯度下降到Adam及其实验改进 在机器学习和深度学习领域,模型的训练过程本质上是一个优化问题。优化算法的作用是通过调整模型参数,使得模型在给定的数据 集上实现最优性能。而优化算法的效率和效果直接决定了模型的收敛速…...
在 Ubuntu 中使用 Conda 创建和管理虚拟环境
Conda 是一个广泛使用的包管理和环境管理系统,尤其适用于数据科学和 Python 开发。本文将指导你如何在 Ubuntu 系统中安装 Conda 并创建基于 python3.11 的虚拟环境。 1. 安装 Miniconda 或 Anaconda 方法 1:下载并安装 Miniconda Miniconda 是一个轻量…...
【深度学习】搭建卷积神经网络并进行参数解读
第一步 导包 import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchvision import datasets,transforms import matplotlib.pyplot as plt import numpy as np %matplotlib inline transforms 模块是 torchvision 库的…...
稀疏进化训练:机器学习优化算法中的高效解决方案
稀疏进化训练:机器学习优化算法中的高效解决方案 稀疏进化训练:机器学习优化算法中的高效解决方案引言第一部分:背景与动机1.1 传统优化算法的局限性1.2 进化策略的优势1.3 稀疏性的重要性 第二部分:稀疏进化训练的核心思想2.1 稀…...
Vue - Suspense的使用
在 Vue 3 中,Suspense 是一个用于处理异步组件的 API。它允许在加载异步组件时提供一个后备内容(例如加载指示器),从而改善用户体验。在加载期间,可以在页面上显示一个占位符,而不是让用户看到一个空白或错…...
在K8S中,pending状态一般由什么原因导致的?
在Kubernetes中,资源或Pod处于Pending状态可能有多种原因引起。以下是一些常见的原因和详细解释: 资源不足 概述:当集群中的资源不足以满足Pod或服务的需求时,它们可能会被至于Pending状态。这通常涉及到CPU、内存、存储或其他资…...
【算法】回溯算法专题② ——组合型回溯 + 剪枝 python
目录 前置知识进入正题小试牛刀实战演练总结 前置知识 【算法】回溯算法专题① ——子集型回溯 python 进入正题 组合https://leetcode.cn/problems/combinations/submissions/596357179/ 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以…...
理解红黑树
简介:红黑树是一种自平衡二叉查找树,由鲁道夫贝尔(Rudolf Bayer)在1972年发明,最初称为“对称二叉B树”。它的设计旨在解决普通二叉查找树在频繁插入和删除操作时可能退化为链表的问题,从而保持高效的查找、…...
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(OLED设备层封装)
目录 OLED设备层驱动开发 如何抽象一个OLED 完成OLED的功能 初始化OLED 清空屏幕 刷新屏幕与光标设置1 刷新屏幕与光标设置2 刷新屏幕与光标设置3 绘制一个点 反色 区域化操作 区域置位 区域反色 区域更新 区域清空 测试我们的抽象 整理一下,我们应…...
大模型能力评估数据集都有哪些?
大模型能力的评估数据集种类繁多,涵盖了语言理解、推理、生成、代码能力、安全性和鲁棒性等多个方面。以下是一些主要的评估数据集及其特点: 通用能力评估数据集: MMLU:多模态大规模多语言任务理解数据集,覆盖从基础教育到高级专业水平的57个科目,用于评估模型的知识储备…...
论文阅读(二):理解概率图模型的两个要点:关于推理和学习的知识
1.论文链接:Essentials to Understand Probabilistic Graphical Models: A Tutorial about Inference and Learning 摘要: 本章的目的是为没有概率图形模型背景或没有深入背景的科学家提供一个高级教程。对于更熟悉这些模型的读者,本章将作为…...
《OpenCV》——图像透视转换
图像透视转换简介 在 OpenCV 里,图像透视转换属于重要的几何变换,也被叫做投影变换。下面从原理、实现步骤、相关函数和应用场景几个方面为你详细介绍。 原理 实现步骤 选取对应点:要在源图像和目标图像上分别找出至少四个对应的点。这些对…...
【16届蓝桥杯寒假刷题营】第2期DAY4
【16届蓝桥杯寒假刷题营】第2期DAY4 - 蓝桥云课 问题描述 幼儿园小班的浩楠同学有一个序列 a。 他想知道有多少个整数三元组 (i,j,k) 满足 1≤i,j,k≤n 且 aiajak。 输入格式 共2行,第一行一个整数 n,表示序列的长度。 第二行 n 个整数&#x…...
用 HTML、CSS 和 JavaScript 实现抽奖转盘效果
顺序抽奖 前言 这段代码实现了一个简单的抽奖转盘效果。页面上有一个九宫格布局的抽奖区域,周围八个格子分别放置了不同的奖品名称,中间是一个 “开始抽奖” 的按钮。点击按钮后,抽奖区域的格子会快速滚动,颜色不断变化…...
【人工智能学习笔记 一】 AI分层架构、基本概念分类与产品技术架构
新的一年2025要对AI以及LLM有个强化的学习,所以第一篇先对整体有个大概的认知,一直分不清LLM和AI的关系,在整个体系里的位置,以及AIGC是什么东西,AI AGENT类似豆包等和大语言模型的具体关系是什么,整个AI的…...
windows10 配置使用json server作为图片服务器
步骤1:在vs code中安装json server, npm i -g json-server 注意:需要安装对应版本的json server,不然可能会报错,比如: npm i -g json-server 0.16.3 步骤2:出现如下报错: json-server 不是…...
【Elasticsearch 基础入门】Centos7下Elasticsearch 7.x安装与配置(单机)
Elasticsearch系列文章目录 【Elasticsearch 基础入门】一文带你了解Elasticsearch!!!【Elasticsearch 基础入门】Centos7下Elasticsearch 7.x安装与配置(单机) 目录 Elasticsearch系列文章目录前言单机模式1. 安装 J…...
【MySQL】语言连接
语言连接 一、下载二、mysql_get_client_info1、函数2、介绍3、示例 三、其他函数1、mysql_init2、mysql_real_connect3、mysql_query4、mysql_store_result5、mysql_free_result6、mysql_num_fields7、mysql_num_rows8、mysql_fetch_fields9、mysql_fetch_row10、mysql_close …...
【零拷贝】
目录 一:了解IO基础概念 二:数据流动的层次结构 三:零拷贝 1.传统IO文件读写 2.mmap 零拷贝技术 3.sendFile 零拷贝技术 一:了解IO基础概念 理解CPU拷贝和DMA拷贝 我们知道,操作系统对于内存空间&…...
四、GPIO中断实现按键功能
4.1 GPIO简介 输入输出(I/O)是一个非常重要的概念。I/O泛指所有类型的输入输出端口,包括单向的端口如逻辑门电路的输入输出管脚和双向的GPIO端口。而GPIO(General-Purpose Input/Output)则是一个常见的术语,…...
qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记
qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记 文章目录 qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记1.例程运行效果2.例程缩略图3.项目文件列表4.main.qml5.main.cpp6.CMakeLists.txt 1.例程运行效果 运行该项目需要自己准备一个模型文件 2.例程缩略图…...
IM 即时通讯系统-01-概览
前言 有时候希望有一个 IM 工具,比如日常聊天,或者接受报警信息。 其实主要是工作使用,如果是接收报警等场景,其实DD这种比较符合场景。 那么有没有必要再创造一个DD呢? 答案是如果处于个人的私有化使用࿰…...
二叉树——429,515,116
今天继续做关于二叉树层序遍历的相关题目,一共有三道题,思路都借鉴于最基础的二叉树的层序遍历。 LeetCode429.N叉树的层序遍历 这道题不再是二叉树了,变成了N叉树,也就是该树每一个节点的子节点数量不确定,可能为2&a…...
Baklib构建高效协同的基于云的内容中台解决方案
内容概要 随着云计算技术的飞速发展,内容管理的方式也在不断演变。企业面临着如何在数字化转型过程中高效管理和协同处理内容的新挑战。为应对这些挑战,引入基于云的内容中台解决方案显得尤为重要。 Baklib作为创新型解决方案提供商,致力于…...
MP4基础
一、什么是MP4? MP4是一套用于音频、视频信息的压缩编码标准,由国际标准化组织(ISO)和国际电工委员会(IEC)下属的“动态图像专家组”(Moving Picture Experts Group,即MPEGÿ…...
年化18%-39.3%的策略集 | backtrader通过xtquant连接qmt实战
原创内容第785篇,专注量化投资、个人成长与财富自由。 大年初五,年很快就过完了。 其实就是本身也只是休假一周,但是我们赋予了它太多意义。 周五咱们发布发aitrader v4.1,带了backtraderctp期货的实盘接口: aitra…...
通过Redisson构建延时队列并实现注解式消费
目录 一、序言二、延迟队列实现1、Redisson延时消息监听注解和消息体2、Redisson延时消息发布器3、Redisson延时消息监听处理器 三、测试用例四、结语 一、序言 两个月前接了一个4万的私活,做一个线上商城小程序,在交易过程中不可避免的一个问题就是用户…...
RAG是否被取代(缓存增强生成-CAG)吗?
引言: 本文深入研究一种名为缓存增强生成(CAG)的新技术如何工作并减少/消除检索增强生成(RAG)弱点和瓶颈。 LLMs 可以根据输入给他的信息给出对应的输出,但是这样的工作方式很快就不能满足应用的需要: 因…...
MiniMax:人工智能领域的创新先锋
MiniMax:人工智能领域的创新先锋 在人工智能领域,MiniMax正以其强大的技术实力和创新的模型架构,成为全球关注的焦点。作为一家成立于2021年12月的通用人工智能科技公司,MiniMax专注于开发多模态、万亿参数的MoE(Mixt…...
pytorch基于GloVe实现的词嵌入
PyTorch 实现 GloVe(Global Vectors for Word Representation) 的完整代码,使用 中文语料 进行训练,包括 共现矩阵构建、模型定义、训练和测试。 1. GloVe 介绍 基于词的共现信息(不像 Word2Vec 使用滑动窗口预测&…...
Unity实现按键设置功能代码
一、前言 最近在学习unity2D,想做一个横版过关游戏,需要按键设置功能,让用户可以自定义方向键与攻击键等。 自己写了一个,总结如下。 二、界面效果图 这个是一个csv文件,准备第一列是中文按键说明,第二列…...
C++ 入门速通-第3章【黑马】
内容来源于:黑马 集成开发环境:CLion 先前学习完了C第1章的内容: C 入门速通-第1章【黑马】-CSDN博客 C 入门速通-第2章【黑马】-CSDN博客 下面继续学习第3章: 数组: 字符数组: 多维数组: …...
JavaScript 中的 CSS 与页面响应式设计
JavaScript 中的 CSS 与页面响应式设计 JavaScript 中的 CSS 与页面响应式设计1. 引言2. JavaScript 与 CSS 的基本概念2.1 CSS 的作用2.2 JavaScript 的作用3. 动态控制样式:JavaScript 修改 CSS 的方法3.1 使用 `document.styleSheets` API3.2 使用 `classList` 修改类3.3 使…...
100.3 AI量化面试题:解释配对交易(Pairs Trading)的原理,并说明如何选择配对股票以及设计交易信号
目录 0. 承前1. 配对交易基本原理1.1 什么是配对交易1.2 基本假设 2. 配对选择方法2.1 相关性分析2.2 协整性检验 3. 价差计算方法3.1 简单价格比率3.2 回归系数法 4. 交易信号设计4.1 标准差方法4.2 动态阈值方法 5. 风险管理5.1 止损设计5.2 仓位管理 6. 策略评估6.1 回测框架…...
[SAP ABAP] Debug Skill
SAP ABAP Debug相关资料 [SAP ABAP] DEBUG ABAP程序中的循环语句 [SAP ABAP] 静态断点的使用 [SAP ABAP] 在ABAP Debugger调试器中设置断点 [SAP ABAP] SE11 / SE16N 修改标准表(慎用)...
WSL2中安装的ubuntu开启与关闭探讨
1. PC开机后,查询wsl状态 在cmd或者powersell中输入 wsl -l -vNAME STATE VERSION * Ubuntu Stopped 22. 从windows访问WSL2 wsl -l -vNAME STATE VERSION * Ubuntu Stopped 23. 在ubuntu中打开一个工作区后…...
走向基于大语言模型的新一代推荐系统:综述与展望
HightLight 论文题目:Towards Next-Generation LLM-based Recommender Systems: A Survey and Beyond作者机构:吉林大学、香港理工大学、悉尼科技大学、Meta AI论文地址: https://arxiv.org/abs/2410.1974 基于大语言模型的下一代推荐系统&…...
【深度分析】DeepSeek 遭暴力破解,攻击 IP 均来自美国,造成影响有多大?有哪些好的防御措施?
技术铁幕下的暗战:当算力博弈演变为代码战争 一场针对中国AI独角兽的全球首例国家级密码爆破,揭开了数字时代技术博弈的残酷真相。DeepSeek服务器日志中持续跳动的美国IP地址,不仅是网络攻击的地理坐标,更是技术霸权对新兴挑战者的…...
双指针算法思想——OJ例题扩展算法解析思路
大家好!上一期我发布了关于双指针的OJ平台上的典型例题思路解析,基于上一期的内容,我们这一期从其中内容扩展出来相似例题进行剖析和运用,一起来试一下吧! 目录 一、 基于移动零的举一反三 题一:27. 移除…...
初始Linux(7):认识进程(下)
1. 进程优先级 cpu 资源分配的先后顺序,就是指进程的优先权( priority )。 优先权高的进程有优先执行权利。配置进程优先权对多任务环境的 linux 很有用,可以改善系统性能。 还可以把进程运行到指定的CPU 上,这样一来…...
人工智能第2章-知识点与学习笔记
结合教材2.1节,阐述什么是知识、知识的特性,以及知识的表示。人工智能最早应用的两种逻辑是什么?阐述你对这两种逻辑表示的内涵理解。什么谓词,什么是谓词逻辑,什么是谓词公式。谈谈你对谓词逻辑中的量词的理解。阐述谓词公式的解…...
Kotlin 协程 与 Java 虚拟线程对比测试(娱乐性质,请勿严谨看待本次测试)
起因 昨天在群里聊到虚拟线程的执行效率问题的时候虽然最后的结论是虚拟线程在针对IO密集型任务时具有很大的优势。但是讨论到虚拟线程和Kotlin 的协程的优势对比的话,这时候所有人都沉默了。所以有了本次的测试 提前声明:本次测试是不严谨的࿰…...
C++中的拷贝构造器(Copy Constructor)
在C中,拷贝构造器(Copy Constructor)是一种特殊的构造函数,用于创建一个新对象,该对象是另一个同类型对象的副本。当使用一个已存在的对象来初始化一个新对象时,拷贝构造器会被调用。 拷贝构造器的定义 拷…...
Spring Boot项目如何使用MyBatis实现分页查询
写在前面:大家好!我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正,感谢大家的不吝赐教。我的唯一博客更新地址是:https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油,冲鸭&#x…...
独立开发经验谈:如何借助 AI 辅助产品 UI 设计
我在业余时间开发了一款自己的独立产品:升讯威在线客服与营销系统。陆陆续续开发了几年,从一开始的偶有用户尝试,到如今线上环境和私有化部署均有了越来越多的稳定用户,在这个过程中,我也积累了不少如何开发运营一款独…...
笔灵ai写作技术浅析(三):深度学习
笔灵AI写作的深度学习技术主要基于Transformer架构,尤其是GPT(Generative Pre-trained Transformer)系列模型。 1. Transformer架构 Transformer架构由Vaswani等人在2017年提出,是GPT系列模型的基础。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),完全依赖自…...
https数字签名手动验签
以bing.com 为例 1. CA 层级的基本概念 CA 层级是一种树状结构,由多个层级的 CA 组成。每个 CA 负责为其下一层级的实体(如子 CA 或终端实体)颁发证书。层级结构的顶端是 根 CA(Root CA),它是整个 PKI 体…...
为什么LabVIEW适合软硬件结合的项目?
LabVIEW是一种基于图形化编程的开发平台,广泛应用于软硬件结合的项目中。其强大的硬件接口支持、实时数据采集能力、并行处理能力和直观的用户界面,使得它成为工业控制、仪器仪表、自动化测试等领域中软硬件系统集成的理想选择。LabVIEW的设计哲学强调模…...
C# 操作符重载对象详解
.NET学习资料 .NET学习资料 .NET学习资料 一、操作符重载的概念 在 C# 中,操作符重载允许我们为自定义的类或结构体定义操作符的行为。通常,我们熟悉的操作符,如加法()、减法(-)、乘法&#…...
git:恢复纯版本库
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…...