年化18%-39.3%的策略集 | backtrader通过xtquant连接qmt实战
原创内容第785篇,专注量化投资、个人成长与财富自由。
大年初五,年很快就过完了。
其实就是本身也只是休假一周,但是我们赋予了它太多意义。
周五咱们发布发aitrader v4.1,带了backtrader+ctp期货的实盘接口:
aitrader_v4.1系统更新|含年化39.1%的组合策略代码|backtrader+openctp实盘(代码+数据)
组合策略运行效果如下:
今天,我们把qmt的整合代码带上,然后对照着学习,backtrader对接实盘,需要三个文件:broker,datafeed和store。
需要pip install xtquant,xtquant其实是与本机的qmt终端连接,需要本机安装并登录qmt终端:
我运行的是投研版本:
import backtrader as bt from live_trade.backtrader_qmt import QMTStore from datetime import datetime from xtquant import xtdata import mathclass BuyCondition(bt.Indicator):'''买入条件'''lines = ('buy_signal',)params = (('up_days', 10), # 连续上涨的天数)def __init__(self):self.lines.buy_signal = bt.If(self.data.close > self.data.close(-250), 1, 0)def next(self):# 检查250线斜率是否恰好连续向上self.params.up_days个交易日,再往前一个交易日斜率下降if len(self) >= self.params.up_days + 1:slope_up = all(self.data.close[-i] > self.data.close[-i - 1] for i in range(1, self.params.up_days + 1))slope_down_before = self.data.close[-self.params.up_days - 1] < self.data.close[-self.params.up_days - 2]if slope_up and slope_down_before:self.lines.buy_signal[0] = 1else:self.lines.buy_signal[0] = 0class SellCondition(bt.Indicator):'''卖出条件'''lines = ('sell_signal',)params = (('hold_days', 20), # 持有天数)def __init__(self):self.hold_days = 0def next(self):# 持有self.params.hold_days个交易日卖出if self.hold_days >= self.params.hold_days:self.lines.sell_signal[0] = 1self.hold_days = 0else:self.lines.sell_signal[0] = 0self.hold_days += 1class Sizer(bt.Sizer):'''仓位控制'''params = (('buy_count', 1), # 最大持仓股票个数)def __init__(self):passdef _getsizing(self, comminfo, cash, data, isbuy):if isbuy:# 如果是买入,平均分配仓位commission_rate = comminfo.p.commissionsize = math.floor(cash * (1 - commission_rate) / data.close[0] / self.params.buy_count / 100) * 100else:# 如果是卖出,全部卖出position = self.broker.getposition(data)size = position.sizereturn sizeclass DemoStrategy(bt.Strategy):params = (('max_positions', 5), # 最大持仓股票个数('up_days', 10), # 连续上涨的天数('hold_days', 20), # 持有天数)def log(self, txt, dt=None):""" 记录交易日志 """dt = dt or self.datas[0].datetime.date(0)print(f'{dt.isoformat()}, {txt}')def __init__(self):# 初始化函数self.sizer = Sizer()self.buy_condition = {d: BuyCondition(d, up_days=self.params.up_days) for d in self.datas}self.sell_condition = {d: SellCondition(d, hold_days=self.params.hold_days) for d in self.datas}def next(self):# 先收集所有需要买入和卖出的股票buy_list = []sell_list = []for i, d in enumerate(self.datas):pos = self.getposition(d).sizeif pos and self.sell_condition[d].lines.sell_signal[0] > 0:sell_list.append(d)if self.buy_condition[d].lines.buy_signal[0] > 0:buy_list.append(d)# 动态设置Sizer的buy_count参数self.sizer.params.buy_count = len(buy_list)# 先执行卖出操作for d in sell_list:self.sell(data=d)# 再执行买入操作for d in buy_list:self.buy(data=d)if __name__ == '__main__':store = QMTStore()code_list = xtdata.get_stock_list_in_sector('沪深300')# 添加数据datas = store.getdatas(code_list=code_list, timeframe=bt.TimeFrame.Days, fromdate=datetime(2022, 7, 1))for d in datas:# print(len(d))cerebro = bt.Cerebro(maxcpus=16)cerebro.adddata(d)# 添加策略# buy_date = datetime(2022, 8, 1).date() # 设置固定买入日期cerebro.addstrategy(DemoStrategy)# cerebro.optstrategy# # 设置初始资金cerebro.broker.setcash(1000000.0)# 设置佣金cerebro.broker.setcommission(commission=0.001)# 运行回测# print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())cerebro.run()if cerebro.broker.getvalue() != 1000000.0:print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())xtdata.run()#绘制结果cerebro.plot()
显示连接成功:
明天继续。
代码和数据下载:AI量化实验室——2025量化投资的星辰大海
AI量化实验室 星球,已经运行三年多,1300+会员。
aitrader代码,含几十个策略源代码,因子表达式引擎、遗传算法(Deap)因子挖掘引擎等,支持vnpy,qlib,backtrader和bt引擎,内置多个年化30%+的策略,每周五迭代一次,代码和数据在星球全部开源。
扩展 • 历史文章
EarnMore(赚得更多)基于RL的投资组合管理框架:一致的股票表示,可定制股票池管理。(附论文+代码)
deap系统重构,再新增一个新的因子,年化39.1%,卡玛提升至2.76(附python代码)
deap时间序列函数补充,挖掘出年化39.12%的轮动因子,卡玛比率2.52
年化19.3%,回撤仅8%的实盘策略,以及backtrader整合CTPBee做实盘(附python代码和数据)
近四年年化收益19.3%,而最大回撤仅8%,卡玛比率2.34,投资应该是一件简单的事情。(附python代码+数据)
AGI通用智能实验室
紧跟前沿AGI研究进展,论文复现,可运行的代码,落地应用等。
既做科研,也做科普;研究基础大模型,也关心应用场景。
通往前沿通用人工智能(AGI)的路径已经展开。
这是一场史诗级的工业革命级别的技术变革,奇点临近,未来已来!
相关文章:
年化18%-39.3%的策略集 | backtrader通过xtquant连接qmt实战
原创内容第785篇,专注量化投资、个人成长与财富自由。 大年初五,年很快就过完了。 其实就是本身也只是休假一周,但是我们赋予了它太多意义。 周五咱们发布发aitrader v4.1,带了backtraderctp期货的实盘接口: aitra…...
通过Redisson构建延时队列并实现注解式消费
目录 一、序言二、延迟队列实现1、Redisson延时消息监听注解和消息体2、Redisson延时消息发布器3、Redisson延时消息监听处理器 三、测试用例四、结语 一、序言 两个月前接了一个4万的私活,做一个线上商城小程序,在交易过程中不可避免的一个问题就是用户…...
RAG是否被取代(缓存增强生成-CAG)吗?
引言: 本文深入研究一种名为缓存增强生成(CAG)的新技术如何工作并减少/消除检索增强生成(RAG)弱点和瓶颈。 LLMs 可以根据输入给他的信息给出对应的输出,但是这样的工作方式很快就不能满足应用的需要: 因…...
MiniMax:人工智能领域的创新先锋
MiniMax:人工智能领域的创新先锋 在人工智能领域,MiniMax正以其强大的技术实力和创新的模型架构,成为全球关注的焦点。作为一家成立于2021年12月的通用人工智能科技公司,MiniMax专注于开发多模态、万亿参数的MoE(Mixt…...
pytorch基于GloVe实现的词嵌入
PyTorch 实现 GloVe(Global Vectors for Word Representation) 的完整代码,使用 中文语料 进行训练,包括 共现矩阵构建、模型定义、训练和测试。 1. GloVe 介绍 基于词的共现信息(不像 Word2Vec 使用滑动窗口预测&…...
Unity实现按键设置功能代码
一、前言 最近在学习unity2D,想做一个横版过关游戏,需要按键设置功能,让用户可以自定义方向键与攻击键等。 自己写了一个,总结如下。 二、界面效果图 这个是一个csv文件,准备第一列是中文按键说明,第二列…...
C++ 入门速通-第3章【黑马】
内容来源于:黑马 集成开发环境:CLion 先前学习完了C第1章的内容: C 入门速通-第1章【黑马】-CSDN博客 C 入门速通-第2章【黑马】-CSDN博客 下面继续学习第3章: 数组: 字符数组: 多维数组: …...
JavaScript 中的 CSS 与页面响应式设计
JavaScript 中的 CSS 与页面响应式设计 JavaScript 中的 CSS 与页面响应式设计1. 引言2. JavaScript 与 CSS 的基本概念2.1 CSS 的作用2.2 JavaScript 的作用3. 动态控制样式:JavaScript 修改 CSS 的方法3.1 使用 `document.styleSheets` API3.2 使用 `classList` 修改类3.3 使…...
100.3 AI量化面试题:解释配对交易(Pairs Trading)的原理,并说明如何选择配对股票以及设计交易信号
目录 0. 承前1. 配对交易基本原理1.1 什么是配对交易1.2 基本假设 2. 配对选择方法2.1 相关性分析2.2 协整性检验 3. 价差计算方法3.1 简单价格比率3.2 回归系数法 4. 交易信号设计4.1 标准差方法4.2 动态阈值方法 5. 风险管理5.1 止损设计5.2 仓位管理 6. 策略评估6.1 回测框架…...
[SAP ABAP] Debug Skill
SAP ABAP Debug相关资料 [SAP ABAP] DEBUG ABAP程序中的循环语句 [SAP ABAP] 静态断点的使用 [SAP ABAP] 在ABAP Debugger调试器中设置断点 [SAP ABAP] SE11 / SE16N 修改标准表(慎用)...
WSL2中安装的ubuntu开启与关闭探讨
1. PC开机后,查询wsl状态 在cmd或者powersell中输入 wsl -l -vNAME STATE VERSION * Ubuntu Stopped 22. 从windows访问WSL2 wsl -l -vNAME STATE VERSION * Ubuntu Stopped 23. 在ubuntu中打开一个工作区后…...
走向基于大语言模型的新一代推荐系统:综述与展望
HightLight 论文题目:Towards Next-Generation LLM-based Recommender Systems: A Survey and Beyond作者机构:吉林大学、香港理工大学、悉尼科技大学、Meta AI论文地址: https://arxiv.org/abs/2410.1974 基于大语言模型的下一代推荐系统&…...
【深度分析】DeepSeek 遭暴力破解,攻击 IP 均来自美国,造成影响有多大?有哪些好的防御措施?
技术铁幕下的暗战:当算力博弈演变为代码战争 一场针对中国AI独角兽的全球首例国家级密码爆破,揭开了数字时代技术博弈的残酷真相。DeepSeek服务器日志中持续跳动的美国IP地址,不仅是网络攻击的地理坐标,更是技术霸权对新兴挑战者的…...
双指针算法思想——OJ例题扩展算法解析思路
大家好!上一期我发布了关于双指针的OJ平台上的典型例题思路解析,基于上一期的内容,我们这一期从其中内容扩展出来相似例题进行剖析和运用,一起来试一下吧! 目录 一、 基于移动零的举一反三 题一:27. 移除…...
初始Linux(7):认识进程(下)
1. 进程优先级 cpu 资源分配的先后顺序,就是指进程的优先权( priority )。 优先权高的进程有优先执行权利。配置进程优先权对多任务环境的 linux 很有用,可以改善系统性能。 还可以把进程运行到指定的CPU 上,这样一来…...
人工智能第2章-知识点与学习笔记
结合教材2.1节,阐述什么是知识、知识的特性,以及知识的表示。人工智能最早应用的两种逻辑是什么?阐述你对这两种逻辑表示的内涵理解。什么谓词,什么是谓词逻辑,什么是谓词公式。谈谈你对谓词逻辑中的量词的理解。阐述谓词公式的解…...
Kotlin 协程 与 Java 虚拟线程对比测试(娱乐性质,请勿严谨看待本次测试)
起因 昨天在群里聊到虚拟线程的执行效率问题的时候虽然最后的结论是虚拟线程在针对IO密集型任务时具有很大的优势。但是讨论到虚拟线程和Kotlin 的协程的优势对比的话,这时候所有人都沉默了。所以有了本次的测试 提前声明:本次测试是不严谨的࿰…...
C++中的拷贝构造器(Copy Constructor)
在C中,拷贝构造器(Copy Constructor)是一种特殊的构造函数,用于创建一个新对象,该对象是另一个同类型对象的副本。当使用一个已存在的对象来初始化一个新对象时,拷贝构造器会被调用。 拷贝构造器的定义 拷…...
Spring Boot项目如何使用MyBatis实现分页查询
写在前面:大家好!我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正,感谢大家的不吝赐教。我的唯一博客更新地址是:https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油,冲鸭&#x…...
独立开发经验谈:如何借助 AI 辅助产品 UI 设计
我在业余时间开发了一款自己的独立产品:升讯威在线客服与营销系统。陆陆续续开发了几年,从一开始的偶有用户尝试,到如今线上环境和私有化部署均有了越来越多的稳定用户,在这个过程中,我也积累了不少如何开发运营一款独…...
笔灵ai写作技术浅析(三):深度学习
笔灵AI写作的深度学习技术主要基于Transformer架构,尤其是GPT(Generative Pre-trained Transformer)系列模型。 1. Transformer架构 Transformer架构由Vaswani等人在2017年提出,是GPT系列模型的基础。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),完全依赖自…...
https数字签名手动验签
以bing.com 为例 1. CA 层级的基本概念 CA 层级是一种树状结构,由多个层级的 CA 组成。每个 CA 负责为其下一层级的实体(如子 CA 或终端实体)颁发证书。层级结构的顶端是 根 CA(Root CA),它是整个 PKI 体…...
为什么LabVIEW适合软硬件结合的项目?
LabVIEW是一种基于图形化编程的开发平台,广泛应用于软硬件结合的项目中。其强大的硬件接口支持、实时数据采集能力、并行处理能力和直观的用户界面,使得它成为工业控制、仪器仪表、自动化测试等领域中软硬件系统集成的理想选择。LabVIEW的设计哲学强调模…...
C# 操作符重载对象详解
.NET学习资料 .NET学习资料 .NET学习资料 一、操作符重载的概念 在 C# 中,操作符重载允许我们为自定义的类或结构体定义操作符的行为。通常,我们熟悉的操作符,如加法()、减法(-)、乘法&#…...
git:恢复纯版本库
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…...
java异常处理——try catch finally
单个异常处理 1.当try里的代码发生了catch里指定类型的异常之后,才会执行catch里的代码,程序正常执行到结尾 2.如果try里的代码发生了非catch指定类型的异常,则会强制停止程序,报错 3.finally修饰的代码一定会执行,除…...
【架构面试】二、消息队列和MySQL和Redis
MQ MQ消息中间件 问题引出与MQ作用 常见面试问题:面试官常针对项目中使用MQ技术的候选人提问,如如何确保消息不丢失,该问题可考察候选人技术能力。MQ应用场景及作用:以京东系统下单扣减京豆为例,MQ用于交易服和京豆服…...
A4988一款常用的步进电机驱动芯片
A4988 是一款常用的步进电机驱动芯片,广泛应用于 3D 打印机、CNC 机床和小型自动化设备中。它可以驱动多种类型的步进电机,但需要根据电机的参数(如电压、电流、相数等)进行合理配置。 一、A4988 的主要特性 驱动能力:…...
TypeScript语言的语法糖
TypeScript语言的语法糖 TypeScript作为一种由微软开发的开源编程语言,它在JavaScript的基础上添加了一些强类型的特性,使得开发者能够更好地进行大型应用程序的构建和维护。在TypeScript中,不仅包含了静态类型、接口、枚举等强大的特性&…...
A星算法两元障碍物矩阵转化为rrt算法四元障碍物矩阵
对于a星算法obstacle所表示的障碍物障碍物信息,每行表示一个障碍物的坐标,例如2 , 3; % 第一个障碍物在第二行第三列,也就是边长为1的正方形障碍物右上角横坐标是2,纵坐标为3,障碍物的宽度和高度始终为1.在rrt路径规划…...
什么情况下,C#需要手动进行资源分配和释放?什么又是非托管资源?
扩展:如何使用C#的using语句释放资源?什么是IDisposable接口?与垃圾回收有什么关系?-CSDN博客 托管资源的回收有GC自动触发,而非托管资源需要手动释放。 在 C# 中,非托管资源是指那些不由 CLR(…...
【最长上升子序列Ⅱ——树状数组,二分+DP,纯DP】
题目 代码(只给出树状数组的) #include <bits/stdc.h> using namespace std; const int N 1e510; int n, m; int a[N], b[N], f[N], tr[N]; //f[i]表示以a[i]为尾的LIS的最大长度 void init() {sort(b1, bn1);m unique(b1, bn1) - b - 1;for(in…...
day37|完全背包基础+leetcode 518.零钱兑换II ,377.组合总和II
完全背包理论基础 完全背包与01背包的不同在于01背包的不同物品每个都只可以使用一次,但是完全背包的不同物品可以使用无数次 在01背包理论基础中,为了使得物品只被使用一次,我们采取倒序遍历来控制 回顾:>> for(int j …...
【VM】VirtualBox安装ubuntu22.04虚拟机
阅读本文之前,请先根据 安装virtualbox 教程安装virtulbox虚拟机软件。 1.下载Ubuntu系统镜像 打开阿里云的镜像站点:https://developer.aliyun.com/mirror/ 找到如图所示位置,选择Ubuntu 22.04.3(destop-amd64)系统 Ubuntu 22.04.3(desto…...
Qt事件处理:理解处理器、过滤器与事件系统
1. 事件 事件 是一个描述应用程序中、发生的某些事情的对象。 在 Qt 中,所有事件都继承自 QEvent ,并且每个事件都有特定的标识符,如:Qt::MouseButtonPress 代表鼠标按下事件。 每个事件对象包含该事件的所有相关信息ÿ…...
DeepSeek 云端部署,释放无限 AI 潜力!
1.简介 目前,OpenAI、Anthropic、Google 等公司的大型语言模型(LLM)已广泛应用于商业和私人领域。自 ChatGPT 推出以来,与 AI 的对话变得司空见惯,对我而言没有 LLM 几乎无法工作。 国产模型「DeepSeek-R1」的性能与…...
【论文复现】基于Otsu方法的多阈值图像分割改进鲸鱼优化算法
目录 1.摘要2.鲸鱼优化算法WOA原理3.改进策略4.结果展示5.参考文献6.代码获取 1.摘要 本文提出了一种基于Otsu方法的多阈值图像分割改进鲸鱼优化算法(RAV-WOA)。RAV-WOA算法能够在分割灰度图像和彩色图像时,自动选择最优阈值,并确…...
Hive之数据定义DDL
Hive之数据定义DDL 文章目录 Hive之数据定义DDL写在前面创建数据库查询数据库显示数据库查看数据库详情切换当前数据库 修改数据库删除数据库创建表管理表(内部表)外部表管理表与外部表的互相转换 修改表重命名表增加、修改和删除表分区增加/修改/替换列信息 删除表 写在前面 …...
Golang 应用的 Docker 部署方式介绍及使用详解
本文将介绍如何使用 Docker 部署一个基于 Go 语言的后台服务应用 godco,并介绍如何配置 MongoDB 数据库容器的连接,确保应用能够成功启动并连接到容器方式部署的mongoDB数据库。 前提条件 1.已安装 Docker/Podman 2.已安装 MongoDB 数据库容器ÿ…...
SuccessFactors OData OAuth with SAP IAS-generated SAML assertion
导读 IAS:一句话说明白。SAP相关的系统可以通过IAS登录,只要IAS登录,其他系统免密登录。 作者:vivi,来源:osinnovation 上图有三个角色:brower,就是自己的浏览器,sp就是我们的目标…...
vue入门到实战 三
目录 3.1 v-bind 3.1.1 v-bind指令用法 编辑3.1.2 使用v-bind绑定class 3.1.3 使用v-bind绑定style 3.2.1 v-if指令 3.2.1 v-if指令 3.2.2 v-show指令 3.3 列表渲染指令v-for 3.3.1 基本用法 3.3.2 数组更新 3.3.3 过滤与排序 3.4 事件处理 3.4.1 使用v-on指令…...
音视频入门基础:RTP专题(7)——RTP协议简介
一、引言 本文对RTP协议进行简介。在简介之前,请各位先下载RTP的官方文档《RFC 3550》。该文档总共有89页,本文下面所说的“页数”是指在pdf阅读器中显示的页数: 二、RTP协议简介 根据《RFC 3550》第5页,实时传输协议(…...
06-机器学习-数据预处理
数据清洗 数据清洗是数据预处理的核心步骤,旨在修正或移除数据集中的错误、不完整、重复或不一致的部分,为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例: 一、数据清洗的核心任务 问题类型表现示例影响缺失值数值…...
《逆向工程核心原理》第三~五章知识整理
查看上一章节内容《逆向工程核心原理》第一~二章知识整理 对应《逆向工程核心原理》第三章到第五章内容 小端序标记法 字节序 多字节数据在计算机内存中存放的字节顺序分为小端序和大端序两大类 大端序与小端序 BYTE b 0x12; WORD w 0x1234; DWORD dw 0x12345678; cha…...
影视文件大数据高速分发方案
在当今的数字时代,影视行业的内容创作和传播方式经历了翻天覆地的变化。随着4K、8K高清视频的普及,以及虚拟现实(VR)和增强现实(AR)技术的发展,影视文件的数据量正以前所未有的速度增长。这就要求行业内的参与者必须拥有高效的大数据传输解决…...
使用朴素贝叶斯对散点数据进行分类
本文将通过一个具体的例子,展示如何使用 Python 和 scikit-learn 库中的 GaussianNB 模型,对二维散点数据进行分类,并可视化分类结果。 1. 数据准备 假设我们有两个类别的二维散点数据,每个类别包含若干个点。我们将这些点分别存…...
pytorch线性回归模型预测房价例子
人工智能例子汇总:AI常见的算法和例子-CSDN博客 import torch import torch.nn as nn import torch.optim as optim import numpy as np# 1. 创建线性回归模型类 class LinearRegressionModel(nn.Module):def __init__(self):super(LinearRegressionModel, self).…...
微信登录模块封装
文章目录 1.资质申请2.combinations-wx-login-starter1.目录结构2.pom.xml 引入okhttp依赖3.WxLoginProperties.java 属性配置4.WxLoginUtil.java 后端通过 code 获取 access_token的工具类5.WxLoginAutoConfiguration.java 自动配置类6.spring.factories 激活自动配置类 3.com…...
C++运算符重载
C的运算符重载:使对象的运算表现得和编译器内置类型一样 以复数类为例: #include <iostream> using namespace std;class CComplex { public:CComplex(int r 0, int i 0): mreal(r), mimage(i){}// 指导编译器怎么做CComplex类对象的加法操作CC…...
pandas(三)Series使用
一、Series基础使用 import pandasd {x:100,y:200,z:300} s1 pandas.Series(d) #将dict转化为Series print(s1)print("") l1 [1, 2, 3] l2 [a, b, c] s2 pandas.Series(l1, indexl2) #list转为Series print(s2)print("") s3 pandas.Series([11…...