硬件工程师笔记——二极管Multisim电路仿真实验汇总
目录
1 二极管基础知识
1.1 工作原理
1.2 二极管的结构
1.3 PN结的形成
1.4 二极管的工作原理详解
正向偏置
反向偏置
multisim使用说明链接
2 二极管特性实验
2.1 二极管加正向电压
2.2 二极管加反向电压
2.3 二极管两端的电阻
2.4 交流电下二级管工作
2.5 二极管伏安特性
仿真实验链接
3 二极管应用
3.1 二极管整流
二极管半波整流
二极管全波整流
仿真实验链接
3.2 二极管限幅
二极管单向限幅
二极管双向限幅
仿真实验链接
3.3 二极管钳位
二极管波峰钳位
二极管波谷钳位
仿真实验链接
3.4 二极管振幅调制解调
二极管振幅调制
振幅调制(AM)的概念
二极管振幅调制
4.2 二极管振幅解调
振幅解调(AM 解调)的概念
仿真实验链接
3.5 二极管构成门电路
5.1 二极管与门AND Gate
5.2 二极管或门OR Gate
仿真实验链接
3.6 二极管稳压
稳压二极管的工作原理
(一)反向击穿特性
雪崩击穿(Avalanche Breakdown)
(二)电路连接
稳压二极管的特性
动态电阻(rZ)
稳压二极管
编辑
仿真实验链接
3.7 二极管发光
发光二极管的工作原理
(一)半导体材料
(二)发光机制
间接带隙材料
发光二极管特性
(一)正向特性
(二)反向特性
(三)光特性
发光二极管
仿真实验链接
3.8 二极管光电控制
硬件工程师笔试面试相关文章链接
1 二极管基础知识
二极管是一种具有单向导电性的半导体器件
1.1 工作原理
二极管是一种具有单向导电性的半导体器件,其工作原理基于PN结的特性。
1.2 二极管的结构
N型半导体 P型半导体
二极管的基本结构是一个PN结,由P型半导体和N型半导体组成。P型半导体中掺杂了三价元素(如硼),产生空穴作为多数载流子;N型半导体中掺杂了五价元素(如磷),产生自由电子作为多数载流子。当P型和N型半导体结合时,形成PN结。
1.3 PN结的形成
当P型和N型半导体接触时,会发生以下过程:
扩散运动:P型半导体中的空穴会向N型半导体扩散,N型半导体中的自由电子会向P型半导体扩散。
形成耗尽区:扩散过程中,空穴和自由电子在接触面附近复合,形成一个没有自由载流子的区域,称为耗尽区(或阻挡层)。
内建电场:耗尽区中存在一个内建电场,方向从N区指向P区,阻止进一步的扩散运动。
1.4 二极管的工作原理详解
二极管的工作原理基于PN结的单向导电性,即在正向偏置时导通,在反向偏置时截止。
正向偏置
定义:当二极管的P区接电源正极,N区接电源负极时,称为正向偏置。
过程:正向偏置时,外加电场的方向与内建电场相反,削弱了内建电场的作用,使耗尽区变窄。此时,P区的空穴和N区的自由电子在电场作用下向对方移动,形成电流。
结果:正向偏置时,二极管导通,电流可以顺利通过。但需要克服一定的势垒电压(硅二极管约为0.7V,锗二极管约为0.3V),称为正向导通电压。
反向偏置
定义:当二极管的P区接电源负极,N区接电源正极时,称为反向偏置。
过程:反向偏置时,外加电场的方向与内建电场相同,增强了内建电场的作用,使耗尽区变宽。此时,P区的空穴和N区的自由电子被推向各自一侧,难以形成电流。
结果:反向偏置时,二极管截止,电流几乎为零。但当反向电压超过一定值(称为反向击穿电压)时,二极管会发生击穿,电流急剧增加,可能导致二极管损坏。
multisim使用说明链接
Multisim14使用教程详尽版--(2025最新版)-CSDN博客https://blog.csdn.net/XU157303764/article/details/147197406?spm=1011.2415.3001.5331
2 二极管特性实验
二极管的伏安特性描述了其电压与电流之间的关系,下图所示为二极管理论伏安特性曲线
正向特性:在正向偏置时,当电压超过正向导通电压(0.7V或0.3V)后,电流迅速增加,呈现低阻态。
反向特性:在反向偏置时,电流非常小(称为反向饱和电流),直到反向电压达到反向击穿电压时,电流急剧增加。
2.1 二极管加正向电压
R2:限流
说明:二极管两端加正向偏置电压时,二极管两端电压为二级管正向导通电压(0.7V或0.3V),呈现低阻态。
2.2 二极管加反向电压
R2:限流
说明:二极管两端加反向偏置电压时,二极管两端电压为电源电压,呈现高阻态。
2.3 二极管两端的电阻
说明:正接时阻值为10.3G欧姆,正接时阻值为29.77M欧姆均具有很高阻值
2.4 交流电下二级管工作
R2:限流
说明:红线表示二极管两端电压,粉红色线表示限流电阻两端电压
红线:符合二极管的电气特性,详细解释如下
当正向导通电压>=输入正弦波>0V时,二极管两端电压=输入正弦电压
当输入正弦波>正向导通电压时,二极管两端电压=正向导通电压
当输入正弦波<0V时,二极管两端电压=输入正弦电压的反向电压
蓝线:受二极管影响
当正向导通电压>=输入正弦波>0V时,电阻电压+二极管电压=输入正弦电压
当输入正弦波>正向导通电压时,电阻电压=电源电压-二极管为正向导通电压
当输入正弦波<0V时,电阻电压=0
2.5 二极管伏安特性
说明:输入电压范围-5V~5V
当0V>输入电压>-5V时,二极管为高阻态,电流很小
当正向导通电压>=输入电压>0V时,电流很小,且缓慢增加
当输入电压>正向导通电压时,二极管为低阻态,电流快速增加
仿真实验链接
https://download.csdn.net/download/XU157303764/90856022
3 二极管应用
3.1 二极管整流
二极管的单向导电性使其能够将交流电(AC)转换为直流电(DC)。当交流电的正半周时,二极管导通,电流通过;当交流电的负半周时,二极管截止,电流被阻断。
二极管半波整流
说明:绿色表示电源电压,紫色表示R2电阻两端电压
紫色线:
当正向导通电压>=输入正弦波>0V时,电阻电压+二极管电压=输入正弦电压
当输入正弦波>正向导通电压时,电阻电压=电源电压-二极管为正向导通电压
当输入正弦波<0V时,电阻电压=0
二极管全波整流
说明:输入电源为两个幅值和频率相同,相位相差120度的正弦波,两个电源输出直接与二极管串联
输出波形(R2两端):等同于将两个相位相差120度的半波整流波形进行叠加。
仿真实验链接
https://download.csdn.net/download/XU157303764/90856194
3.2 二极管限幅
二极管单向限幅
说明:绿色表示电源输入,橙色表示单向限幅输出波形
关键电路:二极管(反向)与5V直流电串联,然后和R2并联
分析:
当0V>输入正弦电压>-10V时,关键电路电压=电源电压,其中输入正弦电压<-5V-正向导通电压时,关键电路电压会稍微衰减
当正向导通电压+5V>=输入正弦电压>0V时,关键电路短路,输出电压=电源电压
当输入正弦电压>正向导通电压时+5V时,关键电路电压=直流电源5V电势+
正向导通电压
二极管双向限幅
说明:红色表示电源输入,蓝色表示双向限幅输出波形
关键电路:两个二极管分别(反向)与两个5V直流电串联,然后和R2并联
分析:同上
当正向导通电压时+5V>输入正弦电压>-正向导通电压时-5V时,关键电路电压=电源电压,其中,D1和D2支路可以等效短路
当输入正弦电压>-正向导通电压时-5V时,关键电路电压=-直流电源5V电势+-正向导通电压
当输入正弦电压>正向导通电压时+5V时,关键电路电压=直流电源5V电势+
正向导通电压
仿真实验链接
https://download.csdn.net/download/XU157303764/90856127
3.3 二极管钳位
钳位电路概念:
钳位电路(clamping circuit)是一种将脉冲信号的某一部分固定在指定电压值上,并保持原波形形状不变的电路。它通过控制信号的幅值,将信号限制在特定范围内,从而确保输出信号的幅值不会超出设定的上下限。
工作原理
钳位电路的工作原理基于二极管的导通特性和电容的充放电过程。以常见的二极管钳位电路为例:
正钳位电路:当输入信号的负半周期到来时,二极管正向偏置导通,电容充电至输入信号的峰值减去二极管的正向导通电压(通常为0.7V)。在输入信号的正半周期,二极管反向偏置截止,电容通过负载电阻放电,从而使输出信号的顶部被钳制在某个固定电平。
负钳位电路:与正钳位电路相反,当输入信号的正半周期到来时,二极管正向偏置导通,电容充电。在输入信号的负半周期,二极管反向偏置截止,电容放电,从而使输出信号的底部被钳制在某个固定电平。
二极管波峰钳位
功能:二极管正钳位电路将输出信号的顶部限制在10V左右。
说明:红色为输入波形,蓝色为输出波形
分析:
二极管波峰钳位电路原理解释(右图加二极管)
输出波形向上平移5V左右
解释:
叠加定理:只保留一个电源作用,根据基尔霍夫电压定律(KVL)计算电路电压分布;电压源看作短路,电流源看作开路。
当电源V1单独工作时:D1与R3并联
当输入电压V1为高电平(5V)时:C1充电,D1和R3分压较小的正向电压
当输入电压V1为低电平(0V)时:C1放电,D1和R3分压较小的反向电压
当电源V3单独工作时:C1和R3并联,R3分压分5V
所以,输出电阻R3两端的电压向上平移5V左右
二极管波谷钳位
功能:将输入幅值为5V,频率为100HZ的矩形脉冲信号,通过负钳位电路将输出信号的底部限制在-5V左右。
说明:红色表示输入波形,蓝色表示输出波形
分析:
二极管波谷钳位电路原理解释(右图加二极管)
输出电阻R2两端电压波形向下平移5V左右
依据:二极管的单相导通性,电容的充放电
当输入电压V1为高电平(5V)时:C1充电,D1导通,D1和R1之间的电压几乎为0V
当输入电压V1为低电平(0V)时:C1放电,D1截止,D1和R1之间的电压几乎为-5V
仿真实验链接
https://download.csdn.net/download/XU157303764/90856023
3.4 二极管振幅调制解调
二极管振幅调制
左图表示:低频信号和高频载波信号
右图表示:蓝色表示混合信号,橙色表示调制信号
振幅调制(AM)的概念
振幅调制是一种将低频信号(如语音、音乐等)的幅度信息加载到高频载波信号的幅度上的过程。在振幅调制中,载波信号的幅度会随着低频信号的幅度变化而变化。
(一)调制过程
基本原理
以一个简单的正弦波低频信号 m(t) 和一个高频载波信号 c(t) 为例。
低频信号可以表示为m(t)=Amsin(2πfmt),其中 Am是低频信号的振幅,fm是低频信号的频率。
高频载波信号可以表示为c(t)=Acsin(2πfct),其中Ac是载波信号的振幅,fc是载波信号的频率,且fc远大于fm。
振幅调制后的信号s(t) 可以表示为 s(t)=[Ac+k⋅m(t)]sin(2πfct)。这里 k 是调制系数,它决定了低频信号对载波信号幅度调制的深度。当 k=1 时,调制后的信号为 s(t)=[Ac+Amsin(2πfmt)]sin(2πfct)。
频谱特性
振幅调制信号的频谱由载波频率fc和两个边带频率组成。边带频率分别是 fc+fm(上边带)和 fc−fm(下边带)。例如,如果载波频率是 1MHz,低频信号频率是 1kHz,那么调制后的信号频谱中心在 1MHz,上边带频率是 1.001MHz,下边带频率是 0.999MHz。这种频谱特性使得振幅调制信号可以通过滤波等手段进行分离和处理。
二极管振幅调制
二极管振幅调制是利用二极管的非线性特性来实现振幅调制的一种方法。
基本电路结构
一个典型的二极管振幅调制电路包括一个二极管、一个低频信号源、一个高频载波信号源和一个耦合电容。低频信号源和高频载波信号源通过电路连接到二极管的两端,耦合电容的作用是隔离直流分量,只让交流信号通过。
工作原理
当低频信号和高频载波信号同时加到二极管两端时,二极管的非线性伏安特性会使得输出信号的幅度发生变化。二极管的伏安特性可以用 i=Is(ev/nVT−1) 来近似表示,其中i是二极管电流,Is是反向饱和电流,v 是二极管两端电压,n 是理想因子,VT是热电压。
在低频信号和高频载波信号的共同作用下,二极管两端的电压会随着低频信号的变化而变化。当低频信号幅度较大时,二极管的导通程度会相应改变,从而改变输出信号的幅度。这种变化反映了低频信号的幅度信息,实现了振幅调制。
电路仿真如下图所示:
蓝色表示混合信号,橙色表示调制信号
4.2 二极管振幅解调
振幅解调(AM 解调)的概念
振幅解调是将调制在高频载波信号幅度上的低频信号还原出来的过程。其目的是从振幅调制信号中提取出原始的低频信号。
基本原理
振幅解调的核心是将调制信号 s(t)=[Ac+k⋅m(t)]sin(2πfct) 中的低频信号 m(t) 提取出来。这可以通过对调制信号进行包络检波来实现。包络检波是利用调制信号的包络(即信号幅度的变化规律)来提取低频信号。
频谱特性
在解调过程中,调制信号的频谱经过处理后,高频载波信号和边带信号会被滤除,只剩下低频信号的频谱。例如,对于前面提到的振幅调制信号,经过解调后,只剩下频率为 fm的低频信号。
四、二极管振幅解调
二极管振幅解调是利用二极管的单向导电性来实现振幅解调的一种方法。
(一)电路组成
基本电路结构
一个简单的二极管振幅解调电路包括一个二极管、一个电容和一个电阻。调制信号通过电路连接到二极管的阳极,二极管的阴极通过电容和电阻接地。电容的作用是平滑输出信号,电阻的作用是提供放电回路。
工作原理
当调制信号输入到二极管时,二极管会在正半周导通。在导通期间,二极管将调制信号的正半周信号传递到电容上,电容充电。当调制信号进入负半周时,二极管截止,电容通过电阻放电。由于电容的充放电作用,输出信号的幅度会随着调制信号的包络变化而变化。
经过一段时间后,电容上的电压会稳定在一个与调制信号包络成正比的值。这个电压值反映了原始低频信号的幅度信息,从而实现了振幅解调。
电路仿真如下图所示:
仿真实验链接
https://download.csdn.net/download/XU157303764/90856125
3.5 二极管构成门电路
二极管可以用来构建简单的逻辑门电路,如与门(AND)和或门(OR)。这些电路利用了二极管的单向导电性(正向导通,反向截止)来实现逻辑运算。
5.1 二极管与门AND Gate
二极管与门电路是一种简单的数字逻辑电路,只有当所有输入均为高电平时,输出才为高电平。
(一)电路结构
基本组成
二极管与门通常由两个或多个二极管和一个电阻组成。二极管的阴极连接在一起,形成一个公共节点,然后通过电阻连接到电源正极(Vcc)。所有二极管的阳极分别连接到输入信号端。
电路的输出端从公共节点引出。
(二)工作原理
输入与输出关系
输入信号:假设输入信号为高电平(Vcc)或低电平(0V)。
输出信号:只有当所有输入信号均为高电平时,输出才为高电平;否则,输出为低电平。
电路分析
所有输入均为高电平:此时所有二极管均处于反向偏置状态(截止),电源电压通过电阻向输出端供电,输出为高电平。
至少一个输入为低电平:假设某个输入为低电平(0V),则对应的二极管正向导通,将输出端拉低至接近0V,输出为低电平。
电路仿真图如下图所示:
闭合一个开关,即一个二极管导通,输出低电平
闭合两个开关,即两个二极管均导通,输出高电平
断开两个开关,即没有二极管导通,输出低电平
5.2 二极管或门OR Gate
二极管或门电路是一种简单的数字逻辑电路,只要有一个输入为高电平,输出就为高电平。
(一)电路结构
基本组成
二极管或门通常由两个或多个二极管和一个电阻组成。二极管的阳极连接在一起,形成一个公共节点,然后通过电阻连接到电源负极(GND)。所有二极管的阴极分别连接到输入信号端。
电路的输出端从公共节点引出。
(二)工作原理
输入与输出关系
输入信号:假设输入信号为高电平(Vcc)或低电平(0V)。
输出信号:只要有一个输入信号为高电平,输出就为高电平;只有当所有输入均为低电平时,输出才为低电平。
电路分析
至少一个输入为高电平:假设某个输入为高电平(Vcc),则对应的二极管正向导通,将输出端拉高至接近Vcc,输出为高电平。
所有输入均为低电平:此时所有二极管均处于反向偏置状态(截止),输出端通过电阻接地,输出为低电平。
电路仿真图如下图所示:
断开两个开关,即没有二极管导通,输出低电平
闭合一个开关,即一个二极管导通,输出高电平
闭合两个开关,即两个二极管导通,输出高电平
仿真实验链接
https://download.csdn.net/download/XU157303764/90856197
3.6 二极管稳压
稳压二极管(Zener Diode)是一种特殊的半导体二极管,主要用于电压稳定和参考电压源。它通过利用二极管的反向击穿特性来实现稳定的电压输出。
稳压二极管的工作原理
稳压二极管的核心特性是其反向击穿特性。与普通二极管不同,稳压二极管在反向偏置时,会在特定的电压下发生击穿,但不会损坏。
(一)反向击穿特性
齐纳击穿(Zener Breakdown)
当反向电压达到一定值时,二极管的PN结会发生击穿。这种击穿主要是由于量子力学中的隧道效应引起的,通常发生在较薄的PN结中。齐纳击穿的电压称为齐纳电压(VZ),一般在2V到6V之间。
雪崩击穿(Avalanche Breakdown)
当反向电压较高时,PN结中的少数载流子获得足够的能量,撞击价带中的电子,使其跃迁到导带,从而产生雪崩效应。雪崩击穿通常发生在反向电压较高时,一般在6V以上。
稳压原理
在反向击穿区,稳压二极管的电流可以在很大范围内变化,但其两端电压基本保持不变。这种特性使得稳压二极管能够在电路中提供稳定的电压。
(二)电路连接
稳压二极管通常反向连接到电路中,即其阴极连接到电源正极,阳极连接到电源负极。为了限制电流,通常需要串联一个限流电阻。
稳压二极管的特性
伏安特性
在正向偏置时,稳压二极管的特性与普通二极管类似,具有较低的正向导通电压(约0.6V到0.7V)。
在反向偏置时,当电压达到齐纳电压或雪崩电压时,电流会急剧增加,但电压基本保持不变。
动态电阻(rZ)
动态电阻是指稳压二极管在反向击穿区的电阻。其值越小,稳压性能越好。通常,rZ的值在几欧姆到几十欧姆之间。
稳压范围
稳压二极管的稳压范围是指在一定电流范围内,其两端电压能够保持稳定的区间。通常,稳压二极管的稳压范围较宽,能够适应不同的负载条件。
稳压二极管
ZPD5.1二极管可以将两端电压稳定在5.1V
如上图所示,稳压二极管正接,两端电压为二极管导通电压;稳压二极管反接,两端电压为稳压二极管击穿稳定电压。
仿真实验链接
https://download.csdn.net/download/XU157303764/90856198
3.7 二极管发光
发光二极管(Light Emitting Diode,简称LED)是一种能够将电能转化为光能的半导体器件。
发光二极管的工作原理
发光二极管的核心原理是基于半导体的电致发光效应。
(一)半导体材料
PN结结构
发光二极管由半导体材料构成,通常采用PN结结构。P型半导体中有多余的空穴,N型半导体中有多余的电子。当P型和N型半导体结合时,形成PN结。
复合发光
当外加正向电压时,电子和空穴在PN结处复合,释放出能量。如果这种能量以光子的形式释放,就会产生发光现象。发光的颜色取决于半导体材料的禁带宽度。
(二)发光机制
直接带隙材料
大多数发光二极管采用直接带隙半导体材料(如砷化镓(GaAs)、磷化镓(GaP)、氮化镓(GaN)等)。在这些材料中,电子和空穴复合时,能量直接以光子的形式释放,发光效率较高。
间接带隙材料
间接带隙材料(如硅、锗)中,电子和空穴复合时,能量通常以声子的形式释放,发光效率较低。因此,间接带隙材料不适合用于发光二极管。
发光二极管特性
(一)正向特性
正向导通电压
发光二极管在正向偏置时,具有一定的导通电压。不同颜色的LED导通电压不同:
红光LED:约1.8V到2.2V。
绿光LED:约2.0V到2.5V。
蓝光LED:约3.0V到3.5V。
白光LED:约3.0V到3.5V。
正向电流
发光二极管的亮度与正向电流成正比。通常,正向电流范围为几毫安到几十毫安。例如,常见的小功率LED的正向电流为20mA。
(二)反向特性
反向耐压
发光二极管的反向耐压较低,通常在几伏到十几伏之间。如果反向电压超过其耐压值,LED可能会被击穿损坏。
反向漏电流
在正常工作条件下,反向漏电流非常小,通常可以忽略不计。
(三)光特性
发光强度
发光强度通常用流明(lm)或坎德拉(cd)表示。发光强度与正向电流成正比,电流越大,发光强度越高。
发光角度
发光角度是指LED发光的覆盖范围。不同类型的LED发光角度不同,从几度到180度都有。例如,指示灯型LED发光角度较小,而照明用LED发光角度较大。
发光二极管
如上图所示,输入正弦波形,使用三极管和电阻组成发光二极管电路,可以实现发光二极管同输入波形频率的闪烁频率
仿真实验链接
https://download.csdn.net/download/XU157303764/90856198
3.8 二极管光电控制
如上图所示为二极管的光电控制电路,其中最关键的部分是OPS665,
OPS665是一种由TT Electronics/Optek Technology生产的红外发射二极管和NPN硅光电晶体管组成的匹配对。
如上图所示,可以通过开关J1的导通来间接的控制X1灯的亮灭状态。
硬件工程师笔试面试相关文章链接
1、硬件工程师笔面试真题汇总(2025版本)_硬件工程师面试题-CSDN博客https://blog.csdn.net/XU157303764/article/details/140742900?spm=1011.2415.3001.53312、硬件工程师笔试面试汇总_硬件工程师面试题-CSDN博客
https://blog.csdn.net/XU157303764/article/details/141904858?spm=1011.2415.3001.5331硬件工程师笔试面试学习汇总——器件篇目录_硬件工程师笔试基础知识-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142316204?spm=1011.2415.3001.5331硬件工程师笔试面试知识器件篇——电阻_硬件工程师笔试基础知识-CSDN博客
https://blog.csdn.net/XU157303764/article/details/141874163?spm=1011.2415.3001.5331硬件工程师笔试面试知识器件篇——电容-CSDN博客
https://blog.csdn.net/XU157303764/article/details/141899789?spm=1011.2415.3001.5331硬件工程师笔试面试知识器件篇——电感_硬件工程师电感-CSDN博客
https://blog.csdn.net/XU157303764/article/details/141902660?spm=1011.2415.3001.5331硬件工程师笔试面试知识器件篇——三极管_三极管面试-CSDN博客
https://blog.csdn.net/XU157303764/article/details/141903838?spm=1011.2415.3001.5331硬件工程师笔试面试知识器件篇——二极管_二极管面试问题-CSDN博客
https://blog.csdn.net/XU157303764/article/details/141903198?spm=1011.2415.3001.5331硬件工程师笔试面试——上拉电阻、下拉电阻_硬件面试一般问哪些 上拉电阻-CSDN博客
https://blog.csdn.net/XU157303764/article/details/141904259?spm=1011.2415.3001.5331硬件工程师笔试面试——继电器_固态继电器考试题-CSDN博客
https://blog.csdn.net/XU157303764/article/details/141942261?spm=1011.2415.3001.5331硬件工程师笔试面试——IGBT_igbt面试题目-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142070424?spm=1011.2415.3001.5331硬件工程师笔试面试——MOS管_mos管面试问题-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142073376?spm=1011.2415.3001.5331硬件工程师笔试面试——变压器_变压器电子工程师面试题目以及答案-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142313787?spm=1011.2415.3001.5331硬件工程师笔试面试——保险丝_硬件设计保险丝-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142314695?spm=1011.2415.3001.5331硬件工程师笔试面试——开关_开关电源面试笔试题-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142314758?spm=1011.2415.3001.5331硬件工程师笔试面试——滤波器_滤波器面试-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142314811?spm=1011.2415.3001.5331硬件工程师笔试面试——晶振_有源晶振笔试题-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142314968?spm=1011.2415.3001.5331硬件工程师笔试面试——显示器件_显示器件设计工程师笔试-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142315003?spm=1011.2415.3001.5331硬件工程师笔试面试——无线通讯模块_关于wifi 的硬件工程师面试题-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142315034?spm=1011.2415.3001.5331硬件工程师笔试面试——存储器件-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142315081?spm=1011.2415.3001.5331硬件工程师笔试面试——集成电路_集成电路理论题库-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142315158?spm=1011.2415.3001.5331硬件工程师笔试面试——电机_电机控制器硬件工程师面试-CSDN博客
https://blog.csdn.net/XU157303764/article/details/142315183?spm=1011.2415.3001.5331电器元件符号及封装大全_海尔电视逻辑板上的22oj3是什么元件-CSDN博客
https://blog.csdn.net/XU157303764/article/details/144897502?spm=1011.2415.3001.5331运算放大电路汇总及电路仿真_用qucs仿真运算放大器-CSDN博客
https://blog.csdn.net/XU157303764/article/details/144974369?spm=1011.2415.3001.5331半波整流和全波整流电路汇总及电路仿真_半波整流电路和滤波电路仿真与调试的区别-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145379301?spm=1011.2415.3001.5331滤波电路汇总_视频滤波电路-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145382488?spm=1011.2415.3001.5331开关电路汇总-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145388966?spm=1011.2415.3001.5331AD电路仿真_ad仿真图什么意思-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145391047?spm=1011.2415.3001.533120个整流电路及仿真实验汇总-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145401280?spm=1011.2415.3001.5331万用表使用-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145402665?spm=1011.2415.3001.53312024美团秋招硬件开发笔试真题及答案解析_美团硬件开发笔试-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145430040?spm=1011.2415.3001.53312024美团春招硬件开发笔试真题及答案解析_美团2025年春招第一场笔试【硬件开发方向】-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145430447?spm=1011.2415.3001.53312024联想春招硬件嵌入式开发真题及答案解析_联想硬件笔试题-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145430556?spm=1011.2415.3001.53312023联想电子电路真题及答案解析_电子电路模拟卷及答案-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145432109?spm=1011.2415.3001.53312022联想硬件真题及答案解析-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145435275?spm=1011.2415.3001.5331网易校招硬件研发工程师提前批真题及答案解析-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145435462?spm=1011.2415.3001.5331网易校招硬件工程师正式批-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145464105?spm=1011.2415.3001.53312019京东校招电气工程师真题及答案解析-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145540559?spm=1011.2415.3001.53312018京东秋招电气工程师真题及答案解析_如图所示复合管,已知v1的放大倍数为10-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145560334?spm=1011.2415.3001.5331Altium Designer(AD)仿真实验操作指南_altiumdesigner仿真教程-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145694520?spm=1011.2415.3001.5331AD(Altium Designer)中英文界面切换操作指南_altium designer怎么改中文-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145694259?spm=1011.2415.3001.5331AD(Altium Designer)创建及完成项目操作指南_altium designer新建项目-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145716291?spm=1011.2415.3001.5331AD(Altium Designer)器件封装——立创商城导出原理图和PCB完成器件封装操作指南_复制立创商城模型-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145741894?spm=1011.2415.3001.5331AD(Altium Designer)三种方法导入图片_ad导入图片-CSDN博客
https://blog.csdn.net/XU157303764/article/details/145766000?spm=1011.2415.3001.5331AD(Altium Designer)已有封装库的基础上添加器件封装_altium designer pcb库封装-CSDN博客
https://blog.csdn.net/XU157303764/article/details/146427258?spm=1011.2415.3001.5331AD(Altium Designer)更换PCB文件的器件封装_altium designer设计里已经生成pcb怎么更改-CSDN博客
https://blog.csdn.net/XU157303764/article/details/146448192?spm=1011.2415.3001.5331
相关文章:
硬件工程师笔记——二极管Multisim电路仿真实验汇总
目录 1 二极管基础知识 1.1 工作原理 1.2 二极管的结构 1.3 PN结的形成 1.4 二极管的工作原理详解 正向偏置 反向偏置 multisim使用说明链接 2 二极管特性实验 2.1 二极管加正向电压 2.2 二极管加反向电压 2.3 二极管两端的电阻 2.4 交流电下二级管工作 2.5 二极…...
学习笔记(C++篇)—— Day 6
1.内部类 如果一个类定义在另一个类的内部,就叫做内部类。 例如下面一个代码示例: class A { private:static int _k;int _h 1; public:class B // B默认就是A的友元{public:void foo(const A& a){cout << _k << endl; //OKcout <&…...
常见的实时通信技术(轮询、sse、websocket、webhooks)
1. HTTP轮询:最老实的办法 刚开始做实时功能时,我第一个想到的就是轮询。特别简单直白,就像你每隔5分钟就刷新一次朋友圈看看有没有新消息一样。 短轮询:勤快但费劲 短轮询就是客户端隔三差五地问服务器:"有新…...
2025年第三届盘古石杯初赛(智能冰箱,监控部分)
前言 所以去哪里可以取到自己家里的智能家居数据呢???? IOT物联网取证 1、分析冰箱,请问智能冰箱的品牌? [答案格式:xiaomi] Panasonic2、请问智能冰箱的型号? [答案格式&#x…...
[强化学习的数学原理—赵世钰老师]学习笔记02-贝尔曼方程
本人为强化学习小白,为了在后续科研的过程中能够较好的结合强化学习来做相关研究,特意买了西湖大学赵世钰老师撰写的《强化学习数学原理》中文版这本书,并结合赵老师的讲解视频来学习和更深刻的理解强化学习相关概念,知识和算法技…...
基于STM32的INA226电压电流检测仪
系统总体框图 功率检测装置原理图功能及模块连接说明 一、系统功能概述 该装置以STM32F103C8T6微控制器为核心,集成功率检测、数据交互、状态显示和用户提示功能,通过模块化设计实现稳定运行。 二、各模块功能及连接方式 按键模块 功能:…...
Android7 Input(七)App与input系统服务建立连接
概述 本文主要讲述Android 系统创建窗口时与输入管理系统服务通过InputChannel通道建立通信桥梁的过程。 本文涉及的源码路径 frameworks/native/libs/input/InputTransport.cpp frameworks/base/core/java/android/view/InputChannel.java frameworks/base/core/java/andr…...
1.2 C++第一个程序
第一个程序:Hello World 教程 目标 用 cout 输出文字,学会用 endl 换行。理解程序的基本结构,明白 main 函数的作用。 一、程序是什么?——像“魔法食谱” 比喻:写程序就像写一份做蛋糕的食谱! 食材&am…...
Hi3516DV500刷写固件
hi3516DV500刷固件 1、硬件连接 2、软件准备 3、刷固件步骤 一、硬件连接 特别注意的是,串口的接线顺序 通过网线连接好笔记本和开发板后,需要确认一下网口水晶头是否闪烁,以确认网络物理是否连通 二、软件资源准备 固件包准备 打开工具…...
完整卸载 Fabric Manager 的方法
目录 ✅ 完整卸载 Fabric Manager 的方法 1️⃣ 停止并禁用服务 2️⃣ 卸载 Fabric Manager 软件包 3️⃣ 自动清理无用依赖(可选) 4️⃣ 检查是否卸载成功 ✅ 补充(仅清除服务,不删包) ✅ 完整卸载 Fabric Mana…...
linux标准库头文件解析
linuxc标准库 C 标准库(C Standard Library)包含了一组头文件,这些头文件提供了许多函数和宏,用于处理输入输出、字符串操作、数学计算、内存管理等常见编程任务。。 头文件功能简介<stdio.h>标准输入输出库,包含…...
PLC和变频器之间如何接线
这篇文章想梳理一下,不同电平输出的PLC应该如何去接不同品牌的变频器 对于PLC的IO来讲,有高低电平输入的不同,有高低电平输出的区别 对于变频器的DI或DO来讲,不同的品牌内部线路和原理也有区别 我们场地现在用的是西门子1200的…...
【Spring】Spring的请求处理
欢迎来到啾啾的博客🐱。 记录学习点滴。分享工作思考和实用技巧,偶尔也分享一些杂谈💬。 欢迎评论交流,感谢您的阅读😄。 目录 引言HTTP/HTTPS协议Spring Web与Spring Web MVCSpring WebFlux 自定义的TPC/IP协议FTP、S…...
现代健康生活养生指南
现代社会中,熬夜加班、久坐不动、饮食不规律成为许多人的生活常态,由此引发的健康问题也日益增多。想要摆脱亚健康,不必依赖中医理念,从以下这些现代科学养生方法入手,就能逐步改善身体状况。 饮食上,注…...
使用tensorRT10部署低光照补偿模型
1.低光照补偿模型的简单介绍 作者介绍一种Zero-Reference Deep Curve Estimation (Zero-DCE)的方法用于在没有参考图像的情况下增强低光照图像的效果。 具体来说,它将低光照图像增强问题转化为通过深度网络进行图像特定曲线估计的任务。训练了一个轻量级的深度网络…...
题单:表达式求值1
题目描述 给定一个只包含 “加法” 和 “乘法” 的算术表达式,请你编程计算表达式的值。 输入格式 输入仅有一行,为需要计算的表达式,表达式中只包含数字、加法运算符 和乘法运算符 *,且没有括号。 所有参与运算的数字不超过…...
【ant design】ant-design-vue 4.0实现主题色切换
官网:Ant Design Vue — An enterprise-class UI components based on Ant Design and Vue.js 我图方便,直接在 app.vue 中加入的 <div class"app-content" v-bind:class"appOption.appContentClass"><a-config-provider…...
MinIO深度解析:从入门到实战——对象存储系统全指南
在当今数字化时代,数据存储至关重要。MinIO作为一款高性能的对象存储系统,正逐渐受到广泛关注。它与云原生存储系统相媲美,并且其API与Amazon S3完全兼容。本文将带您快速了解MinIO,并探讨其在实际中的应用场景。 一、关于MinIO …...
(8)python开发经验
文章目录 1 下载python2 pip安装依赖无法访问3 系统支持4 下载python文档5 设置虚拟环境6 编译安装python 更多精彩内容👉内容导航 👈👉Qt开发 👈👉python开发 👈 1 下载python 下载地址尽量不要下载最新版…...
uniapp自动构建pages.json的vite插件
对于 uniapp 来说,配置 pages.json 无疑是最繁琐的事情,具有以下缺点: 冗长,页面很多时 pages 内容会很长难找,有时候因为内容很长,导致页面配置比较难找,而且看起来比较凌乱json弊端ÿ…...
【MySQL进阶】如何在ubuntu下安装MySQL数据库
前言 🌟🌟本期讲解关于如何在ubuntu环境下安装mysql的详细介绍~~~ 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 🔥 你的点赞就是小编不断更新的最大动力 dz…...
解放双手的全自动抠图工具
软件介绍 本文要介绍的这款软件是Teorex PhotoScissors,是一款全自动抠图软件。 第二段:软件便捷性 这款来自国外的软件堪称神器,目前已解锁可无限使用。使用起来特别方便,无需安装,打开即可直接操作,并…...
Python多进程编程执行任务
我的需求如下:现有一批任务,使用进程池执行,每个任务执行耗时不一样,任务并发执行期间,需要每隔一段时间监控任务执行进度 直接贴代码: import multiprocessing import time import random from multiproc…...
【Linux笔记】——Linux线程封装
🔥个人主页🔥:孤寂大仙V 🌈收录专栏🌈:Linux 🌹往期回顾🌹:【Linux笔记】——Linux线程控制创建、终止与等待|动态库与内核联动 🔖流水不争,争的是…...
ChatGPT + DeepSeek 联合润色的 Prompt 模板指令合集,用来润色SCI论文太香了!
对于非英语母语的作者来说,写SCI论文的时候经常会碰到语法错误、表达不够专业、结构不清晰以及术语使用不准确等问题。传统的润色方式要么成本高、效率低,修改过程又耗时又费力。虽然AI工具可以帮助我们来润色论文,但单独用ChatGPT或DeepSeek都会存在内容泛泛、专业性不足的…...
【typenum】 9 与常量泛型桥接(generic_const_mappings.rs)
一、源码 该代码提供了常量结构体与库类型的转换。 // THIS IS GENERATED CODE //! Module with some const-generics-friendly definitions, to help bridge the gap //! between those and typenum types. //! //! - It requires the const-generics crate feature to be…...
并发学习之synchronized,JVM内存图,线程基础知识
文章目录 Java内存图内存图区域介绍执行流程 进程和线程概念解释线程的6种状态简述等待队列和同步队列(阻塞队列)线程之间是独立的 synchronized静态方法非静态方法代码块 知识总结: 方法区存储类信息正在执行的程序叫进程,进程会…...
使用Docker部署Nacos
sudo systemctl start docker sudo systemctl enable docker docker --version 步骤 2: 拉取 Nacos Docker 镜像 拉取 Nacos 镜像: 你可以从 Docker Hub 上拉取官方的 Nacos 镜像,使用以下命令: docker pull nacos/nacos-server 这会从 …...
如何 naive UI n-data-table 改变行移动光标背景色
默认是light 灰,想换个显眼包色,折腾半天,可以了。 无废话上代码: <template><n-data-tablesize"small":columns"columns":data"sortedDataList":bordered"true":row-key"…...
Maven 插件扩展点与自定义生命周期
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
Redis的发布订阅模型是什么,有哪些缺点?
Redis 发布订阅模型概述 Redis 发布订阅(Pub/Sub)是一种消息广播模式,核心角色包括: 发布者(Publisher):向指定频道(Channel)发送消息。频道(Channel&#…...
【EDA软件】【联合Modelsim仿真使用方法】
背景 业界EDA工具仿真功能是必备的,例如Vivado自带仿真工具,且无需联合外部仿真工具,例如MoodelSim。 FUXI工具仿真功能需要联合Modelsim,才能实现仿真功能。 方法一:FUXI联合ModelSim 1 添加testbench文件 新建to…...
C语言_动态内存管理
1. 为什么存在动态内存分配 ? 当前,我们掌握的内存开辟方式有: int val22;// 在栈空间上开辟四个字节 char arr[10]{0};// 在栈空间上开辟10个字节的连续空间而上述的开辟空间的方式有两个特点: 空间开辟大小示固定的数组在申明的时候&am…...
使用Langfuse和RAGAS,搭建高可靠RAG应用
大家好,在人工智能领域,RAG系统融合了检索方法与生成式AI模型,相比纯大语言模型,提升了准确性、减少幻觉且更具可审计性。不过,在实际应用中,当建好RAG系统投入使用时,如何判断接收信息是否正确…...
MySQL 数据库优化:ShardingSphere 原理及实践
在高并发、大数据量的业务场景下,MySQL 作为关系型数据库的核心存储引擎,其性能和扩展性面临严峻挑战。ShardingSphere 作为 Apache 顶级开源项目,提供了分布式数据库解决方案,通过分库分表、读写分离、弹性迁移等能力,帮助开发者实现 MySQL 的水平扩展与性能优化。 本文…...
【Redis】零碎知识点(易忘 / 易错)总结回顾
一、Redis 是一种基于键值对(key-value)的 NoSQL 数据库 二、Redis 会将所有数据都存放在内存中,所以它的读写性能非常惊人 Redis 还可以将内存的数据利用快照和日志的形式保存到硬盘上,这样在发生类似断电或者机器故障时…...
谷歌浏览器(Google Chrome)136.0.7103.93便携增强版|Win中文|安装教程
软件下载 【名称】:谷歌浏览器(Google Chrome)136.0.7103.93 【大小】:170M 【语言】:简体中文 【安装环境】:Win10/Win11 【夸克网盘下载链接】(务必手机注册): h…...
【滑动窗口】LeetCode 209题解 | 长度最小的子数组
长度最小的子数组 前言:滑动窗口一、题目链接二、题目三、算法原理解法一:暴力枚举解法二:利用单调性,用滑动窗口解决问题那么怎么用滑动窗口解决问题?分析滑动窗口的时间复杂度 四、编写代码 前言:滑动窗口…...
WebXR教学 07 项目5 贪吃蛇小游戏
WebXR教学 07 项目5 贪吃蛇小游戏 index.html <!DOCTYPE html> <html> <head><title>3D贪吃蛇小游戏</title><style>body { margin: 0; }canvas { display: block; }#score {position: absolute;top: 20px;left: 20px;color: white;font-…...
2.1.3
# Load the data file_path finance数据集.csv data pd.__________(file_path) --- data pd.read_csv(file_path) # 识别数值列用于箱线图 numeric_cols data.select_dtypes(include[float64, int64]).__________ --- numeric_cols data.select_dtypes(include[flo…...
StreamCap v0.0.1 直播录制工具 支持批量录制和直播监控
—————【下 载 地 址】——————— 【本章下载一】:https://drive.uc.cn/s/2fa520a8880d4 【本章下载二】:https://pan.xunlei.com/s/VOQDt_3v0DYPxrql5y2zxgO1A1?pwd2kqi# 【百款黑科技】:https://ucnygalh6wle.feishu.cn/wiki/…...
小蜗牛拨号助手用户使用手册
一、软件简介 小蜗牛拨号助手是一款便捷实用的拨号辅助工具,能自动识别剪贴板中的电话号码,支持快速拨号操作。最小化或关闭窗口后,程序将在系统后台运行,还可设置开机自启,方便随时使用,提升拨号效率。 …...
哈夫曼树(Huffman Tree)
1. 基本概念 哈夫曼树(Huffman Tree),又称最优二叉树,是一种带权路径长度(WPL, Weighted Path Length)最短的二叉树。它主要用于数据压缩和编码优化,通过为不同权值的节点分配不同长度的…...
布隆过滤器和布谷鸟过滤器
原文链接:布隆过滤器和布谷鸟过滤器 布隆过滤器 介绍 布隆过滤器(Bloom Filter)是 1970 年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数,检查值是“可能在集合中”还是“绝对不在集合中” 空间效率高&a…...
Vue+Vite学习笔记
Cesium与Vue集成:详解Cesium-Vue项目搭建与运行步骤指南 - 云原生实践 为什么按照这篇↑完成三步会有能打开的网址,不止localhost8080还有用127.0.0.1那个表示的。 用这个构建,出来的是localhost:5173?...
UE 材质基础 第一天
课程:虚幻引擎【UE5】材质宝典【初学者材质基础入门系列】-北冥没有鱼啊_-稍后再看-哔哩哔哩视频 随便记录一些 黑色是0到负无穷,白色是1到无穷 各向异性 有点类似于高光,可以配合切线来使用,R G B 相当于 X Y Z轴,切…...
网络编程中的直接内存与零拷贝
本篇文章会介绍 JDK 与 Linux 网络编程中的直接内存与零拷贝的相关知识,最后还会介绍一下 Linux 系统与 JDK 对网络通信的实现。 1、直接内存 所有的网络通信和应用程序中(任何语言),每个 TCP Socket 的内核中都有一个发送缓冲区…...
语音转文字
语音转文字工具大全 1. 网易 网易见外(网页) 地址:网易见外 - AI智能语音转写听翻平台 特点:完全免费,支持音频转文字,每日上限2小时 有道云笔记(安卓/iOS) 地址&a…...
软件设计师考试《综合知识》创建型设计模式考点分析
软件设计师考试《综合知识》创建型设计模式考点分析 1. 分值占比与考察趋势(75分制) 模式名称近5年题量分值占比高频考察点最新趋势抽象工厂模式45.33%产品族创建/跨平台应用结合微服务配置考查(2023)工厂方法模式56.67%单一产品扩展/日志系统与IoC容器…...
【八股战神篇】Java集合高频面试题
专栏简介 八股战神篇专栏是基于各平台共上千篇面经,上万道面试题,进行综合排序提炼出排序前百的高频面试题,并对这些高频八股进行关联分析,将每个高频面试题可能进行延伸的题目再次进行排序选出高频延伸八股题。面试官都是以点破…...