当前位置: 首页 > news >正文

【Linux笔记】——Linux线程封装

🔥个人主页🔥:孤寂大仙V
🌈收录专栏🌈:Linux
🌹往期回顾🌹:【Linux笔记】——Linux线程控制创建、终止与等待|动态库与内核联动
🔖流水不争,争的是滔滔不息


  • 一、线程封装简介
  • 二、线程封装源码
  • 三、线程封装类
    • 线程创建与启动
    • 线程终止
    • 线程分离
    • 线程回收

一、线程封装简介

在Linux环境下,线程操作是并发编程的核心之一。为了简化线程的创建、管理以及资源回收,实现了一个基于pthread库(原生线程库)的线程封装类。该封装类提供了线程的创建、启动、终止、分离和回收等功能,极大的简化了多线程编程的复杂性。

核心功能

  1. 线程的创建与启动
    通过Start()方法创建并启动线程,线程的执行函数通过包装器function<void()>类型传入,提供了灵活的函数调用方式。
  2. 线程终止
    Stop方法用于终止正在运行的线程,确保线程资源的及时释放。
  3. 线程分离
    Detach方法将线程设置为分离状态,分离后的线程在终止时会自动释放资源,无需显示的回收。
  4. 线程回收
    join方法用于等待线程结束并回收其资源,适用于未分离的线程。

都是使用pthread库内函数实现简单封装这个线程类。

二、线程封装源码

#ifndef _THREAD_HPP_
#define _THREAD_HPP_#include <iostream>
#include <string.h>
#include <unistd.h>
#include <functional>
#include <pthread.h>
using namespace std;namespace Threaddemo
{static uint32_t number=1;class Thread{using func_t=function<void()>;public:Thread(func_t func):_tid(0),_isrunning(false),_isdetach(false),_func(func){_name="thread-"+to_string(number++);}void EnableRunning(){_isrunning=true;}void EnableDetach(){_isdetach=true;}static void* routine(void* args){Thread* self=static_cast<Thread*>(args);self->EnableRunning();if (self->_isdetach)self->Detach();pthread_setname_np(self->_tid, self->_name.c_str());self->_func();return nullptr;}bool Start(){if(_isrunning)return false;int n=pthread_create(&_tid,nullptr,routine,this);//if(n!=0){cerr<<"线程创建出现错误"<<strerror(n)<<endl;return false;}else{cout<<"线程创建成功"<<endl;return true;}}bool Stop() //终止线程{if(_isrunning){int n=pthread_cancel(_tid);if(n!=0){cerr<<"线程终止失败"<<strerror(n)<<endl;return false;}else{cout<<"线程终止"<<endl;return true;}}return false;}void Detach()   //分离线程{if(_isdetach)return;if(_isrunning){pthread_detach(_tid);}EnableDetach();}void Join()     //回收线程{if(_isdetach){cout<<"已经分离,不能回收"<<endl;}int n=pthread_join(_tid,nullptr);if(n!=0){cerr<<"线程回收失败"<<strerror(n)<<endl;}else{cout<<"线程回收成功"<<endl;}}~Thread(){}private:pthread_t _tid;bool _isrunning;bool _isdetach;string _name;func_t _func;};
}
#endif

三、线程封装类

Thread类,私有成员线程id,判断用的_isrunning判断线程是否启动,_isdetach判断线程是否分离。_name构造这个类的时候搞个字符串记录一下,标识。_func是函数指针类型的对象,变量 _func 可以存储任何符合 func_t 签名的函数指针,用来作为回调函数传入,比如线程启动函数、任务执行函数等(这个玩意非常好用,分层很好使)。

Thread(func_t func): _tid(0), _isrunning(false), _isdetach(false), _func(func){_name = "thread-" + to_string(number++);}

构造这个线程类

线程创建与启动

    static void *routine(void *args){Thread *self = static_cast<Thread *>(args);self->EnableRunning();if (self->_isdetach)self->Detach();pthread_setname_np(self->_tid, self->_name.c_str());self->_func();return nullptr;}bool Start() // 线程创建与启动{if (_isrunning)return false;int n = pthread_create(&_tid, nullptr, routine, this); //if (n != 0){cerr << "线程创建出现错误" << strerror(n) << endl;return false;}else{cout << "线程创建成功" << endl;return true;}}

这里是创建线程的经典操作,但是我们发现这个void *routine前面怎么加了个static啊成了静态函数了,pthred_create函数最后一个参数最后怎么是this指针啊?

我们知道要想调用类内普通成员函数,必须通过对象调用这个成员函数,加了static的成员函数不依赖于类的对象,也就不需要this指针。这个routine底层是Thread::routine(Thread* this,void* arg),也就是说这个函数多一个默认的this指针参数,和pthread_create()要求的额(void* ->void*)完全不匹配,编译报错或强转后出bug。
所以加static,让它成为静态成员函数不依赖于this指针,可以当作函数指针传入pthread_create,抹油默认参数,就不会报错了。妙就妙在在pthread_create中第四个参数传入this,然后传入routine()中再传回去,这样routine就又拿到了对象指针。然后就可以继续访问对象的成员函数了。

加 static 是为了匹配 pthread 的函数指针要求,传 this 是为了绕回来访问类的成员。

在这里插入图片描述
在这里插入图片描述


static void *routine(void *args)函数中, self->_func();构造的时候func_t是一个函数指针类型的别名,定义为std::function<void()>表示一个返回类型为void,无参数的函数类型。这就是一个回调函数,说白了就是任务在上层执行完然后把返回值返回来。
在这里插入图片描述

_func 是一个函数对象,用来存储线程要执行的任务代码。routine() 中调用它,就等于“开始执行这个线程的工作”,这也是为什么 std::function<void()> 是多线程封装中最常用的任务抽象。

顺便聊一下这里的lambda表达式

Thread t([](){int cnt=5;while(cnt--){cout<<"我是一个新线程"<<endl;}});

这是这个线程封装的lambda表达式,比较简单,没有捕捉对象和传参,因为function中是void类型。下面我搞个别的lambda表达式在这里聊一下语法。

    // 3. 服务器层unique_ptr<Tcpserver> tsvr = make_unique<Tcpserver>(port,[&protocol](shared_ptr<Socket> &sock, InetAddr &client){protocol->GetRequest(sock, client);});

这里unique_ptr和make_unique都是智能指针的一套流程,通过指针来实例对象。这里是创建服务器,是服务器类也就是类型,port是参数,前面的不过多赘述了,以后会聊。[]里面的是对对象进行捕捉,()里的内容是写_func 函数对象时写的参数,{}里就是要去干的活了,也是为什么要捕捉对象GetRequest是protocol对象类内的成=函数。

线程终止

bool Stop() // 终止线程{if (_isrunning){int n = pthread_cancel(_tid);if (n != 0){cerr << "线程终止失败" << strerror(n) << endl;return false;}else{cout << "线程终止" << endl;return true;}}return false;}

这个没什么好说的了,就是终止线程,调pthread库内的pthread_cancel函数就完事了。线程必须是运行着的才能终止。

线程分离

void Detach() // 分离线程{if (_isdetach)return;if (_isrunning){pthread_detach(_tid);}EnableDetach();}

这也没什么好说的,也是pthread库的调用,如果已经分离了返回,如果正在运行分离,分离完标记一下。

线程回收

        void Join() // 回收线程{if (_isdetach){cout << "已经分离,不能回收" << endl;}int n = pthread_join(_tid, nullptr);if (n != 0){cerr << "线程回收失败" << strerror(n) << endl;}else{cout << "线程回收成功" << endl;}}

调用pthread库内的pthread_join函数,注意如果线程已经分离就不能回收了。

相关文章:

【Linux笔记】——Linux线程封装

&#x1f525;个人主页&#x1f525;&#xff1a;孤寂大仙V &#x1f308;收录专栏&#x1f308;&#xff1a;Linux &#x1f339;往期回顾&#x1f339;&#xff1a;【Linux笔记】——Linux线程控制创建、终止与等待|动态库与内核联动 &#x1f516;流水不争&#xff0c;争的是…...

ChatGPT + DeepSeek 联合润色的 Prompt 模板指令合集,用来润色SCI论文太香了!

对于非英语母语的作者来说,写SCI论文的时候经常会碰到语法错误、表达不够专业、结构不清晰以及术语使用不准确等问题。传统的润色方式要么成本高、效率低,修改过程又耗时又费力。虽然AI工具可以帮助我们来润色论文,但单独用ChatGPT或DeepSeek都会存在内容泛泛、专业性不足的…...

【typenum】 9 与常量泛型桥接(generic_const_mappings.rs)

一、源码 该代码提供了常量结构体与库类型的转换。 // THIS IS GENERATED CODE //! Module with some const-generics-friendly definitions, to help bridge the gap //! between those and typenum types. //! //! - It requires the const-generics crate feature to be…...

并发学习之synchronized,JVM内存图,线程基础知识

文章目录 Java内存图内存图区域介绍执行流程 进程和线程概念解释线程的6种状态简述等待队列和同步队列&#xff08;阻塞队列&#xff09;线程之间是独立的 synchronized静态方法非静态方法代码块 知识总结&#xff1a; 方法区存储类信息正在执行的程序叫进程&#xff0c;进程会…...

使用Docker部署Nacos

sudo systemctl start docker sudo systemctl enable docker docker --version 步骤 2: 拉取 Nacos Docker 镜像 拉取 Nacos 镜像&#xff1a; 你可以从 Docker Hub 上拉取官方的 Nacos 镜像&#xff0c;使用以下命令&#xff1a; docker pull nacos/nacos-server 这会从 …...

如何 naive UI n-data-table 改变行移动光标背景色

默认是light 灰&#xff0c;想换个显眼包色&#xff0c;折腾半天&#xff0c;可以了。 无废话上代码&#xff1a; <template><n-data-tablesize"small":columns"columns":data"sortedDataList":bordered"true":row-key"…...

Maven 插件扩展点与自定义生命周期

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编…...

Redis的发布订阅模型是什么,有哪些缺点?

Redis 发布订阅模型概述 Redis 发布订阅&#xff08;Pub/Sub&#xff09;是一种消息广播模式&#xff0c;核心角色包括&#xff1a; 发布者&#xff08;Publisher&#xff09;&#xff1a;向指定频道&#xff08;Channel&#xff09;发送消息。频道&#xff08;Channel&#…...

【EDA软件】【联合Modelsim仿真使用方法】

背景 业界EDA工具仿真功能是必备的&#xff0c;例如Vivado自带仿真工具&#xff0c;且无需联合外部仿真工具&#xff0c;例如MoodelSim。 FUXI工具仿真功能需要联合Modelsim&#xff0c;才能实现仿真功能。 方法一&#xff1a;FUXI联合ModelSim 1 添加testbench文件 新建to…...

C语言_动态内存管理

1. 为什么存在动态内存分配 ? 当前&#xff0c;我们掌握的内存开辟方式有&#xff1a; int val22;// 在栈空间上开辟四个字节 char arr[10]{0};// 在栈空间上开辟10个字节的连续空间而上述的开辟空间的方式有两个特点&#xff1a; 空间开辟大小示固定的数组在申明的时候&am…...

使用Langfuse和RAGAS,搭建高可靠RAG应用

大家好&#xff0c;在人工智能领域&#xff0c;RAG系统融合了检索方法与生成式AI模型&#xff0c;相比纯大语言模型&#xff0c;提升了准确性、减少幻觉且更具可审计性。不过&#xff0c;在实际应用中&#xff0c;当建好RAG系统投入使用时&#xff0c;如何判断接收信息是否正确…...

MySQL 数据库优化:ShardingSphere 原理及实践

在高并发、大数据量的业务场景下,MySQL 作为关系型数据库的核心存储引擎,其性能和扩展性面临严峻挑战。ShardingSphere 作为 Apache 顶级开源项目,提供了分布式数据库解决方案,通过分库分表、读写分离、弹性迁移等能力,帮助开发者实现 MySQL 的水平扩展与性能优化。 本文…...

【Redis】零碎知识点(易忘 / 易错)总结回顾

一、Redis 是一种基于键值对&#xff08;key-value&#xff09;的 NoSQL 数据库 二、Redis 会将所有数据都存放在内存中&#xff0c;所以它的读写性能非常惊人 Redis 还可以将内存的数据利用快照和日志的形式保存到硬盘上&#xff0c;这样在发生类似断电或者机器故障时&#xf…...

谷歌浏览器(Google Chrome)136.0.7103.93便携增强版|Win中文|安装教程

软件下载 【名称】&#xff1a;谷歌浏览器&#xff08;Google Chrome&#xff09;136.0.7103.93 【大小】&#xff1a;170M 【语言】&#xff1a;简体中文 【安装环境】&#xff1a;Win10/Win11 【夸克网盘下载链接】&#xff08;务必手机注册&#xff09;&#xff1a; h…...

【滑动窗口】LeetCode 209题解 | 长度最小的子数组

长度最小的子数组 前言&#xff1a;滑动窗口一、题目链接二、题目三、算法原理解法一&#xff1a;暴力枚举解法二&#xff1a;利用单调性&#xff0c;用滑动窗口解决问题那么怎么用滑动窗口解决问题&#xff1f;分析滑动窗口的时间复杂度 四、编写代码 前言&#xff1a;滑动窗口…...

WebXR教学 07 项目5 贪吃蛇小游戏

WebXR教学 07 项目5 贪吃蛇小游戏 index.html <!DOCTYPE html> <html> <head><title>3D贪吃蛇小游戏</title><style>body { margin: 0; }canvas { display: block; }#score {position: absolute;top: 20px;left: 20px;color: white;font-…...

2.1.3

# Load the data file_path finance数据集.csv data pd.__________(file_path) --- data pd.read_csv(file_path) # 识别数值列用于箱线图 numeric_cols data.select_dtypes(include[float64, int64]).__________ --- numeric_cols data.select_dtypes(include[flo…...

StreamCap v0.0.1 直播录制工具 支持批量录制和直播监控

—————【下 载 地 址】——————— 【​本章下载一】&#xff1a;https://drive.uc.cn/s/2fa520a8880d4 【​本章下载二】&#xff1a;https://pan.xunlei.com/s/VOQDt_3v0DYPxrql5y2zxgO1A1?pwd2kqi# 【百款黑科技】&#xff1a;https://ucnygalh6wle.feishu.cn/wiki/…...

小蜗牛拨号助手用户使用手册

一、软件简介 小蜗牛拨号助手是一款便捷实用的拨号辅助工具&#xff0c;能自动识别剪贴板中的电话号码&#xff0c;支持快速拨号操作。最小化或关闭窗口后&#xff0c;程序将在系统后台运行&#xff0c;还可设置开机自启&#xff0c;方便随时使用&#xff0c;提升拨号效率。 …...

​哈夫曼树(Huffman Tree)

​​1. 基本概念​ 哈夫曼树&#xff08;Huffman Tree&#xff09;&#xff0c;又称最优二叉树&#xff0c;是一种带权路径长度&#xff08;WPL, Weighted Path Length&#xff09;最短的二叉树。它主要用于数据压缩和编码优化&#xff0c;通过为不同权值的节点分配不同长度的…...

布隆过滤器和布谷鸟过滤器

原文链接&#xff1a;布隆过滤器和布谷鸟过滤器 布隆过滤器 介绍 布隆过滤器&#xff08;Bloom Filter&#xff09;是 1970 年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数&#xff0c;检查值是“可能在集合中”还是“绝对不在集合中” 空间效率高&a…...

Vue+Vite学习笔记

Cesium与Vue集成&#xff1a;详解Cesium-Vue项目搭建与运行步骤指南 - 云原生实践 为什么按照这篇↑完成三步会有能打开的网址&#xff0c;不止localhost8080还有用127.0.0.1那个表示的。 用这个构建&#xff0c;出来的是localhost:5173&#xff1f;...

UE 材质基础 第一天

课程&#xff1a;虚幻引擎【UE5】材质宝典【初学者材质基础入门系列】-北冥没有鱼啊_-稍后再看-哔哩哔哩视频 随便记录一些 黑色是0到负无穷&#xff0c;白色是1到无穷 各向异性 有点类似于高光&#xff0c;可以配合切线来使用&#xff0c;R G B 相当于 X Y Z轴&#xff0c;切…...

网络编程中的直接内存与零拷贝

本篇文章会介绍 JDK 与 Linux 网络编程中的直接内存与零拷贝的相关知识&#xff0c;最后还会介绍一下 Linux 系统与 JDK 对网络通信的实现。 1、直接内存 所有的网络通信和应用程序中&#xff08;任何语言&#xff09;&#xff0c;每个 TCP Socket 的内核中都有一个发送缓冲区…...

语音转文字

语音转文字工具大全 1. 网易 网易见外&#xff08;网页&#xff09; 地址&#xff1a;网易见外 - AI智能语音转写听翻平台 特点&#xff1a;完全免费&#xff0c;支持音频转文字&#xff0c;每日上限2小时 有道云笔记&#xff08;安卓&#xff0f;iOS&#xff09; 地址&a…...

软件设计师考试《综合知识》创建型设计模式考点分析

软件设计师考试《综合知识》创建型设计模式考点分析 1. 分值占比与考察趋势&#xff08;75分制&#xff09; 模式名称近5年题量分值占比高频考察点最新趋势抽象工厂模式45.33%产品族创建/跨平台应用结合微服务配置考查(2023)工厂方法模式56.67%单一产品扩展/日志系统与IoC容器…...

【八股战神篇】Java集合高频面试题

专栏简介 八股战神篇专栏是基于各平台共上千篇面经&#xff0c;上万道面试题&#xff0c;进行综合排序提炼出排序前百的高频面试题&#xff0c;并对这些高频八股进行关联分析&#xff0c;将每个高频面试题可能进行延伸的题目再次进行排序选出高频延伸八股题。面试官都是以点破…...

STM32F103定时器1每毫秒中断一次

定时器溢出中断&#xff0c;在程序设计中经常用到。在使用TIM1和TIM8溢出中断时&#xff0c;需要注意“TIM_TimeBaseStructure.TIM_RepetitionCounter0;”&#xff0c;它表示溢出一次&#xff0c;并可以设置中断标志位。 TIM1_Interrupt_Initializtion(1000,72); //当arr1…...

BC 范式与 4NF

接下来我们详细解释 BC 范式&#xff08;Boyce-Codd范式&#xff0c;简称 BCNF&#xff09;&#xff0c;并通过具体例子说明其定义和应用。 一、BC范式的定义 BC范式&#xff08;Boyce-Codd范式&#xff0c;BCNF&#xff09;是数据库规范化理论中的一种范式&#xff0c;它比第…...

Data whale LLM universe

使用LLM API开发应用 基本概念 Prompt Prompt 最初指的是自然语言处理研究人员为下游任务设计的一种任务专属的输入模板。 Temperature 使用Temperature参数控制LLM生成结果的随机性和创造性&#xff0c;一般取值设置在0~1之间&#xff0c;当取值接近1的时候预测的随机性较…...

数据结构第七章(四)-B树和B+树

数据结构第七章&#xff08;四&#xff09; B树和B树一、B树1.B树2.B树的高度 二、B树的插入删除1.插入2.删除 三、B树1.B树2.B树的查找3.B树和B树的区别 总结 B树和B树 还记得我们的二叉排序树BST吗&#xff1f;比如就是下面这个&#xff1a; 结构体也就关键字和左右指针&…...

如何利用 Python 获取京东商品 SKU 信息接口详细说明

在电商领域&#xff0c;SKU&#xff08;Stock Keeping Unit&#xff0c;库存进出计量的基本单元&#xff09;信息是商品管理的核心数据之一。它不仅包含了商品的规格、价格、库存等关键信息&#xff0c;还直接影响到库存管理、价格策略和市场分析等多个方面。京东作为国内知名的…...

【机器学习】第二章模型的评估与选择

A.关键概念 2.1 经验误差和过拟合 经验误差与泛化误差&#xff1a;学习器在训练集上的误差为经验误差&#xff0c;在新样本上的误差为泛化误差 过拟合&#xff1a;学习器训练过度后&#xff0c;把训练样本自身的一些特点当作所有潜在样本具有一般性质&#xff0c;使得泛化性能…...

[PMIC]PMIC重要知识点总结

PMIC重要知识点总结 摘要&#xff1a;PMIC (Power Management Integrated Circuit) 是现代电子设备中至关重要的组件&#xff0c;负责电源管理&#xff0c;包括电压调节、电源转换、电池管理和功耗优化等。PMIC 中的数字部分主要涉及控制逻辑、状态机、寄存器配置、通信接口&am…...

LVGL- Calendar 日历控件

1 日历控件 1.1 日历背景 lv_calendar 是 LVGL&#xff08;Light and Versatile Graphics Library&#xff09;提供的标准 GUI 控件之一&#xff0c;用于显示日历视图。它支持用户查看某年某月的完整日历&#xff0c;还可以实现点击日期、标记日期、导航月份等操作。这个控件…...

ubuntu安装google chrome

更新系统 sudo apt update安装依赖 sudo apt install curl software-properties-common apt-transport-https ca-certificates -y导入 GPG key curl -fSsL https://dl.google.com/linux/linux_signing_key.pub | gpg --dearmor | sudo tee /usr/share/keyrings/google-chrom…...

如何开发专业小模型

在专业领域场景下&#xff0c;通过针对性优化大模型的词汇表、分词器和模型结构&#xff0c;确实可以实现参数规模的显著缩减而不损失专业能力。这种优化思路与嵌入式设备的字库剪裁有相似性&#xff0c;但需要结合大模型的特性进行系统性设计。以下从技术可行性、实现方法和潜…...

EXO 可以将 Mac M4 和 Mac Air 连接起来,并通过 Ollama 运行 DeepSeek 模型

EXO 可以将 Mac M4 和 Mac Air 连接起来&#xff0c;并通过 Ollama 运行 DeepSeek 模型。以下是具体实现方法&#xff1a; 1. EXO 的分布式计算能力 EXO 是一个支持 分布式 AI 计算 的开源框架&#xff0c;能够将多台 Mac 设备&#xff08;如 M4 和 Mac Air&#xff09;组合成…...

Git Worktree 使用

新入职了一家公司&#xff0c;发现不同项目用的使用一个 git 仓库管理。不久之后我看到这篇文章。 Git 的设计部​​分是为了支持实验。一旦你确定你的工作被安全地跟踪&#xff0c;并且存在安全的状态&#xff0c;以便在出现严重错误时可以恢复&#xff0c;你就不会害怕尝试新…...

【Linux网络】内网穿透

内网穿透 基本概念 内网穿透&#xff08;Port Forwarding/NAT穿透&#xff09; 是一种网络技术&#xff0c;主要用于解决处于 内网&#xff08;局域网&#xff09;中的设备无法直接被公网访问 的问题。 1. 核心原理 内网与公网的隔离&#xff1a;家庭、企业等局域网内的设备…...

反射机制动态解析

代码解释与注释 package com.xie.javase.reflect;import java.lang.reflect.Field; import java.lang.reflect.Modifier;public class ReflectTest01 {public static void main(String[] args) throws ClassNotFoundException {// 1. 获取java.util.HashMap类的Class对象Class…...

10 分钟打造一款超级马里奥小游戏,重拾20 年前的乐趣

我正在参加CodeBuddy「首席试玩官」内容创作大赛&#xff0c;本文所使用的 CodeBuddy 免费下载链接&#xff1a;腾讯云代码助手 CodeBuddy - AI 时代的智能编程伙伴 你好&#xff0c;我是悟空。 前言 小时候看到村里的大朋友家里都有一款 FC 游戏机&#xff0c;然后旁边还放…...

鸿蒙ArkUI体验:Hexo博客客户端开发心得

最近部门也在跟进鸿蒙平台的业务开发&#xff0c;自己主要是做 Android 开发&#xff0c;主要使用 Kotlin/Java 语言。&#xff0c;需要对新的开发平台和开发模式进行学习&#xff0c;在业余时间开了个项目练手&#xff0c;做了个基于 Hexo 博客内容开发的App。鸿蒙主要使用Ark…...

人工智能100问☞第25问:什么是循环神经网络(RNN)?

目录 一、通俗解释 二、专业解析 三、权威参考 循环神经网络(RNN)是一种通过“记忆”序列中历史信息来处理时序数据的神经网络,可捕捉前后数据的关联性,擅长处理语言、语音等序列化任务。 一、通俗解释 想象你在和朋友聊天,每说一句话都会根据之前的对话内容调整语气…...

【springcloud学习(dalston.sr1)】Zuul路由访问映射规则配置及使用(含源代码)(十二)

该系列项目整体介绍及源代码请参照前面写的一篇文章【springcloud学习(dalston.sr1)】项目整体介绍&#xff08;含源代码&#xff09;&#xff08;一&#xff09; springcloud学习&#xff08;dalston.sr1&#xff09;系统文章汇总如下&#xff1a; 【springcloud学习(dalston…...

STM32IIC协议基础及Cube配置

STM32IIC协议基础及Cube配置 一&#xff0c;IC协议简介1&#xff0c;核心特点2&#xff0c;应用场景 二&#xff0c;IC协议基础概念1&#xff0c;总线结构2&#xff0c;主从架构3&#xff0c;设备寻址4&#xff0c;起始和停止条件5&#xff0c;数据传输6&#xff0c;应答机制 三…...

Python异常模块和包

异常 当检测到一个错误时&#xff0c;Python解释器就无法继续执行了&#xff0c;反而出现了一些错误的提示&#xff0c;这就是所谓的“异常”, 也就是我们常说的BUG 例如&#xff1a;以r方式打开一个不存在的文件。 f open(‘python1.txt’,‘r’,encoding‘utf-8’) 当我们…...

每日算法刷题Day9 5.17:leetcode定长滑动窗口3道题,用时1h

9. 1652.拆炸弹(简单&#xff0c;学习) 1652. 拆炸弹 - 力扣&#xff08;LeetCode&#xff09; 思想 为了获得正确的密码&#xff0c;你需要替换掉每一个数字。所有数字会 同时 被替换。 如果 k > 0 &#xff0c;将第 i 个数字用 接下来 k 个数字之和替换。如果 k < 0…...

题单:递归求和

宣布一个重要的事情&#xff0c;我的洛谷有个号叫 题目描述 给一个数组 a:a[0],a[1],...,a[n−1]a:a[0],a[1],...,a[n−1] 请用递归的方式出数组的所有数之和。 提示&#xff1a;递推方程 f(x)f(x−1)a[x]f(x)f(x−1)a[x]; 输入格式 第一行一个正整数 n (n≤100)n (n≤100)…...

手动实现 Transformer 模型

本文使用 Pytorch 库手动实现了传统 Transformer 模型中的多头自注意力机制、残差连接和层归一化、前馈层、编码器、解码器等子模块&#xff0c;进而实现了对 Transformer 模型的构建。 """ Title: 解析 Transformer Time: 2025/5/10 Author: Michael Jie &quo…...