当前位置: 首页 > news >正文

基于VSCode + PlatformIO平台的ESP8266的DS1302实时时钟


基于ESP8266的DS1302实时时钟系统开发

一、项目概述

本实验通过ESP8266开发板实现:

  1. DS1302实时时钟模块的驱动
  2. 系统时间同步与维护
  3. 串口实时时间显示
  4. RTC模块状态监控

硬件组成

  • NodeMCU ESP8266开发板
  • DS1302实时时钟模块
  • CR2032纽扣电池(备用电源)
  • 杜邦线若干

开发环境

  • VSCode + PlatformIO
  • Arduino框架
  • Rtc by Makuna库


二、环境配置

1. PlatformIO配置(platformio.ini)

[env:nodemcuv2]
platform = espressif8266
board = nodemcuv2
framework = arduino
lib_deps =makuna/Rtc@^2.2.0
monitor_speed = 115200

2. 库安装流程

  1. 在VSCode中按Ctrl+Shift+P打开命令面板
  2. 输入PlatformIO: Install Library
  3. 搜索安装Rtc by Makuna


三、硬件连接

DS1302模块

ESP8266引脚

功能说明

VCC

3V3

主电源(3.3V)

GND

GND

地线

CLK

GPIO5

时钟信号

DAT

GPIO4

数据线

RST

GPIO0

复位信号

接线示意图

[DS1302]       [ESP8266]VCC ---- 3V3GND ---- GNDCLK ---- GPIO5DAT ---- GPIO4RST ---- GPIO0


四、完整代码实现

#include <Arduino.h>
#include <ThreeWire.h>
#include <RtcDS1302.h>// 引脚定义(对应NodeMCU D引脚)
#define DS1302_CLK_PIN D1  // GPIO5
#define DS1302_DAT_PIN D2  // GPIO4
#define DS1302_RST_PIN D3  // GPIO0ThreeWire rtcWire(DS1302_DAT_PIN, DS1302_CLK_PIN, DS1302_RST_PIN);
RtcDS1302<ThreeWire> Rtc(rtcWire);void printDateTime(const RtcDateTime& dt);void setup() {Serial.begin(115200);// 打印编译时间Serial.print("固件编译时间: ");Serial.print(__DATE__);Serial.print(" ");Serial.println(__TIME__);// 初始化RTC模块Rtc.Begin();// 设置初始时间(编译时间)RtcDateTime compiledTime = RtcDateTime(__DATE__, __TIME__);// RTC状态检查与修复if (!Rtc.IsDateTimeValid()) {Serial.println("[警告] RTC时间无效,正在重置...");Rtc.SetDateTime(compiledTime);}if (Rtc.GetIsWriteProtected()) {Serial.println("[操作] 解除写保护");Rtc.SetIsWriteProtected(false);}if (!Rtc.GetIsRunning()) {Serial.println("[操作] 启动RTC晶振");Rtc.SetIsRunning(true);}// 时间同步检查RtcDateTime now = Rtc.GetDateTime();if (now < compiledTime) {Serial.println("[同步] 更新RTC时间为编译时间");Rtc.SetDateTime(compiledTime);}
}void loop() {RtcDateTime now = Rtc.GetDateTime();if (!now.IsValid()) {Serial.println("[错误] RTC时间无效,请检查备用电池");} else {printDateTime(now);Serial.println();}delay(5000);  // 5秒更新间隔
}// 日期时间格式化输出
void printDateTime(const RtcDateTime& dt) {char buffer[20];snprintf_P(buffer, sizeof(buffer),PSTR("%04u-%02u-%02u %02u:%02u:%02u"),dt.Year(), dt.Month(), dt.Day(),dt.Hour(), dt.Minute(), dt.Second());Serial.print("当前时间: ");Serial.print(buffer);
}


五、代码解析

1. 核心功能模块

  • RTC初始化:通过Rtc.Begin()启动时钟模块
  • 时间同步:利用编译时间自动校准RTC
  • 状态监控:检测电池状态、晶振运行状态
  • 数据格式化:专业的时间显示格式(ISO 8601)

2. 关键函数说明

初始化流程
void setup() {// 串口初始化// RTC模块初始化// 时间校验与同步
}
时间获取与显示
void loop() {// 每5秒获取一次时间// 有效性检查// 格式化输出
}
日期格式化
void printDateTime(...) {// 使用snprintf_P实现高效格式化// 输出示例:2023-08-20 14:30:45
}


六、使用指南

1. 编译与上传

  1. 连接开发板至电脑
  2. 点击VSCode底部状态栏的✅图标编译项目
  3. 点击→图标上传程序

2. 串口监控

  1. 点击底部电源插头图标打开串口监视器
  2. 观察输出信息:
固件编译时间: Aug 20 2023 14:30:00
当前时间: 2023-08-20 14:30:05
当前时间: 2023-08-20 14:30:10

3. 断电测试

  1. 断开USB供电
  2. 等待10秒后重新上电
  3. 观察RTC是否能保持正确时间(依赖备用电池)


七、常见问题排查

现象

解决方案

时间重置为编译时间

检查CR2032电池是否安装正确

串口无输出

确定引脚连接正确

时间误差较大

更换DS1302模块的晶振(32.768kHz)

编译报错

检查Rtc库版本是否为2.2.0+


 


八、学习资源

  1. DS1302 Datasheet
  2. Rtc库文档
  3. ESP8266引脚图

通过本项目的实践,可以掌握:

  1. RTC模块的工作原理
  2. 低功耗设备的时间管理
  3. Arduino框架下的硬件驱动开发
  4. 嵌入式系统调试技巧

建议扩展方向:

  1. 添加温度传感器显示环境数据
  2. 开发定时任务调度系统
  3. 实现物联网时间同步功能
  4. 构建带有时钟功能的智能家居控制器

相关文章:

基于VSCode + PlatformIO平台的ESP8266的DS1302实时时钟

基于ESP8266的DS1302实时时钟系统开发 一、项目概述 本实验通过ESP8266开发板实现&#xff1a; DS1302实时时钟模块的驱动系统时间同步与维护串口实时时间显示RTC模块状态监控 硬件组成&#xff1a; NodeMCU ESP8266开发板DS1302实时时钟模块CR2032纽扣电池&#xff08;备…...

Flink 系列之十四 - Data Stream API的自定义数据类型

之前做过数据平台&#xff0c;对于实时数据采集&#xff0c;使用了Flink。现在想想&#xff0c;在数据开发平台中&#xff0c;Flink的身影几乎无处不在&#xff0c;由于之前是边用边学&#xff0c;总体有点混乱&#xff0c;借此空隙&#xff0c;整理一下Flink的内容&#xff0c…...

【数据结构】线性表

目录 1.1 线性表的概念 1.1.1 线性表的抽象数据类型 1.1.2 线性表的存储结构 1.1.3 线性表运算分类 1.2 顺序表 1.2.1 顺序表的类定义 1.2.2 顺序表的运算实现 1. 顺序表的检索 2. 顺序表的插入 3. 顺序表的删除 1.3 链表 1.3.1 单链表 1. 链表的检索 2. 链表的插…...

大疆卓驭嵌入式面经及参考答案

FreeRTOS 有哪 5 种内存管理方式&#xff1f; heap_1.c&#xff1a;这种方式简单地在编译时分配一块固定大小的内存&#xff0c;在整个运行期间不会进行内存的动态分配和释放。它适用于那些对内存使用需求非常明确且固定&#xff0c;不需要动态分配内存的场景&#xff0c;优点是…...

【网络】:传输层协议 —— UDP、TCP协议

目录 UDP协议 UDP协议的核心特点 UDP协议格式 UDP的缓冲区 基于UDP的应用层协议 TCP协议 TCP协议的核心特点 TCP协议格式 确认应答机制 连接管理机制 三次握手 四次挥手 流量控制 滑动窗口 拥塞控制 基于字节流 粘包和拆包 可靠性和性能保障 基于TCP的应用层…...

每日c/c++题 备战蓝桥杯(洛谷P1115 最大子段和)

洛谷P1115 最大子段和 题解 题目描述 最大子段和是一道经典的动态规划问题。题目要求&#xff1a;给定一个包含n个整数的序列&#xff0c;找出其中和最大的连续子序列&#xff0c;并输出该最大和。若所有数均为负数&#xff0c;则取最大的那个数。 输入格式&#xff1a; 第…...

Python与矢量网络分析仪3671E:通道插损自动化校准(Vscode)

一、背景介绍 DUT集成了多个可调衰减的射频通道&#xff0c;可调衰减由高精度DAC和VVA构成&#xff0c;使用中电思仪的3671E矢量网络分析仪测试DUT的S参数&#xff0c;并自动化调整VVA的控制电压&#xff0c;以自动化获取指定衰减值对应的控制电平。 二、前期准备 Python环境&…...

设计模式系列(1):总览与引导

目录 前言 设计模式简介 UML与设计模式 术语解释 UML工具与PlantUML 面向对象设计原则(SOLID等) 设计模式分类与典型场景 设计模式的价值 学习与实践建议 常见面试题 推荐阅读 1. 前言 本篇为设计模式系列的第一篇,定位为总览和引导,旨在为后续各专题打下基础,帮助大家…...

Day21打卡—常见降维算法

知识点回顾&#xff1a; LDA线性判别PCA主成分分析t-sne降维 作业&#xff1a; 自由作业&#xff1a;探索下什么时候用到降维&#xff1f;降维的主要应用&#xff1f;或者让ai给你出题&#xff0c;群里的同学互相学习下。可以考虑对比下在某些特定数据集上t-sne的可视化和pca可…...

什么是人工智能(Artificial Intelligence,AI)? —— 机器学习 =》 深度学习 =》 新型技术

文章目录 什么是人工智能&#xff08;Artificial Intelligence&#xff0c;AI&#xff09;&#xff1f; —— 关系&#xff1a;AI >> ML >> DL一、机器学习&#xff08;Machine Learning&#xff0c;ML&#xff09;1、历史2、类型&#xff08;1&#xff09;监督学习…...

iVX 平台技术解析:图形化与组件化的融合创新

一、图形化逻辑编程&#xff1a;用流程图替代代码的革命 iVX 的核心突破在于可视化逻辑表达—— 开发者通过拖拽 “逻辑块”&#xff08;如条件判断、循环控制、数据操作等&#xff09;来搭建应用逻辑&#xff0c;彻底摒弃传统代码的字符输入模式。这种 “所见即所得” 的开发…...

【Diffusion】在华为云ModelArts上运行MindSpore扩散模型教程

目录 一、背景与目的 二、环境搭建 三、模型原理学习 1. 类定义与初始化 2. 初始卷积层 3. 时间嵌入模块 4. 下采样模块 5. 中间模块 6. 上采样模块 7. 最终卷积层 8. 前向传播 9. 关键点总结 四、代码实现与运行 五、遇到的问题及解决方法 六、总结与展望 一、…...

跟我学c++高级篇——模板元编程之十三处理逻辑

一、元编程处理逻辑 无论在普通编程还是在元编程中&#xff0c;逻辑的处理&#xff0c;都是一个编程开始的必然经过。开发者对普通编程中的逻辑处理一般都非常清楚&#xff0c;不外乎条件谈判和循环处理。而条件判断常见的基本就是if语句&#xff08;switch如果不考虑效率等情…...

组合模式(Composite Pattern)详解

文章目录 1. 什么是组合模式?2. 为什么需要组合模式?3. 组合模式的核心概念4. 组合模式的结构5. 组合模式的基本实现5.1 基础示例:文件系统5.2 透明组合模式 vs 安全组合模式5.2.1 透明组合模式5.2.2 安全组合模式5.3 实例:公司组织结构5.4 实例:GUI组件树6. Java中组合模…...

最长字符串 / STL+BFS

题目 代码 #include <bits/stdc.h> using namespace std;int main() {map<vector<int>, vector<string>> a;set<vector<int>> c;vector<int> initial(26, 0);c.insert(initial);ifstream infile("words.txt");string s;w…...

C++ stl中的set、multiset、map、multimap的相关函数用法

文章目录 序列式容器和关联式容器树形结构和哈希结构树形结构哈希结构 键值对setset的相关介绍set定义方式set相关成员函数multiset mapmap的相关介绍map定义方式map的相关操作1.map的插入2.map的查找3.map的删除 序列式容器和关联式容器 CSTL中包含了序列式容器和关联式容器&…...

普通IT的股票交易成长史--20250511 美元与美股强相关性

声明&#xff1a;本文章的内容非原创。参考了yt博主Andy Lee的观点&#xff0c;为了加深自己的学习印象才做的复盘&#xff0c;不构成投资建议。感谢他的无私奉献&#xff01; 送给自己的话&#xff1a; 仓位就是生命&#xff0c;绝对不能满仓&#xff01;&#xff01;&#x…...

系统架构设计(四):架构风格总结

黑板 概念 黑板体系架构是一种用于求解复杂问题的软件架构风格&#xff0c;尤其适合知识密集型、推理驱动、数据不确定性大的场景。 它模拟了人类专家协同解决问题的方式&#xff0c;通过一个共享的“黑板”协同多个模块&#xff08;专家&#xff09;逐步构建解决方案。 组…...

ElasticSearch进阶

一、文档批量操作 1.批量获取文档数据 批量获取文档数据是通过_mget的API来实现的 (1)在URL中不指定index和type 请求方式&#xff1a;GET请求地址&#xff1a;_mget功能说明 &#xff1a; 可以通过ID批量获取不同index和type的数据请求参数&#xff1a; docs : 文档数组参…...

0基础 | L298N电机驱动模块 | 使用指南

引言 在嵌入式系统开发中&#xff0c;电机驱动是一个常见且重要的功能。L298N是一款高电压、大电流电机驱动芯片&#xff0c;广泛应用于各种电机控制场景&#xff0c;如直流电机的正反转、调速&#xff0c;以及步进电机的驱动等。本文将详细介绍如何使用51单片机来控制L298N电…...

Synchronized与锁升级

一、面试题 1&#xff09;谈谈你对Synchronized的理解 2&#xff09;Sychronized的锁升级你聊聊 3&#xff09;Synchronized实现原理&#xff0c;monitor对象什么时候生成的&#xff1f;知道monitor的monitorenter和monitorexit这两个是怎么保证同步的嘛&#…...

MNIST DDP 分布式数据并行

Distributed Data Parallel 转自我的个人博客&#xff1a;https://shar-pen.github.io/2025/05/04/torch-distributed-series/3.MNIST_DDP/ The difference between DistributedDataParallel and DataParallel is: DistributedDataParallel uses multiprocessing where a proc…...

语音合成之十三 中文文本归一化在现代语音合成系统中的应用与实践

中文文本归一化在现代语音合成系统中的应用与实践 引言理解中文文本归一化&#xff08;TN&#xff09;3 主流LLM驱动的TTS系统及其对中文文本归一化的需求分析A. SparkTTS&#xff08;基于Qwen2.5&#xff09;与文本归一化B. CosyVoice&#xff08;基于Qwen&#xff09;与文本归…...

9.1.领域驱动设计

目录 一、领域驱动设计核心哲学 战略设计与战术设计的分野 • 战略设计&#xff1a;限界上下文&#xff08;Bounded Context&#xff09;与上下文映射&#xff08;Context Mapping&#xff09; • 战术设计&#xff1a;实体、值对象、聚合根、领域服务的构建原则 统一语言&am…...

如何配置光猫+路由器实现外网IP访问内部网络?

文章目录 前言一、网络拓扑理解二、准备工作三、光猫配置3.1 光猫工作模式3.2 光猫端口转发配置&#xff08;路由模式时&#xff09; 四、路由器配置4.1 路由器WAN口配置4.2 端口转发配置4.3 动态DNS配置&#xff08;可选&#xff09; 五、防火墙设置六、测试配置七、安全注意事…...

C++题题题题题题题题题踢踢踢

后缀表达式求值 #include<bits/stdc.h> #include<algorithm> using namespace std; string a[100]; string b[100]; stack<string> op; int la0,lb0; int main(){while(true){cin>>a[la];if(a[la]".") break;la;}for(int i0;i<la;i){if(…...

M. Moving Both Hands(反向图+Dijkstra)

Problem - 1725M - Codeforces 题目大意&#xff1a;给你一个有向图&#xff0c;起始点在1&#xff0c;问起始点分别与另外n-1个 点相遇的最短时间&#xff0c;无法相遇输出-1。 思路&#xff1a;反向建图&#xff0c;第一层建原图&#xff0c;第二层建反向图&#xff0c;两层…...

11、参数化三维产品设计组件 - /设计与仿真组件/parametric-3d-product-design

76个工业组件库示例汇总 参数化三维产品设计组件 (注塑模具与公差分析) 概述 这是一个交互式的 Web 组件&#xff0c;旨在演示简单的三维零件&#xff08;如带凸台的方块&#xff09;的参数化设计过程&#xff0c;并结合注塑模具设计&#xff08;如开模动画&#xff09;与公…...

智能座舱开发工程师面试题

一、基础知识类 简述智能座舱的核心组成部分及其功能 要求从硬件&#xff08;如显示屏、传感器、控制器&#xff09;和软件&#xff08;操作系统、中间件、应用程序&#xff09;层面展开&#xff0c;阐述各部分如何协同实现座舱的智能化体验。 对比 Android Automotive、QNX…...

【连载14】基础智能体的进展与挑战综述-多智能体系统设计

基础智能体的进展与挑战综述 从类脑智能到具备可进化性、协作性和安全性的系统 【翻译团队】刘军(liujunbupt.edu.cn) 钱雨欣玥 冯梓哲 李正博 李冠谕 朱宇晗 张霄天 孙大壮 黄若溪 在基于大语言模型的多智能体系统&#xff08;LLM-MAS&#xff09;中&#xff0c;合作目标和合…...

06.three官方示例+编辑器+AI快速学习webgl_animation_skinning_additive_blending

本实例主要讲解内容 这个Three.js示例展示了**骨骼动画(Skinning)和变形动画(Morphing)**的结合应用。通过加载一个机器人模型&#xff0c;演示了如何同时控制角色的肢体动作和面部表情&#xff0c;实现更加丰富的角色动画效果。 核心技术包括&#xff1a; 多动画混合与淡入…...

【Java学习日记36】:javabeen学生系统

ideal快捷键...

.Net HttpClient 使用请求数据

HttpClient 使用请求数据 0、初始化及全局设置 //初始化&#xff1a;必须先执行一次 #!import ./ini.ipynb1、使用url 传参 参数放在Url里&#xff0c;形如&#xff1a;http://www.baidu.com?namezhangsan&age18, GET、Head请求用的比较多。优点是简单、方便&#xff0…...

详解 Java 并发编程 synchronized 关键字

synchronized 关键字的作用 synchronized 是 Java 中用于实现线程同步的关键字&#xff0c;主要用于解决多线程环境下的资源竞争问题。它可以修饰方法或代码块&#xff0c;确保同一时间只有一个线程可以执行被修饰的代码&#xff0c;从而避免数据不一致的问题。 synchronized…...

《Go小技巧易错点100例》第三十二篇

本期分享&#xff1a; 1.sync.Map的原理和使用方式 2.实现有序的Map sync.Map的原理和使用方式 sync.Map的底层结构是通过读写分离和无锁读设计实现高并发安全&#xff1a; 1&#xff09;双存储结构&#xff1a; 包含原子化的 read&#xff08;只读缓存&#xff0c;无锁快…...

时序约束高级进阶使用详解四:Set_False_Path

目录 一、背景 二、Set_False_Path 2.1 Set_false_path常用场景 2.2 Set_false_path的优势 2.3 Set_false_path设置项 2.4 细节区分 三、工程示例 3.1 工程代码 3.2 时序约束如下 3.3 时序报告 3.4 常规场景 3.4.1 设计代码 3.4.2 约束场景 3.4.3 约束对象总结…...

每日定投40刀BTC(16)20250428 - 20250511

定投 坚持 《恒道》 长河九曲本微流&#xff0c;岱岳摩云起累丘。 铁杵十年销作刃&#xff0c;寒窗五鼓淬成钩。已谙蜀栈盘空险&#xff0c;更蓄湘竹带泪遒。 莫问枯荣何日证&#xff0c;星霜满鬓亦从头。...

C# 高效处理海量数据:解决嵌套并行的性能陷阱

C# 高效处理海量数据&#xff1a;解决嵌套并行的性能陷阱 问题场景 假设我们需要在 10万条ID 和 1万个目录路径 中&#xff0c;快速找到所有满足以下条件的路径&#xff1a; 路径本身包含ID字符串该路径的子目录中也包含同名ID 初始代码采用Parallel.ForEach嵌套Task.Run&am…...

【Java EE初阶 --- 多线程(初阶)】线程安全问题

乐观学习&#xff0c;乐观生活&#xff0c;才能不断前进啊&#xff01;&#xff01;&#xff01; 我的主页&#xff1a;optimistic_chen 我的专栏&#xff1a;c语言 &#xff0c;Java 欢迎大家访问~ 创作不易&#xff0c;大佬们点赞鼓励下吧~ 文章目录 线程不安全的原因根本原因…...

从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升

Grab 是东南亚领先的超级应用&#xff0c;业务涵盖外卖配送、出行服务和数字金融&#xff0c;覆盖东南亚八个国家的 800 多个城市&#xff0c;每天为数百万用户提供一站式服务&#xff0c;包括点餐、购物、寄送包裹、打车、在线支付等。 为了优化 Spark 监控性能&#xff0c;Gr…...

《Redis应用实例》学习笔记,第一章:缓存文本数据

前言 最近在学习《Redis应用实例》&#xff0c;这本书并没有讲任何底层&#xff0c;而是聚焦实战用法&#xff0c;梳理了 32 种 Redis 的常见用法。我的笔记在 Github 上&#xff0c;用 Jupyter 记录&#xff0c;会有更好的阅读体验&#xff0c;作者的源码在这里&#xff1a;h…...

Redis 缓存

缓存介绍 Redis 最主要三个用途&#xff1a; 1&#xff09;存储数据&#xff08;内存数据库&#xff09; 2&#xff09;消息队列 3&#xff09;缓存 对于硬件的访问速度&#xff0c;通常有以下情况&#xff1a; CPU 寄存器 > 内存 > 硬盘 > 网络 缓存的核心…...

Apache Flink 与 Flink CDC:概念、联系、区别及版本演进解析

Apache Flink 与 Flink CDC:概念、联系、区别及版本演进解析 在实时数据处理和流式计算领域,Apache Flink 已成为行业标杆。而 Flink CDC(Change Data Capture) 作为其生态中的重要组件,为数据库的实时变更捕获提供了强大的能力。 本文将从以下几个方面进行深入讲解: 什…...

缓存(4):常见缓存 概念、问题、现象 及 预防问题

常见缓存概念 缓存特征: 命中率、最大元素、清空策略 命中率&#xff1a;命中率返回正确结果数/请求缓存次数 它是衡量缓存有效性的重要指标。命中率越高&#xff0c;表明缓存的使用率越高。 最大元素&#xff08;最大空间&#xff09;&#xff1a;缓存中可以存放的最大元素的…...

实战项目6(09)

目录 任务场景一 【r1配置】 【r2配置】 【r3配置】 ​​​​​​​任务场景二 【r1配置】 【r2配置】 【r3配置】 ​​​​​​​任务场景三 【r1配置】 【r2配置】 【r3配置】 ​​​​​​​任务场景一 按照下图完成网络拓扑搭建和配置 任务要求&#xff1a;在…...

MySQL 数据库故障排查指南

MySQL 数据库故障排查指南 本指南旨在帮助您识别和解决常见的 MySQL 数据库故障。我们将从问题识别开始&#xff0c;逐步深入到具体的故障类型和排查步骤。 1. 问题识别与信息收集 在开始排查之前&#xff0c;首先需要清晰地了解问题的现象和范围。 故障现象&#xff1a; 数…...

MacOS Python3安装

python一般在Mac上会自带&#xff0c;但是大多都是python2。 python2和python3并不存在上下版本兼容的情况&#xff0c;所以python2和python3可以同时安装在一台设备上&#xff0c;并且python3的一些语法和python2并不互通。 所以在Mac电脑上即使有自带python&#xff0c;想要使…...

锁相放大技术:从噪声中提取微弱信号的利器

锁相放大技术&#xff1a;从噪声中提取微弱信号的利器 一、什么是锁相放大&#xff1f; 锁相放大&#xff08;Lock-in Amplification&#xff09;是一种用于检测微弱信号的技术&#xff0c;它能够从强噪声背景中提取出我们感兴趣的特定信号。想象一下在嘈杂的派对上听清某个人…...

机器学习总结

1.BN【batch normalization】 https://zhuanlan.zhihu.com/p/93643523 减少 2.L1L2正则化 l1:稀疏 l2:权重减小 3.泛化误差 训练误差计算了训练集的误差&#xff0c;而泛化误差是计算全集的误差。 4.dropout 训练过程中神经元p的概率失活 一文彻底搞懂深度学习&#x…...

基于神经网络的无源雷达测向系统仿真实现

基于神经网络的无源雷达测向系统仿真实现 项目概述 本项目实现了基于卷积神经网络(CNN)的无源雷达方向到达角(DOA)估计系统。通过深度学习方法&#xff0c;系统能够从接收到的雷达信号中准确估计出信号源的方向&#xff0c;适用于单目标和多目标场景。相比传统的DOA估计算法&…...