跟我学c++高级篇——模板元编程之十三处理逻辑
一、元编程处理逻辑
无论在普通编程还是在元编程中,逻辑的处理,都是一个编程开始的必然经过。开发者对普通编程中的逻辑处理一般都非常清楚,不外乎条件谈判和循环处理。而条件判断常见的基本就是if语句(switch如果不考虑效率等情况,其实都类似)。而循环则有几类for,while等。
而开发者都知道,不管是在什么情况下编程,这种基本的逻辑处理,都是不可避免的。所以要想掌握好元编程,就必须掌握这些基本的逻辑处理,也就是在元编程中,如何进行条件处理和循环处理。
二、条件
在元编程中处理条件逻辑,一般有两大类,即传统的方法和C++新标准下的方法,主要有:
传统方法:
1、三目运算符
这个相对比较简单,看代码:
template<int N>
struct Comp
{constexpr static int result = N > 3 ? 3 : N;
};int main()
{std::cerr << Comp<7>::result << std::endl;
}
2、模拟的特化和偏特化
//偏特化
template<class T, int I> // 主模板
struct A
{void f(); // 成员声明
};template<class T, int I>
void A<T, I>::f() {} // 主模板成员定义// 部分特化
template<class T>
struct A<T, 2>
{void f();void g();void h();
};
//全特化
#include <type_traits>template<typename T> // 主模板
struct is_void : std::false_type {};
template<> // 对 T = void 的显式特化
struct is_void<void> : std::true_type {};int main()
{static_assert(is_void<char>::value == false,"对于任何非 void 的类型 T,该类均派生自 false_type");static_assert(is_void<void>::value == true,"但当 T 是 void 时,类派生自 true_type");
}
3、SFINAE技术
比较典型的是std::enable_if,std::is_same等都能实现某种条件判断,如下面的例子:
template<class T>
typename std::enable_if<std::is_trivially_default_constructible<T>::value>::typeconstruct(T*)
{std::cout << "默认构造可平凡默认构造的 T\n";
}
c++11标准及以后:
1、std::conditional
一般开发者在非模板编程中用到还是比较少的,但在模板开发中,还是比较常见的,看代码:
//c++11
#include <iostream>
#include <type_traits>
#include <typeinfo>int main()
{using Type1 = std::conditional<true, int, double>::type;using Type2 = std::conditional<false, int, double>::type;using Type3 = std::conditional<sizeof(int) >= sizeof(double), int, double>::type;std::cout << typeid(Type1).name() << '\n';std::cout << typeid(Type2).name() << '\n';std::cout << typeid(Type3).name() << '\n';
}
//c++17
template<bool B>
using MyType = std::conditional_t<B, int, double>;
2、C++17的 if constexpr
template<typename T>
constexpr auto dowith(T t) {if constexpr (std::is_pointer_v<T>) {return *t;} else if constexpr (std::is_array_v<T>) {return sizeof(T);} else {return t;}
}constexpr int d = 30;
static_assert(dowith(2) == 2, "");
static_assert(dowith(&d) == 30, "");
static_assert(dowith("arr") == 5, "");//编译错误
3、Concepts
这个在前面反复分析过,只给一个简单的例子:
template<class T, class U>
concept Derived = std::is_base_of<U, T>::value;
不同的概念来限制不同的实例的生成,则可以实现条件逻辑的处理。
如果有对这些技术不太熟悉的,可翻看前面的相关文章或直接搜索相关资料,特别是SFINAE的资料,还是比较多的。不过对于未接触过模板编程或者经验较少的开发者来说,学习和应用起来还是有一些难度的。
三、循环
说了条件逻辑处理,就可以看元编程的循环逻辑处理了,在元编程中,循环相对来说要麻烦一些。主要可以分为以下几种:
1、递归模拟
这个最常见的就是斐波那切数列的元编程的例子,在前面也提到过,这里再看一下:
template<int N>
constexpr int factorial() {return N * factorial<N-1>();
}template<>
constexpr int factorial<0>() {return 1;
}static_assert(factorial<5>() == 120, "");
其展开的过程如下:
template<int N>
inline constexpr int factorial()
{return N * factorial<N - 1>();
}/* First instantiated from: insights.cpp:11 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
inline constexpr int factorial<5>()
{return 5 * factorial<5 - 1>();
}
#endif/* First instantiated from: insights.cpp:3 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
inline constexpr int factorial<4>()
{return 4 * factorial<4 - 1>();
}
#endif/* First instantiated from: insights.cpp:3 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
inline constexpr int factorial<3>()
{return 3 * factorial<3 - 1>();
}
#endif/* First instantiated from: insights.cpp:3 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
inline constexpr int factorial<2>()
{return 2 * factorial<2 - 1>();
}
#endif/* First instantiated from: insights.cpp:3 */
#ifdef INSIGHTS_USE_TEMPLATE
template<>
inline constexpr int factorial<1>()
{return 1 * factorial<1 - 1>();
}
#endiftemplate<>
inline constexpr int factorial<0>()
{return 1;
}/* PASSED: static_assert(factorial<5>() == 120, ""); */
这里就可以认为递归模拟了循环展开。
2、使用折叠表达式
这种方法应用于一些比较特殊的场景,看代码:
#include <iostream>
#include <tuple>template<typename... Args>
void traverse(const std::tuple<Args...>& t) {auto print = [](const auto&... args) {(..., (std::cout << args << " "));};std::apply(print, t);
}int main() {std::tuple<int, double, std::string> t(1, 2.3, "test");traverse(t); return 0;
}
3、使用一些模板的技巧实现循环,包括标准迭代的版本
//基本
#include <iostream>
#include <type_traits>template<typename... Ts>
struct TypeContainer {};template<typename Candidate, typename Container>
struct is_contained
{constexpr static bool value = false;
};template<typename Candidate>
struct is_contained<Candidate, TypeContainer<>>
{constexpr static bool value = false;
};template<typename Candidate, typename Cur, typename... Ts>
struct is_contained<Candidate, TypeContainer<Cur, Ts...>>
{constexpr static bool value =std::is_same_v<Candidate, Cur> ||is_contained<Candidate, TypeContainer<Ts...>>::value;
};int main()
{std::cout << is_contained<char, TypeContainer<float, int, double>>::value << std::endl;std::cout << is_contained<double, TypeContainer<float, int, double>>::value << std::endl;std::cout << is_contained<int, TypeContainer<>>::value << std::endl;
}
//c++17
template<typename Candidate, typename... Ts>
struct is_contained;template<typename Candidate, typename... Ts>
struct is_contained<Candidate, TypeContainer<Ts...>>
{constexpr static bool value = []() {if constexpr (sizeof...(Ts) == 0) {return false;} else {return (std::is_same_v<Candidate, Ts> || ...);}}();
};
//c++20
template<typename Candidate, typename... Ts>
constexpr bool is_contained_v = (std::is_same_v<Candidate, Ts> || ...);// 使用示例
static_assert(is_contained_v<double, float, int, double>);
static_assert(!is_contained_v<char, float, int, double>);
4、使用const方式使用传统的for展开
看下面的代码:
#include <iostream>
#include <array>template<typename T, size_t N>
constexpr void traverse(const std::array<T, N>& arr) {for (size_t i = 0; i < N; ++i) {std::cout << arr[i] << " ";}
}int main() {constexpr std::array<int, 4> arr{2, 5, 3, 7};traverse(arr); return 0;
}
5、使用std::index_sequence
这个就不举例子了,前面有不少。
四、总结
在前面的模板和元编程中,其实对这些技术都有过仔细的分析,只不没有专门的组织起来,形成一个系统的说明。本文主要是让开发者从学习编程语言的习惯来学习一下元编程中的相关技术。
在这个AI有着泛滥的趋势的大形势下,要耐心,切不可浮躁!
相关文章:
跟我学c++高级篇——模板元编程之十三处理逻辑
一、元编程处理逻辑 无论在普通编程还是在元编程中,逻辑的处理,都是一个编程开始的必然经过。开发者对普通编程中的逻辑处理一般都非常清楚,不外乎条件谈判和循环处理。而条件判断常见的基本就是if语句(switch如果不考虑效率等情…...
组合模式(Composite Pattern)详解
文章目录 1. 什么是组合模式?2. 为什么需要组合模式?3. 组合模式的核心概念4. 组合模式的结构5. 组合模式的基本实现5.1 基础示例:文件系统5.2 透明组合模式 vs 安全组合模式5.2.1 透明组合模式5.2.2 安全组合模式5.3 实例:公司组织结构5.4 实例:GUI组件树6. Java中组合模…...
最长字符串 / STL+BFS
题目 代码 #include <bits/stdc.h> using namespace std;int main() {map<vector<int>, vector<string>> a;set<vector<int>> c;vector<int> initial(26, 0);c.insert(initial);ifstream infile("words.txt");string s;w…...
C++ stl中的set、multiset、map、multimap的相关函数用法
文章目录 序列式容器和关联式容器树形结构和哈希结构树形结构哈希结构 键值对setset的相关介绍set定义方式set相关成员函数multiset mapmap的相关介绍map定义方式map的相关操作1.map的插入2.map的查找3.map的删除 序列式容器和关联式容器 CSTL中包含了序列式容器和关联式容器&…...
普通IT的股票交易成长史--20250511 美元与美股强相关性
声明:本文章的内容非原创。参考了yt博主Andy Lee的观点,为了加深自己的学习印象才做的复盘,不构成投资建议。感谢他的无私奉献! 送给自己的话: 仓位就是生命,绝对不能满仓!!&#x…...
系统架构设计(四):架构风格总结
黑板 概念 黑板体系架构是一种用于求解复杂问题的软件架构风格,尤其适合知识密集型、推理驱动、数据不确定性大的场景。 它模拟了人类专家协同解决问题的方式,通过一个共享的“黑板”协同多个模块(专家)逐步构建解决方案。 组…...
ElasticSearch进阶
一、文档批量操作 1.批量获取文档数据 批量获取文档数据是通过_mget的API来实现的 (1)在URL中不指定index和type 请求方式:GET请求地址:_mget功能说明 : 可以通过ID批量获取不同index和type的数据请求参数: docs : 文档数组参…...
0基础 | L298N电机驱动模块 | 使用指南
引言 在嵌入式系统开发中,电机驱动是一个常见且重要的功能。L298N是一款高电压、大电流电机驱动芯片,广泛应用于各种电机控制场景,如直流电机的正反转、调速,以及步进电机的驱动等。本文将详细介绍如何使用51单片机来控制L298N电…...
Synchronized与锁升级
一、面试题 1)谈谈你对Synchronized的理解 2)Sychronized的锁升级你聊聊 3)Synchronized实现原理,monitor对象什么时候生成的?知道monitor的monitorenter和monitorexit这两个是怎么保证同步的嘛&#…...
MNIST DDP 分布式数据并行
Distributed Data Parallel 转自我的个人博客:https://shar-pen.github.io/2025/05/04/torch-distributed-series/3.MNIST_DDP/ The difference between DistributedDataParallel and DataParallel is: DistributedDataParallel uses multiprocessing where a proc…...
语音合成之十三 中文文本归一化在现代语音合成系统中的应用与实践
中文文本归一化在现代语音合成系统中的应用与实践 引言理解中文文本归一化(TN)3 主流LLM驱动的TTS系统及其对中文文本归一化的需求分析A. SparkTTS(基于Qwen2.5)与文本归一化B. CosyVoice(基于Qwen)与文本归…...
9.1.领域驱动设计
目录 一、领域驱动设计核心哲学 战略设计与战术设计的分野 • 战略设计:限界上下文(Bounded Context)与上下文映射(Context Mapping) • 战术设计:实体、值对象、聚合根、领域服务的构建原则 统一语言&am…...
如何配置光猫+路由器实现外网IP访问内部网络?
文章目录 前言一、网络拓扑理解二、准备工作三、光猫配置3.1 光猫工作模式3.2 光猫端口转发配置(路由模式时) 四、路由器配置4.1 路由器WAN口配置4.2 端口转发配置4.3 动态DNS配置(可选) 五、防火墙设置六、测试配置七、安全注意事…...
C++题题题题题题题题题踢踢踢
后缀表达式求值 #include<bits/stdc.h> #include<algorithm> using namespace std; string a[100]; string b[100]; stack<string> op; int la0,lb0; int main(){while(true){cin>>a[la];if(a[la]".") break;la;}for(int i0;i<la;i){if(…...
M. Moving Both Hands(反向图+Dijkstra)
Problem - 1725M - Codeforces 题目大意:给你一个有向图,起始点在1,问起始点分别与另外n-1个 点相遇的最短时间,无法相遇输出-1。 思路:反向建图,第一层建原图,第二层建反向图,两层…...
11、参数化三维产品设计组件 - /设计与仿真组件/parametric-3d-product-design
76个工业组件库示例汇总 参数化三维产品设计组件 (注塑模具与公差分析) 概述 这是一个交互式的 Web 组件,旨在演示简单的三维零件(如带凸台的方块)的参数化设计过程,并结合注塑模具设计(如开模动画)与公…...
智能座舱开发工程师面试题
一、基础知识类 简述智能座舱的核心组成部分及其功能 要求从硬件(如显示屏、传感器、控制器)和软件(操作系统、中间件、应用程序)层面展开,阐述各部分如何协同实现座舱的智能化体验。 对比 Android Automotive、QNX…...
【连载14】基础智能体的进展与挑战综述-多智能体系统设计
基础智能体的进展与挑战综述 从类脑智能到具备可进化性、协作性和安全性的系统 【翻译团队】刘军(liujunbupt.edu.cn) 钱雨欣玥 冯梓哲 李正博 李冠谕 朱宇晗 张霄天 孙大壮 黄若溪 在基于大语言模型的多智能体系统(LLM-MAS)中,合作目标和合…...
06.three官方示例+编辑器+AI快速学习webgl_animation_skinning_additive_blending
本实例主要讲解内容 这个Three.js示例展示了**骨骼动画(Skinning)和变形动画(Morphing)**的结合应用。通过加载一个机器人模型,演示了如何同时控制角色的肢体动作和面部表情,实现更加丰富的角色动画效果。 核心技术包括: 多动画混合与淡入…...
【Java学习日记36】:javabeen学生系统
ideal快捷键...
.Net HttpClient 使用请求数据
HttpClient 使用请求数据 0、初始化及全局设置 //初始化:必须先执行一次 #!import ./ini.ipynb1、使用url 传参 参数放在Url里,形如:http://www.baidu.com?namezhangsan&age18, GET、Head请求用的比较多。优点是简单、方便࿰…...
详解 Java 并发编程 synchronized 关键字
synchronized 关键字的作用 synchronized 是 Java 中用于实现线程同步的关键字,主要用于解决多线程环境下的资源竞争问题。它可以修饰方法或代码块,确保同一时间只有一个线程可以执行被修饰的代码,从而避免数据不一致的问题。 synchronized…...
《Go小技巧易错点100例》第三十二篇
本期分享: 1.sync.Map的原理和使用方式 2.实现有序的Map sync.Map的原理和使用方式 sync.Map的底层结构是通过读写分离和无锁读设计实现高并发安全: 1)双存储结构: 包含原子化的 read(只读缓存,无锁快…...
时序约束高级进阶使用详解四:Set_False_Path
目录 一、背景 二、Set_False_Path 2.1 Set_false_path常用场景 2.2 Set_false_path的优势 2.3 Set_false_path设置项 2.4 细节区分 三、工程示例 3.1 工程代码 3.2 时序约束如下 3.3 时序报告 3.4 常规场景 3.4.1 设计代码 3.4.2 约束场景 3.4.3 约束对象总结…...
每日定投40刀BTC(16)20250428 - 20250511
定投 坚持 《恒道》 长河九曲本微流,岱岳摩云起累丘。 铁杵十年销作刃,寒窗五鼓淬成钩。已谙蜀栈盘空险,更蓄湘竹带泪遒。 莫问枯荣何日证,星霜满鬓亦从头。...
C# 高效处理海量数据:解决嵌套并行的性能陷阱
C# 高效处理海量数据:解决嵌套并行的性能陷阱 问题场景 假设我们需要在 10万条ID 和 1万个目录路径 中,快速找到所有满足以下条件的路径: 路径本身包含ID字符串该路径的子目录中也包含同名ID 初始代码采用Parallel.ForEach嵌套Task.Run&am…...
【Java EE初阶 --- 多线程(初阶)】线程安全问题
乐观学习,乐观生活,才能不断前进啊!!! 我的主页:optimistic_chen 我的专栏:c语言 ,Java 欢迎大家访问~ 创作不易,大佬们点赞鼓励下吧~ 文章目录 线程不安全的原因根本原因…...
从InfluxDB到StarRocks:Grab实现Spark监控平台10倍性能提升
Grab 是东南亚领先的超级应用,业务涵盖外卖配送、出行服务和数字金融,覆盖东南亚八个国家的 800 多个城市,每天为数百万用户提供一站式服务,包括点餐、购物、寄送包裹、打车、在线支付等。 为了优化 Spark 监控性能,Gr…...
《Redis应用实例》学习笔记,第一章:缓存文本数据
前言 最近在学习《Redis应用实例》,这本书并没有讲任何底层,而是聚焦实战用法,梳理了 32 种 Redis 的常见用法。我的笔记在 Github 上,用 Jupyter 记录,会有更好的阅读体验,作者的源码在这里:h…...
Redis 缓存
缓存介绍 Redis 最主要三个用途: 1)存储数据(内存数据库) 2)消息队列 3)缓存 对于硬件的访问速度,通常有以下情况: CPU 寄存器 > 内存 > 硬盘 > 网络 缓存的核心…...
Apache Flink 与 Flink CDC:概念、联系、区别及版本演进解析
Apache Flink 与 Flink CDC:概念、联系、区别及版本演进解析 在实时数据处理和流式计算领域,Apache Flink 已成为行业标杆。而 Flink CDC(Change Data Capture) 作为其生态中的重要组件,为数据库的实时变更捕获提供了强大的能力。 本文将从以下几个方面进行深入讲解: 什…...
缓存(4):常见缓存 概念、问题、现象 及 预防问题
常见缓存概念 缓存特征: 命中率、最大元素、清空策略 命中率:命中率返回正确结果数/请求缓存次数 它是衡量缓存有效性的重要指标。命中率越高,表明缓存的使用率越高。 最大元素(最大空间):缓存中可以存放的最大元素的…...
实战项目6(09)
目录 任务场景一 【r1配置】 【r2配置】 【r3配置】 任务场景二 【r1配置】 【r2配置】 【r3配置】 任务场景三 【r1配置】 【r2配置】 【r3配置】 任务场景一 按照下图完成网络拓扑搭建和配置 任务要求:在…...
MySQL 数据库故障排查指南
MySQL 数据库故障排查指南 本指南旨在帮助您识别和解决常见的 MySQL 数据库故障。我们将从问题识别开始,逐步深入到具体的故障类型和排查步骤。 1. 问题识别与信息收集 在开始排查之前,首先需要清晰地了解问题的现象和范围。 故障现象: 数…...
MacOS Python3安装
python一般在Mac上会自带,但是大多都是python2。 python2和python3并不存在上下版本兼容的情况,所以python2和python3可以同时安装在一台设备上,并且python3的一些语法和python2并不互通。 所以在Mac电脑上即使有自带python,想要使…...
锁相放大技术:从噪声中提取微弱信号的利器
锁相放大技术:从噪声中提取微弱信号的利器 一、什么是锁相放大? 锁相放大(Lock-in Amplification)是一种用于检测微弱信号的技术,它能够从强噪声背景中提取出我们感兴趣的特定信号。想象一下在嘈杂的派对上听清某个人…...
机器学习总结
1.BN【batch normalization】 https://zhuanlan.zhihu.com/p/93643523 减少 2.L1L2正则化 l1:稀疏 l2:权重减小 3.泛化误差 训练误差计算了训练集的误差,而泛化误差是计算全集的误差。 4.dropout 训练过程中神经元p的概率失活 一文彻底搞懂深度学习&#x…...
基于神经网络的无源雷达测向系统仿真实现
基于神经网络的无源雷达测向系统仿真实现 项目概述 本项目实现了基于卷积神经网络(CNN)的无源雷达方向到达角(DOA)估计系统。通过深度学习方法,系统能够从接收到的雷达信号中准确估计出信号源的方向,适用于单目标和多目标场景。相比传统的DOA估计算法&…...
《用MATLAB玩转游戏开发》Flappy Bird:小鸟飞行大战MATLAB趣味实现
《用MATLAB玩转游戏开发:从零开始打造你的数字乐园》基础篇(2D图形交互)-Flappy Bird:小鸟飞行大战MATLAB趣味实现 文章目录 《用MATLAB玩转游戏开发:从零开始打造你的数字乐园》基础篇(2D图形交互…...
【C/C++】跟我一起学_C++同步机制效率对比与优化策略
文章目录 C同步机制效率对比与优化策略1 效率对比2 核心同步机制详解与适用场景3 性能优化建议4 场景对比表5 总结 C同步机制效率对比与优化策略 多线程编程中,同步机制的选择直接影响程序性能与资源利用率。 主流同步方式: 互斥锁原子操作读写锁条件变量无锁数据…...
linux 三剑客命令学习
grep Grep 是一个命令行工具,用于在文本文件中搜索打印匹配指定模式的行。它的名称来自于 “Global Regular Expression Print”(全局正则表达式打印),它最初是由 Unix 系统上的一种工具实现的。Grep 工具在 Linux 和其他类 Unix…...
【js基础笔记] - 包含es6 类的使用
文章目录 js基础js 预解析js变量提升 DOM相关知识节点选择器获取属性节点创建节点插入节点替换节点克隆节点获取节点属性获取元素尺寸获取元素偏移量标准的dom事件流阻止事件传播阻止默认行为事件委托 正则表达式js复杂类型元字符 - 基本元字符元字符 - 边界符元字符 - 限定符元…...
《Linux命令行大全(第2版)》PDF下载
内容简介 本书对Linux命令行进行详细的介绍,全书内容包括4个部分,第一部分由Shell的介绍开启命令行基础知识的学习之旅;第二部分讲述配置文件的编辑,如何通过命令行控制计算机;第三部分探讨常见的任务与必备工具&…...
补补表面粗糙度的相关知识(一)
表面粗糙度,或简称粗糙度,是指表面不光滑的特性。这个在机械加工行业内可以说是绝绝的必备知识之一,但往往也是最容易被忽略的,因为往往天天接触的反而不怎么关心,或者没有真正的去认真学习掌握。对于像我一样…...
Python实用工具:pdf转doc
该工具只能使用在英文目录下,且无法转换出图片,以及文本特殊格式。 下载依赖项 pip install PyPDF2 升级依赖项 pip install PyPDF2 --upgrade 查看库版本 python -c "import PyPDF2; print(PyPDF2.__version__)" 下载第二个依赖项 pip i…...
基于Dify实现对Excel的数据分析
在dify部署完成后,大家就可以基于此进行各种应用场景建设,目前dify支持聊天助手(包括对话工作流)、工作流、agent等模式的场景建设,我们在日常工作中经常会遇到各种各样的数据清洗、格式转换处理、数据统计成图等数据分…...
Win全兼容!五五 Excel Word 转 PDF 工具解决多场景转换难题
各位办公小能手们!今天给你们介绍一款超牛的工具——五五Excel Word批量转PDF工具V5.5版。这玩意儿专注搞批量格式转换,能把Excel(.xls/.xlsx)和Word(.doc/.docx)文档唰唰地变成PDF格式。 先说说它的核心功…...
java加强 -Collection集合
集合是一种容器,类似于数组,但集合的大小可变,开发中也非常常用。Collection代表单列集合,每个元素(数据)只包含1个值。Collection集合分为两类,List集合与set集合。 特点 List系列集合&#…...
BGP实验练习1
需求: 要求五台路由器的环回地址均可以相互访问 需求分析: 1.图中存在五个路由器 AR1、AR2、AR3、AR4、AR5,分属不同自治系统(AS),AR1 在 AS 100,AR2 - AR4 在 AS 200,AR5 在 AS …...
Nginx location静态文件映射配置
遇到问题? 以下这个Nginx的配置,愿意为访问https://abc.com会指向一个动态网站,访问https://abc.com/tongsongzj时会访问静态网站,但是配置之后(注意看后面那个location /tongsongzj/静态文件映射的配置)&…...