G1学习打卡
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
import argparse
import os
import numpy as np
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch## 创建文件夹
os.makedirs(r"C:\Users\11054\Desktop\kLearning\G1/images/", exist_ok=True) # 记录训练过程的图片效果
os.makedirs(r"C:\Users\11054\Desktop\kLearning\G1/save/", exist_ok=True) # 训练完成时模型保存的位置
os.makedirs(r"C:\Users\11054\Desktop\kLearning\G1/datasets/mnist", exist_ok=True) # 下载数据集存放的位置## 超参数配置
n_epochs = 50
batch_size= 64
lr = 0.0002
b1 = 0.5
b2 = 0.999
n_cpu = 2
latent_dim= 100
img_size = 28
channels = 1
sample_interval=500# 图像的尺寸:(1, 28, 28), 和图像的像素面积:(784)
img_shape = (channels, img_size, img_size)
img_area = np.prod(img_shape)# 设置cuda:(cuda:0)
cuda = True if torch.cuda.is_available() else False
print(cuda)
C:\Users\11054\.conda\envs\py311\Lib\site-packages\torch\utils\_pytree.py:185: FutureWarning: optree is installed but the version is too old to support PyTorch Dynamo in C++ pytree. C++ pytree support is disabled. Please consider upgrading optree using `python3 -m pip install --upgrade 'optree>=0.13.0'`.warnings.warn(False
# mnist数据集下载
mnist = datasets.MNIST(root=r'C:\Users\11054\Desktop\kLearning\G1/datasets/', train=True, download=True, transform=transforms.Compose([transforms.Resize(img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),
)
100%|██████████████████████████████████████████████████████████████████████████████| 9.91M/9.91M [01:23<00:00, 119kB/s]
100%|██████████████████████████████████████████████████████████████████████████████| 28.9k/28.9k [00:00<00:00, 136kB/s]
100%|██████████████████████████████████████████████████████████████████████████████| 1.65M/1.65M [00:03<00:00, 459kB/s]
100%|█████████████████████████████████████████████████████████████████████████████| 4.54k/4.54k [00:00<00:00, 2.75MB/s]
# 配置数据到加载器
dataloader = DataLoader(mnist,batch_size=batch_size,shuffle=True,
)
三、定义模型
- 定义鉴别器
这段代码定义了一个名为Discriminator的类,它继承自nn.Module。这个类是一个判别器模型,用于判断输入图像是否为真实图像。下面是对代码中每一行的详细解释:
- class Discriminator(nn.Module)::定义一个名为Discriminator的类,它继承自nn.Module。nn.Module是PyTorch中的一个基类,用于构建神经网络模型。
- def init(self)::定义类的构造函数,用于初始化模型的参数和层。
- super(Discriminator,self).init():调用父类nn.Module的构造函数,以确保正确地初始化模型。
- self.model = nn.Sequential(:创建一个nn.Sequential对象,它是一个容器,用于按顺序堆叠多个神经网络层。
- nn.Linear(img_area,512),:添加一个线性层,输入大小为img_area(图像区域的像素数),输出大小为512。这个层用于将输入图像展平并映射到一个新的特征空间。
- nn.LeakyReLU(0.2,inplace=True),:添加一个Leaky ReLU激活函数,其负斜率为0.2。inplace=True表示在原始数据上进行操作,以节省内存。
- nn.Linear(512,256),:添加一个线性层,输入大小为512,输出大小为256。这个层用于进一步将特征映射到更小的特征空间。
- nn.LeakyReLU(0.2,inplace=True),:再次添加一个Leaky ReLU激活函数,与之前的层相同。
- nn.Linear(256,1),:添加一个线性层,输入大小为256,输出大小为1。这个层用于将特征映射到一个标量值,用于表示输入图像的真实性。
- nn.Sigmoid(),:添加一个Sigmoid激活函数,将输出值限制在0到1之间。这可以解释为输入图像为真实图像的概率。
- def forward(self, img)::定义模型的前向传播函数,用于计算输入图像的输出。
- img_flat = img.view(img.size(0),-1):将输入图像img展平为一个一维向量。img.size(0)表示批量大小,-1表示自动计算剩余维度的大小。
- validity = self.model(img_flat):将展平后的图像传递给之前定义的nn.Sequential模型,得到一个表示图像真实性的标量值。
- return validity:返回计算得到的图像真实性值。
# 定义判别器
# 将图片28x28展开成784,然后通过多层感知器,中间经过斜率设置为0.2的LeakyReLU激活函数,
# 最后接sigmoid激活函数得到一个0到1之间的概率进行二分类
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Linear(img_area, 512), # 输入特征数为784,输出为512nn.LeakyReLU(0.2, inplace=True), # 进行非线性映射nn.Linear(512, 256), # 输入特征数为512,输出为256nn.LeakyReLU(0.2, inplace=True), # 进行非线性映射nn.Linear(256, 1), # 输入特征数为256,输出为1nn.Sigmoid(), # sigmoid是一个激活函数,二分类问题中可将实数映射到[0, 1],作为概率值, 多分类用softmax函数)def forward(self, img):img_flat = img.view(img.size(0), -1) # 鉴别器输入是一个被view展开的(784)的一维图像:(64, 784)validity = self.model(img_flat) # 通过鉴别器网络return validity
# 定义生成器
# 输入一个100维的0~1之间的高斯分布,然后通过第一层线性变换将其映射到256维,
# 然后通过LeakyReLU激活函数,接着进行一个线性变换,再经过一个LeakyReLU激活函数,
# 然后经过线性变换将其变成784维,最后经过Tanh激活函数是希望生成的假的图片数据分布, 能够在-1~1之间。
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()## 模型中间块儿def block(in_feat, out_feat, normalize=True): # block(in, out )layers = [nn.Linear(in_feat, out_feat)] # 线性变换将输入映射到out维if normalize:layers.append(nn.BatchNorm1d(out_feat, 0.8)) # 正则化layers.append(nn.LeakyReLU(0.2, inplace=True)) # 非线性激活函数return layers## prod():返回给定轴上的数组元素的乘积:1*28*28=784self.model = nn.Sequential(*block(latent_dim, 128, normalize=False), # 线性变化将输入映射 100 to 128, 正则化, LeakyReLU*block(128, 256), # 线性变化将输入映射 128 to 256, 正则化, LeakyReLU*block(256, 512), # 线性变化将输入映射 256 to 512, 正则化, LeakyReLU*block(512, 1024), # 线性变化将输入映射 512 to 1024, 正则化, LeakyReLUnn.Linear(1024, img_area), # 线性变化将输入映射 1024 to 784nn.Tanh() # 将(784)的数据每一个都映射到[-1, 1]之间)## view():相当于numpy中的reshape,重新定义矩阵的形状:这里是reshape(64, 1, 28, 28)def forward(self, z): # 输入的是(64, 100)的噪声数据imgs = self.model(z) # 噪声数据通过生成器模型imgs = imgs.view(imgs.size(0), *img_shape) # reshape成(64, 1, 28, 28)return imgs
## 创建生成器,判别器对象
generator = Generator()
discriminator = Discriminator()## 首先需要定义loss的度量方式 (二分类的交叉熵)
criterion = torch.nn.BCELoss()## 其次定义 优化函数,优化函数的学习率为0.0003
## betas:用于计算梯度以及梯度平方的运行平均值的系数
optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr, betas=(b1, b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2))## 如果有显卡,都在cuda模式中运行
if torch.cuda.is_available():generator = generator.cuda()discriminator = discriminator.cuda()criterion = criterion.cuda()
## 进行多个epoch的训练
for epoch in range(n_epochs): # epoch:50for i, (imgs, _) in enumerate(dataloader): # imgs:(64, 1, 28, 28) _:label(64)## =============================训练判别器==================## view(): 相当于numpy中的reshape,重新定义矩阵的形状, 相当于reshape(128,784) 原来是(128, 1, 28, 28)imgs = imgs.view(imgs.size(0), -1) # 将图片展开为28*28=784 imgs:(64, 784)real_img = Variable(imgs) # 将tensor变成Variable放入计算图中,tensor变成variable之后才能进行反向传播求梯度real_label = Variable(torch.ones(imgs.size(0), 1)) ## 定义真实的图片label为1fake_label = Variable(torch.zeros(imgs.size(0), 1)) ## 定义假的图片的label为0## ---------------------## Train Discriminator## 分为两部分:1、真的图像判别为真;2、假的图像判别为假## ---------------------## 计算真实图片的损失real_out = discriminator(real_img) # 将真实图片放入判别器中loss_real_D = criterion(real_out, real_label) # 得到真实图片的lossreal_scores = real_out # 得到真实图片的判别值,输出的值越接近1越好## 计算假的图片的损失## detach(): 从当前计算图中分离下来避免梯度传到G,因为G不用更新z = Variable(torch.randn(imgs.size(0), latent_dim)) ## 随机生成一些噪声, 大小为(128, 100)fake_img = generator(z).detach() ## 随机噪声放入生成网络中,生成一张假的图片。fake_out = discriminator(fake_img) ## 判别器判断假的图片loss_fake_D = criterion(fake_out, fake_label) ## 得到假的图片的lossfake_scores = fake_out ## 得到假图片的判别值,对于判别器来说,假图片的损失越接近0越好## 损失函数和优化loss_D = loss_real_D + loss_fake_D # 损失包括判真损失和判假损失optimizer_D.zero_grad() # 在反向传播之前,先将梯度归0loss_D.backward() # 将误差反向传播optimizer_D.step() # 更新参数## -----------------## Train Generator## 原理:目的是希望生成的假的图片被判别器判断为真的图片,## 在此过程中,将判别器固定,将假的图片传入判别器的结果与真实的label对应,## 反向传播更新的参数是生成网络里面的参数,## 这样可以通过更新生成网络里面的参数,来训练网络,使得生成的图片让判别器以为是真的, 这样就达到了对抗的目的## -----------------z = Variable(torch.randn(imgs.size(0), latent_dim)) ## 得到随机噪声fake_img = generator(z) ## 随机噪声输入到生成器中,得到一副假的图片output = discriminator(fake_img) ## 经过判别器得到的结果## 损失函数和优化loss_G = criterion(output, real_label) ## 得到的假的图片与真实的图片的label的lossoptimizer_G.zero_grad() ## 梯度归0loss_G.backward() ## 进行反向传播optimizer_G.step() ## step()一般用在反向传播后面,用于更新生成网络的参数## 打印训练过程中的日志## item():取出单元素张量的元素值并返回该值,保持原元素类型不变if (i + 1) % 300 == 0:print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] [D real: %f] [D fake: %f]"% (epoch, n_epochs, i, len(dataloader), loss_D.item(), loss_G.item(), real_scores.data.mean(), fake_scores.data.mean()))## 保存训练过程中的图像batches_done = epoch * len(dataloader) + iif batches_done % sample_interval == 0:save_image(fake_img.data[:25], r"C:\Users\11054\Desktop\kLearning\G1/images/%d.png" % batches_done, nrow=5, normalize=True)
[Epoch 0/50] [Batch 299/938] [D loss: 1.097366] [G loss: 0.851174] [D real: 0.596493] [D fake: 0.427791]
[Epoch 0/50] [Batch 599/938] [D loss: 0.982202] [G loss: 1.788269] [D real: 0.712241] [D fake: 0.456241]
[Epoch 0/50] [Batch 899/938] [D loss: 1.020093] [G loss: 1.027379] [D real: 0.535230] [D fake: 0.255605]
## 保存模型
torch.save(generator.state_dict(), r'C:\Users\11054\Desktop\kLearning\G1/save/generator.pth')
torch.save(discriminator.state_dict(), r'C:\Users\11054\Desktop\kLearning\G1/save/discriminator.pth')
个人总结
- GAN的核心思想
GAN由**生成器(Generator)和判别器(Discriminator)**组成:
生成器:输入随机噪声(如100维高斯分布),输出伪造图像(如28x28的MNIST手写数字)。
判别器:输入真实图像或生成图像,输出一个概率值(0~1),判断图像是否为真。
对抗过程:生成器试图欺骗判别器,判别器则努力识破生成器的伪造,两者在对抗中共同提升。
- 关键实现细节
(1) 模型架构
生成器:
使用全连接层逐步提升维度(100 → 128 → 256 → 512 → 1024 → 784)。
激活函数:LeakyReLU(负斜率0.2)引入非线性,Tanh将输出限制在[-1, 1]。
批归一化(BatchNorm)加速训练(除第一层外)。
判别器:
输入图像展平为784维,通过全连接层降维(784 → 512 → 256 → 1)。
激活函数:LeakyReLU,输出层用Sigmoid进行二分类。
(2) 损失函数与优化
损失函数:二元交叉熵(BCELoss)。
判别器损失:loss_D = loss_real_D + loss_fake_D(真图判真 + 假图判假)。
生成器损失:loss_G = criterion(fake_out, real_label)(让假图被判为真)。
优化器:Adam(学习率0.0002,动量参数betas=(0.5, 0.999))。
(3) 训练技巧
判别器先更新:固定生成器,优先训练判别器(避免生成器过早“获胜”)。
梯度分离:生成器训练时用detach()切断判别器梯度回传。
结果可视化:定期保存生成图像(save_image),观察生成质量。
- 遇到的问题与解决
生成图像模糊:
原因:生成器过于简单或训练不足。
改进:增加网络深度(如扩展至1024维),延长训练轮数(n_epochs=50)。
模式崩溃(Mode Collapse):
现象:生成器只输出少数几种图像。
缓解:使用更复杂的损失(如Wasserstein GAN)或调整学习率。
硬件限制:
无GPU:训练速度较慢,改用小批量(batch_size=64)和轻量模型。
- 学习收获
理论到实践:从GAN的数学原理(最小化JS散度)到代码实现,理解了对抗训练的动态平衡。
调试经验:通过调整超参数(如学习率、LeakyReLU斜率)观察模型表现。
扩展思考:GAN的变体(如DCGAN、CycleGAN)在图像生成、风格迁移中的应用。
相关文章:
G1学习打卡
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 import argparse import os import numpy as np import torchvision.transforms as transforms from torchvision.utils import save_image from torch.utils.…...
8.2 对话框2
版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的 8.2.3 FolderBrowserDialog(文件夹对话框) 组件 FolderBrowserDialog组件,用于选择文件夹 Folder…...
Java中的列表(List):操作与实现详解
引言 列表(List)是Java集合框架中最基础且使用最频繁的线性数据结构。它允许有序存储元素,支持重复值和快速访问。本文将深入探讨Java列表的核心操作方法,并剖析两种经典实现类(ArrayList和LinkedList)的底…...
在kotlin的安卓项目中使用dagger
在 Kotlin 的 Android 项目中使用 Dagger(特别是 Dagger Hilt,官方推荐的简化版)进行依赖注入(DI)可以大幅提升代码的可测试性和模块化程度。 1. 配置 Dagger Hilt 1.1 添加依赖 在 bu…...
MongoDB常见面试题总结(上)
MongoDB 基础 MongoDB 是什么? MongoDB 是一个基于 分布式文件存储 的开源 NoSQL 数据库系统,由 C 编写的。MongoDB 提供了 面向文档 的存储方式,操作起来比较简单和容易,支持“无模式”的数据建模,可以存储比较复杂…...
leetcode6.Z字形变换
题目说是z字形变化,但其实模拟更像n字形变化,找到字符下标规律就逐个拼接就能得到答案 class Solution {public String convert(String s, int numRows) {if(numRows1)return s;StringBuilder stringBuilder new StringBuilder();for (int i 0; i <…...
VSCode中选择Anaconda的Python环境
1、安装Anaconda 2、安装VSCode 一、创建创建新的 Conda 环境 conda create --name myenv python3.8 conda activate myenv 二、在 VSCode 中配置 Conda 环境 1、打开 VSCode,安装 Python 插件。 2、按 CtrlShiftP 打开命令面板,输入并选择 Pytho…...
【基于规则】基于距离的相似性度量
基于点:设时两条序曲线分别为X,Y,在曲线上选取点Xx和Yy,计算点之间的距离,用来度量两条曲线的相似性。这类算法的精确度取决于选点的规则,以及距离的计算方式 欧几里得距离:不允许时间偏移,直接计算两个时序数据点之间的距离,适用于长度相同的序列 dtw:优化了选点的方…...
Python 序列构成的数组(当列表不是首选时)
当列表不是首选时 虽然列表既灵活又简单,但面对各类需求时,我们可能会有更好的选 择。比如,要存放 1000 万个浮点数的话,数组(array)的效率要高 得多,因为数组在背后存的并不是 float 对象&…...
LeetCode零钱兑换(动态规划)
题目描述 给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。 你可以认为每种硬币的数量是无…...
vscode+wsl 运行编译 c++
linux 的 windows 子系统(wsl)是 windows 的一项功能,可以安装 Linux 的发行版,例如(Ubuntu,Kali,Arch Linux)等,从而可以直接在 windows 下使用 Linux 应用程序…...
C++学习之libevent ②
目录 1.连接服务器函数bufferevent_socket_connect() 2.bufferevent缓冲区的读写函数bufferevent_write() bufferevent_read() 3.给bufferevent设置回调函数bufferevent_setcb() 4.bufferevent回调函数的函数原型 5.基于bufferevent的套接字客户端处…...
彩色路径 第32次CCF-CSP计算机软件能力认证
应该用dp做的但是我太懒懒得看题解了 留到考试的时候看 超时20分代码: #include<bits/stdc.h> using namespace std; int N, M, L, K; struct Edge {int to, length;Edge(int to, int length) :to(to), length(length) {} }; vector<int> color;//颜色…...
第1章 绪论
自1946年,第一台计算机问世以来,计算机产业飞速发展。为了编写出一个好得程序,必须分析待处理的对象的特征以及各处理对象之间存在的关系。这就是数据结构这门学科形成和发展的背景。 1.1什么是数据结构 数据结构是计算机科学中组织和存储数…...
SpringCloud微服务(一)Eureka+Nacos
一、认识 微服务技术对比: SpringCloud: 版本匹配: 二、服务拆分以及远程调用 消费者与提供者: Eureka: 搭建EurekaServer: Ribbon负载均衡: 实现原理: IRule:规则接口…...
Python 字典和集合(子类化UserDict)
本章内容的大纲如下: 常见的字典方法 如何处理查找不到的键 标准库中 dict 类型的变种set 和 frozenset 类型 散列表的工作原理 散列表带来的潜在影响(什么样的数据类型可作为键、不可预知的 顺序,等等) 子类化UserDict 就创造自…...
时区转换工具+PWA离线网页
时区转换工具PWA离线网页 一、时区转换工具对比 工具说明Date原生 JS API,有限的时区支持,无法指定时区,仅使用本地时区。Intl.DateTimeFormat原生格式化显示,可指定时区,但不能修改时区逻辑。luxon强烈推荐…...
Hadoop序列化与反序列化具体实践
首先创建两个类 两个类的代码 Student类: import org.apache.hadoop.io.Writable;import java.io.DataInput; import java.io.DataOutput; import java.io.IOException;public class Student implements Writable {public Student(String name, int age) {this.n…...
Github AI开发者生态最新动态今日速览(20250408)
以下是截至2025年4月8日的GitHub AI开发者生态最新动态速览,结合技术更新、工具发布及行业趋势: 1. GitHub Copilot 重大升级与生态扩展 Agent Mode全量发布:Copilot在VS Code中启用Agent模式,可自主完成多文件代码重构、测试驱动…...
通过扣子平台将数据写入飞书多维表格
目录 1.1 创建飞书开放平台应用 1.2 创建飞书多维表格 1.3 创建扣子平台插件 1.1 创建飞书开放平台应用 1.1.1 打开地址:飞书开放平台,点击创建应用 注:商店应用需要申请ISV资质,填写企业主体信息,个人的话&#x…...
WEB安全--内网渗透--Kerberos之AS_REQAS_REP
一、前言 之前的文章提到过,在内网的域环境中,服务器之间默认使用的是Kerberos协议。 光了解NTLM协议是远远不够的,为了内网渗透,我后面将详细介绍Kerberos协议的原理以及漏洞的利用。 二、Kerberos协议 Kerberos是一种网络身份…...
【Hadoop入门】Hadoop生态之MapReduce简介
1 MapReduce核心原理 MapReduce是一种分布式计算框架,专为处理大规模数据集设计。其核心理念是将复杂计算任务分解为两个核心阶段: Map阶段:将输入数据分割为独立片段,并行处理生成中间键值对Reduce阶段:对Map阶段输出…...
使用Scrapy编写图像下载程序示例
最近闲来无事想要用Scrapy库来编写一个图像下载程序。首先,我得回忆一下Scrapy的基本结构。Scrapy是一个强大的爬虫框架,适合用来抓取网页数据,包括图片。不过,用户可能不太熟悉Scrapy的具体用法,特别是图片下载的部分…...
Linux/树莓派网络配置、远程登录与图形界面访问实验
一.准备工作 1.修改网络适配器(选择本机网卡) 2.创建一个新的用户。 3.使用新用户登录,使用ip a指令查看IP(现代 Linux 发行版(如 Ubuntu、Debian、CentOS、Fedora 等))。 通过sudo arp-sca…...
01-Redis-基础
1 redis诞生历程 redis的作者笔名叫做antirez,2008年的时候他做了一个记录网站访问情况的系统,比如每天有多少个用户,多少个页面被浏览,访客的IP、操作系统、浏览器、使用的搜索关键词等等(跟百度统计、CNZZ功能一样)。最开始存储…...
MCP-Playwright: 赋予AI模型操控浏览器的能力
在人工智能快速发展的时代,我们一直在寻找让AI与现实世界更好地交互的方式。今天我想向大家介绍一个强大的开源项目:MCP-Playwright,它正在改变AI模型与Web环境交互的方式。 源码地址:https://github.com/executeautomation/mcp-…...
Scala集合计算高级函数及案例
一、说明 1.过滤:遍历集合,获取满足指定条件的元素组成新集合 2.转化 / 映射(map):将集合中的每个元素映射到某一个函数 List(1, 2, 3, 4, 5, 6, 7, 8, 9)中每个元素加 1,得到List(2, 3, 4, 5, 6, 7, 8,…...
如何测试一个API接口?从原理到实践详解
在微服务架构和前后端分离的现代软件开发中,API接口是系统的“血管”,承担着数据传输与逻辑处理的核心功能。本文将用通俗的语言,结合实例,系统讲解API接口测试的原理、方法及工具,助你掌握这一关键技能。 目录 …...
弹簧质点系统(C++实现)
本文实现一个简单的物理算法:弹簧质点系统(Mass-Spring System)。这是一个经典的物理模拟算法,常用于模拟弹性物体(如布料、弹簧等)的行为。我们将使用C来实现这个算法,并结合链表数据结构来管理…...
java设计模式-代理模式
代理模式(proxy) 基本介绍 1、代理模式:为一个对象提供一个替身,一控制对这个对象的访问。即通过代理对象访问目标对象。这样做的好处是:可以在目标对象实现的基础上,增强额外的功能操作,及扩展目标对象的功能。 2、被…...
【比赛编排软件的设计与实现】
有个朋友想要一个比赛编排软件,闲来无事,花几个晚上的时间帮忙编写了一下,主要本人也比较喜欢看NBA,想尝试实现类似的功能。最终实现功能展示如下: 】Reactor
核心代码 Epoller.hpp #pragma once#include "nocopy.hpp" #include <cerrno> #include <sys/epoll.h> #include <unistd.h> #include <string.h> #include "Log.hpp"class Epoller : public nocopy //类Epoller继承自nocopy类&a…...
山东大学计算机网络第五章习题解析
参考教材:计算机网络:自顶向下方法:原书第 8 版 / (美)詹姆斯F. 库罗斯(James F. Kurose),(美)基恩W. 罗斯(Keith W. Rose)著…...
openexr-2.3.0-windows编译
本文操作按照《c&c开源库编译指南》中内容规范编写,编译环境配置、工具下载、目录规划,及更多其他开源库编译方法请参考该文章。 c&c开源库编译指南:https://blog.csdn.net/binary0006/article/details/144086155 本文章中的源代码已…...
【NLP 面经 8】
目录 一、文本生成任务 模型架构方面 训练数据方面 生成策略方面 二、命名实体识别任务NER 模型架构方面 特征工程方面 训练优化方面 三、情感分析任务 模型架构方面 训练数据方面 超参数调整方面 四、计算余弦相似度并添加符合条件结果 提示: 思路与算法 任由深渊的…...
Qt项目——记事本
目录 前言工程文档一、功能介绍二、界面预览三、UI设计师工具四、给三个按钮设置贴图五、信号与槽六、实现文件打开功能代码实现代码实现 七、实现文件保存代码内容 八、实现文件关闭代码实现 九、显示高亮和行列位置代码实现 十、实现快捷功能代码实现 总结 前言 这个项目就是…...
WHAT - React 惰性初始化
目录 在 React 中如何使用惰性初始化示例:常规初始化 vs. 惰性初始化1. 常规初始化2. 惰性初始化 为什么使用惰性初始化示例:从 localStorage 获取值并使用惰性初始化总结 在 React 中,惰性初始化(Lazy Initialization)…...
HOW - 如何测试 React 代码
目录 一、使用 React 测试库:testing-library/react二、使用测试演练场:testing-playground.com三、使用 Cypress 或 Playwright 进行端到端测试四、使用 MSW 在测试中模拟网络请求 一、使用 React 测试库:testing-library/react testing-li…...
React 条件渲染
开发环境:Reacttsantd 通常你的组件会需要根据不同的情况显示不同的内容。在 React 中,你可以通过使用 JavaScript 的 if 语句、&& 和 ? : 运算符来选择性地渲染 JSX。 例子 我们在满足 isPacked{true} 条件的物品清单旁加上一个勾选符号✔。…...
使用 Canal 实现 MySQL 与 ES 数据同步的技术实践
前言 本文将详细讲解如何使用阿里的 Canal 工具,实现 MySQL 向 ES(Elasticsearch)的数据同步。 数据同步有多种方式,双写同步数据方式因性能慢、存在分布式事务及数据一致性问题、业务耦合度高且难以扩展,不适合采用…...
《实战AI智能体》什么是 Scrum 项目管理及为什么需要它
Scrum 项目管理是一种敏捷项目管理方法,强调团队合作、迭代开发和客户参与。它的核心概念包括 Scrum 团队、产品待办事项列表、Sprint、每日站立会议、Sprint 回顾会议等。Scrum 团队由产品负责人、Scrum 主管和开发团队组成,他们共同负责项目的规划、执行和交付: 产品待办事…...
智能硬件开发革命:低代码平台+物联网
物联网和低代码开发 初识物联网 物联网的概念 20 世纪末,随着计算机网络和通信技术的兴起,互联网开始走进并融入人们的生活。传统互联网通常以人作为主体,数据的产生和传输都在人的控制下进行,数据的应用结果也在具体的人身上得…...
「合诚」携手企企通共建新材料和健康产业采购数智化新生态
在科技革命与产业变革深度融合的时代背景下,新材料与健康产业正迎来数字化、智能化的快速发展。 技术突破与消费升级的双重驱动,推动着行业不断创新,同时也对企业的供应链管理提出了更高要求。 1、合诚:聚焦新材料与健康产业&am…...
ansible角色
一、角色 role 本质上就是目录 /etc/ansible/roles 1、创建角色 tree查看目录结构 在同一个角色中,相互引用文件、操作时,不需要添加任何路径 删除角色,将角色目录中的角色文件删除 案例:部署zabbix agent 执行角色...
WHAT - React 元素接收的 ref 详解
目录 1. ref 的基本概念2. 如何使用 ref2.1 基本用法2.2 类组件使用 createRef 3. forwardRef 转发 ref4. ref 的应用场景5. ref 和函数组件总结 在 React 中,ref(引用)用于访问 DOM 元素或类组件实例。它允许我们直接与元素进行交互…...
数字游戏(继Day 10)
主体: #include<stdio.h> #include<time.h> #include<stdlib.h>#include"mygetch.h"#define MAX 51 //定义测试字母的最大长度void help() {printf("\n****************************************");printf("\n*输入过程中无法退出…...
react 中将生成二维码保存到相册
需求:生成二维码,能保存到相册 框架用的 react 所以直接 qrcode.react 插件,然后直接用插件生成二维码,这里一定要写 renderAs{‘svg’} 属性,否则会报错,这里为什么会报错??&#…...
React-05React中props属性(传递数据),propTypes校验,类式与函数式组件props的使用
1.类式组件props基本数据读取与解构运算符传递 <script type"text/babel">// 创建组件class PersonalInfo extends React.Component {render() {// 读取props属性 并读取值console.log(props,this.props);return(<ul><li>姓名:{this.p…...