当前位置: 首页 > news >正文

OpenSceneGraph 中的 LOD详解

LOD (Level of Detail,细节层次) 是3D图形中一种重要的优化技术,OpenSceneGraph 通过 osg::LOD 类提供了完整的LOD支持。

一、LOD 基本概念

1. 什么是LOD

  • 核心思想:根据物体与相机的距离显示不同细节程度的模型

  • 目的:减少远处物体的渲染开销,提高渲染效率

  • 实现方式:预先准备多个细节版本的模型,运行时动态切换

2. OSG中的LOD特点

  • 继承自 osg::Group

  • 基于距离切换子节点

  • 支持平滑过渡(morphing)

  • 可与PagedLOD结合实现分页加载

二、基本用法

1. 创建LOD节点

osg::ref_ptr<osg::LOD> lodNode = new osg::LOD;

2. 添加不同细节级别的模型

// 参数:子节点, 最小距离, 最大距离
lodNode->addChild(highDetailModel, 0.0f, 50.0f);    // 0-50米显示高模
lodNode->addChild(mediumDetailModel, 50.0f, 200.0f); // 50-200米显示中模
lodNode->addChild(lowDetailModel, 200.0f, FLT_MAX);  // 200+米显示低模

3. 设置中心点(可选)

lodNode->setCenter(osg::Vec3(0,0,0)); // 设置距离计算的参考点

三、核心功能详解

1. 距离范围设置

// 设置/获取范围
lodNode->setRange(unsigned int childNo, float min, float max);
lodNode->getRange(unsigned int childNo, float& min, float& max);// 示例:修改第一个子节点的显示范围
lodNode->setRange(0, 0.0f, 100.0f); // 高模现在显示在0-100米

2. 半径影响因子

// 考虑物体自身半径调整切换距离
lodNode->setRadius(float radius); // 示例:大物体应更早切换为低模
lodNode->setRadius(10.0f); // 物体半径10米

3. 中心模式

// 设置距离计算基于包围球中心还是用户指定中心
lodNode->setCenterMode(osg::LOD::USE_BOUNDING_SPHERE_CENTER); // 默认
lodNode->setCenterMode(osg::LOD::USER_DEFINED_CENTER);        // 用户定义

四、高级用法

1. 与PagedLOD结合实现分页加载

osg::ref_ptr<osg::PagedLOD> pagedLod = new osg::PagedLOD;
pagedLod->setFileName(0, "high_res_model.osgb"); // 高细节
pagedLod->setRange(0, 0, 100);                  // 0-100米
pagedLod->setFileName(1, "low_res_model.osgb");  // 低细节
pagedLod->setRange(1, 100, FLT_MAX);            // 100+米

2. 动态LOD调整

class LODAdjustCallback : public osg::NodeCallback {
public:virtual void operator()(osg::Node* node, osg::NodeVisitor* nv) {osg::LOD* lod = dynamic_cast<osg::LOD*>(node);if (lod) {// 根据性能指标动态调整LOD范围adjustLODRanges(lod, getPerformanceFactor());}traverse(node, nv);}private:void adjustLODRanges(osg::LOD* lod, float factor) {// 根据性能因子调整所有子节点的范围for (unsigned i = 0; i < lod->getNumChildren(); ++i) {float min, max;lod->getRange(i, min, max);lod->setRange(i, min * factor, max * factor);}}
};// 应用回调
lodNode->setUpdateCallback(new LODAdjustCallback);

3. 平滑过渡(Morphing)

// 在着色器中实现morphing效果
osg::StateSet* stateset = lodNode->getOrCreateStateSet();
osg::Program* program = new osg::Program;
program->addShader(osgDB::readShaderFile("morph.vert"));
stateset->setAttribute(program);// 设置morphing权重
osg::Uniform* morphWeight = new osg::Uniform("morphWeight", 0.0f);
stateset->addUniform(morphWeight);

五、实际应用示例

1. 地形LOD系统

osg::ref_ptr<osg::LOD> createTerrainLOD() {osg::ref_ptr<osg::LOD> terrainLOD = new osg::LOD;// 4级LODterrainLOD->addChild(createTerrainMesh(256), 0, 1000);   // 最高细节terrainLOD->addChild(createTerrainMesh(128)), 1000, 5000);terrainLOD->addChild(createTerrainMesh(64)), 5000, 20000);terrainLOD->addChild(createTerrainMesh(32)), 20000, FLT_MAX);// 设置地形中心点terrainLOD->setCenter(osg::Vec3(0,0,0));terrainLOD->setRadius(10000.0f); // 地形半径10kmreturn terrainLOD;
}

2. 角色模型LOD

osg::ref_ptr<osg::LOD> createCharacterLOD() {osg::ref_ptr<osg::LOD> charLOD = new osg::LOD;// 3级细节charLOD->addChild(loadCharacterModel("high_poly.obj"), 0, 20);charLOD->addChild(loadCharacterModel("mid_poly.obj"), 20, 50);charLOD->addChild(loadCharacterModel("low_poly.obj"), 50, FLT_MAX);// 基于包围球中心计算距离charLOD->setCenterMode(osg::LOD::USE_BOUNDING_SPHERE_CENTER);return charLOD;
}

六、性能优化技巧

  1. 合理设置LOD级别

    • 通常3-5级足够

    • 相邻级别间的三角形数量差异建议在2-4倍

  2. 过渡距离优化

    // 使用对数距离分布更符合人眼感知
    float near = 10.0f;
    for (int i = 0; i < numLODs; ++i) {float far = near * pow(2.0f, i+1);lodNode->setRange(i, near, far);near = far;
    }
  3. 避免频繁切换

    // 添加hysteresis防止边界抖动
    lodNode->setRange(0, 0, 95);    // 高模
    lodNode->setRange(1, 90, 195);  // 中模(有5米重叠)
    lodNode->setRange(2, 190, FLT_MAX);
  4. 与遮挡裁剪结合

    // 当物体被遮挡时强制使用最低LOD
    if (isOccluded(lodNode->getBound())) {lodNode->setSingleChildOn(lodNode->getNumChildren()-1);
    }

七、调试与验证

1. 可视化LOD级别

// 添加文字标签显示当前LOD级别
osg::ref_ptr<osgText::Text> lodLabel = new osgText::Text;
lodLabel->setText("LOD: 0");
lodLabel->setPosition(osg::Vec3(0,0,2));class LODLabelCallback : public osg::NodeCallback {
public:virtual void operator()(osg::Node* node, osg::NodeVisitor* nv) {osg::LOD* lod = dynamic_cast<osg::LOD*>(node);if (lod) {for (unsigned i = 0; i < lod->getNumChildren(); ++i) {if (lod->getValue(i)) {_label->setText("LOD: " + std::to_string(i));break;}}}traverse(node, nv);}osg::ref_ptr<osgText::Text> _label;
};// 应用回调
osg::ref_ptr<LODLabelCallback> cb = new LODLabelCallback;
cb->_label = lodLabel;
lodNode->addUpdateCallback(cb);

2. 性能统计

osgviewer model_with_lod.osgb --stats
# 查看 "LOD" 相关的统计信息

通过合理使用LOD技术,可以显著提升大型3D场景的渲染性能。OpenSceneGraph的LOD实现既灵活又高效,是构建大规模3D应用的必备技术。

相关文章:

OpenSceneGraph 中的 LOD详解

LOD (Level of Detail&#xff0c;细节层次) 是3D图形中一种重要的优化技术&#xff0c;OpenSceneGraph 通过 osg::LOD 类提供了完整的LOD支持。 一、LOD 基本概念 1. 什么是LOD 核心思想&#xff1a;根据物体与相机的距离显示不同细节程度的模型 目的&#xff1a;减少远处物…...

程序化广告行业(64/89):AdX/SSP系统广告位设置全解析

程序化广告行业&#xff08;64/89&#xff09;&#xff1a;AdX/SSP系统广告位设置全解析 大家好&#xff01;我一直觉得在技术和营销不断融合的当下&#xff0c;程序化广告领域充满了机遇与挑战。之前和大家分享了程序化广告PDB模式的相关知识&#xff0c;今天想接着和大家一起…...

Pytorch中的计算图(Computational Graph)是什么

&#x1f9e9; 一、什么是计算图&#xff1f; 计算图是一种“有向无环图&#xff08;DAG&#xff09;”&#xff0c;表示变量&#xff08;张量&#xff09;之间的运算关系。 节点&#xff1a;张量或操作&#xff08;如加法、乘法&#xff09;边&#xff1a;数据流&#xff08;即…...

Java 大视界 -- Java 大数据在航天遥测数据分析中的技术突破与应用(177)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…...

【Linux操作系统——学习笔记三】Linux环境下多级目录构建与管理的命令行实践报告

1.在用户主目录下&#xff0c;使用以下方法新建目录&#xff0c;并显示详细执行过程&#xff1a; &#xff08;1&#xff09;使用绝对路径在当前目录下创建 new_dir目录 &#xff08;2&#xff09;使用相对路径、在当前目录创建dir1、dir2、dir3目录 &#xff08;3&#xff09…...

java.util.Collections中常用api

在Java中&#xff0c;java.util.Collections 是一个工具类&#xff0c;提供了大量静态方法用于操作或返回集合&#xff08;如List、Set、Map等&#xff09;。以下是常用的API分类整理&#xff1a; 1. 排序与顺序操作 sort(List<T> list) 对List进行自然顺序排序&#xff…...

批量将图片统一色调

from PIL import Image, ImageEnhance # 确保导入 ImageEnhance 模块 import osdef adjust_image_tone(image_path, output_path, r_weight1.0, g_weight1.0, b_weight1.0, brightness1.0):"""调整图片的色调、明暗&#xff0c;并进行去图处理。参数:image_pat…...

OCC Shape 操作

#pragma once #include <iostream> #include <string> #include <filesystem> #include <TopoDS_Shape.hxx> #include <string>class GeometryIO { public:// 加载几何模型&#xff1a;支持 .brep, .step/.stp, .iges/.igsstatic TopoDS_Shape L…...

docker的run命令 笔记250406

docker的run命令 笔记250406 Docker 的 run 命令用于创建并启动一个新的容器。它是 Docker 中最常用的命令之一&#xff0c;基本语法为&#xff1a; docker run [OPTIONS] IMAGE [COMMAND] [ARG...]常用选项&#xff08;OPTIONS&#xff09; 参数说明-d 或 --detach后台运行…...

批量将 HTML 转换为 Word/Txt/PDF 等其它格式

HTML是一种超文本标记语言&#xff0c;在进行网页编辑的时候非常常见&#xff0c;我们浏览的网站内容&#xff0c;都可以保存为 html 格式&#xff0c;如果想要将 html 格式的文档转为其它格式&#xff0c;比如 Word、PDF 或者 Txt&#xff0c;我们应该怎么做呢&#xff1f;今天…...

TPS入门DAY02 服务器篇

1.创建空白插件 2.导入在线子系统以及在线steam子系统库 MultiplayerSessions.uplugin MultiplayerSessions.Build.cs 3.创建游戏实例以及初始化会话创建流程 创建会话需要的函数&#xff0c;委托&#xff0c;委托绑定的回调&#xff0c;在线子系统接口绑定某一个委托的控制其…...

C高级,终端操作

核心要点整理 刷题作业 一、基础操作 命令行提示符结构 ubuntuubuntu:~$ 当前用户 | 连接符 | 计算机名 | 当前路径 | 用户权限 用户切换 su 用户名&#xff1a;切换用户sudo passwd 用户名&#xff1a;修改用户密码 常用指令 cd -&#xff1a;返回上一次路径ls&#xff1a;显…...

Lua语言的边缘计算

Lua语言的边缘计算探索 引言 随着物联网&#xff08;IoT&#xff09;、人工智能&#xff08;AI&#xff09;和大数据技术迅速发展&#xff0c;边缘计算作为一种分布式计算架构日益受到重视。其核心理念是将计算和数据存储资源更靠近数据源&#xff0c;以降低延迟、减轻网络负…...

RabbitMQ运维

RabbitMQ运维 一.集群1.简单介绍2.集群的作用 二.搭建集群1.多机多节点搭建步骤 2.单机单节点搭建步骤 3.宕机演示 三.仲裁队列1.简单介绍2.Raft协议Raft基本概念主节点选举选举过程 3.仲裁队列的使用 四.HAProxy负载均衡1.安装HAProxy2.HAProxy的使用 一.集群 1.简单介绍 Ra…...

【ESP32】ESP32物联网应用:MQTT控制与状态监测

ESP32物联网应用&#xff1a;MQTT控制与状态监测 引言 在物联网时代&#xff0c;远程监测和控制设备已经成为现实生活中常见的需求。本文将介绍如何使用ESP32微控制器配合MQTT协议&#xff0c;实现一个简单而强大的物联网应用&#xff1a;远程状态监测和设备控制。我们将以巴…...

如何保证RabbitMQ消息的可靠传输?

在这个图中&#xff0c;消息可能丢失的场景是1&#xff0c;2&#xff0c;3 1.在生产者将消息发送给RabbitMQ的时候&#xff0c;消息到底有没有正确的到达服务器呢&#xff0c;RabbitMQ提供了两种解决方案&#xff1a; a. 通过事务机制实现&#xff08;比较消耗性能&#xff0…...

Redis高可用

主从复制 为什么要主从复制&#xff1f; 由于数据都是存储在一台服务器上&#xff0c;如果出事就完犊子了&#xff0c;比如&#xff1a; 如果服务器发生了宕机&#xff0c;由于数据恢复是需要点时间&#xff0c;那么这个期间是无法服务新的请求的&#xff1b;如果这台服务器…...

[项目总结] 在线OJ刷题系统项目技术应用(下)

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…...

链表算法中常用操作和技巧

目 1.常用技巧 1.1.画图 1.2.添加虚拟头节点 1.3.大胆引入中间变量 1.4.快慢双指针 1.4.1判断链表是否有环 1.4.2找链表中环的入口 ​2.常用操作 2.1. 创建一个新节点 2.2.尾插 2.3.头插 1.常用技巧 1.1.画图 画图可以让一些抽象的文字语言更加形象生动 画图&#…...

MySQL基础 [二] - 数据库基础

目录 库的增删查改 查看数据库 创建数据库 删除数据库 修改数据库 认识系统编码&#xff08;字符集和校验规则&#xff09; 查看系统默认字符集以及校验规则 查看数据库支持的字符集和字符集校验规则 验证不同校验码编码的影响 校验规则对数据库的影响 数据库的备份…...

【Linux篇】基础IO - 文件描述符的引入

&#x1f4cc; 个人主页&#xff1a; 孙同学_ &#x1f527; 文章专栏&#xff1a;Liunx &#x1f4a1; 关注我&#xff0c;分享经验&#xff0c;助你少走弯路&#xff01; 文章目录 一. 理解文件1.1 侠义理解1.2 广义理解1.3 文件操作的归类认知1.4 系统角度 二. 回顾C语言文件…...

13.【.NET 8 实战--孢子记账--从单体到微服务--转向微服务】--微服务基础工具与技术--Refit

在微服务架构中&#xff0c;不同服务之间经常需要相互调用以完成复杂业务流程&#xff0c;而 Refit 能让这种“跨服务调用”变得简洁又可靠。开发者只需将对外暴露的 REST 接口抽象成 C# 接口&#xff0c;并通过共享库或内部 NuGet 包在各服务中引用&#xff0c;这种契约优先的…...

C++ 并发性能优化实战:提升多线程应用的效率与稳定性

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家、CSDN平台优质创作者&#xff0c;获得2024年博客之星荣誉证书&#xff0c;高级开发工程师&#xff0c;数学专业&#xff0c;拥有高级工程师证书&#xff1b;擅长C/C、C#等开发语言&#xff0c;熟悉Java常用开发技术&#xff0c…...

前端性能优化的全方位方案【待进一步结合项目】

以下是前端性能优化的全方位方案&#xff0c;结合代码配置和最佳实践&#xff0c;涵盖从代码编写到部署的全流程优化&#xff1a; 一、代码层面优化 1. HTML结构优化 <!-- 语义化标签减少嵌套 --> <header><nav>...</nav> </header> <main&…...

(undone) 并行计算 CS149 Lecture3 (现代多核处理器2 + ISPC编程抽象)

url: https://www.bilibili.com/video/BV1du17YfE5G?spm_id_from333.788.videopod.sections&vd_source7a1a0bc74158c6993c7355c5490fc600&p3 如上堂课&#xff0c;超线程技术通过储存不同线程的 execution context&#xff0c;能够在一个线程等待 IO 的时候低成本切换…...

DiffAD:自动驾驶的统一扩散建模方法

25年3月来自新加坡公司 Carion 和北航的论文“DiffAD: A Unified Diffusion Modeling Approach for Autonomous Driving”。 端到端自动驾驶 (E2E-AD) 已迅速成为实现完全自动驾驶的一种有前途的方法。然而&#xff0c;现有的 E2E-AD 系统通常采用传统的多任务框架&#xff0c…...

QScrollArea 内部滚动条 QSS 样式失效问题及解决方案

在使用 Qt 进行 UI 开发时,我们经常希望通过 QSS(Qt Style Sheets)自定义控件的外观,比如为 QScrollArea 的内部滚动条设置特定的样式。然而,有开发者遇到了这样的问题:在 UI 设计器中预览 QSS 显示效果正常,但程序运行时却显示为系统默认样式。经过反复测试和调试,最终…...

换脸视频FaceFusion3.1.0-附整合包

2025版最强换脸软件FaceFusion来了&#xff08;附整合包&#xff09;超变态的AI换脸教程 2025版最强换脸软件FaceFusion来了&#xff08;附整合包&#xff09;超变态的AI换脸教程 整合包地址&#xff1a; 「Facefusion_V3.1.0」 链接&#xff1a;https://pan.quark.cn/s/f71601…...

Qt 入门 1 之第一个程序 Hello World

Qt 入门1之第一个程序 Hello World 直接上操作步骤从头开始认识&#xff0c;打开Qt Creator&#xff0c;创建一个新项目&#xff0c;并依次执行以下操作 在Qt Creator中&#xff0c;一个Kits 表示一个完整的构建环境&#xff0c;包括编译器、Qt版本、调试器等。在上图中可以直…...

无锁队列简介与实现示例

1. 简介 无锁队列是一种数据结构&#xff0c;旨在在多线程环境中实现高效的并发访问&#xff0c;而无需使用传统的锁机制&#xff08;如互斥锁&#xff09;。无锁队列通过使用原子操作&#xff08;如CAS&#xff0c;Compare-And-Swap&#xff09;来确保线程安全&#xff0c;从…...

SpringMVC与SpringCloud的区别

SpringMVC与SpringCloud的核心区别 功能定位 • SpringMVC&#xff1a; 基于Spring框架的Web层开发模块&#xff0c;采用MVC&#xff08;Model-View-Controller&#xff09;模式&#xff0c;专注于处理HTTP请求、路由分发&#xff08;如DispatcherServlet&#xff09;和视图…...

STM32F103C8T6单片机开发:简单说说单片机的外部GPIO中断(标准库)

目录 前言 如何使用STM32F1系列的标准库完成外部中断的抽象 初始化我们的GPIO为输入的一个模式 初识GPIO复用&#xff0c;开启GPIO的复用功能时钟 GPIO_EXTILineConfig和EXTI_Init配置外部中断参数 插入一个小知识——如何正确的配置结构体&#xff1f; 初始化中断&#…...

Python urllib3 全面指南:从基础到实战应用

欢迎来到涛涛的频道&#xff0c;今天用到了urllib3&#xff0c;和大家分享下。 1、介绍 urllib3 urllib3 是 Python 中一个功能强大且用户友好的 HTTP 客户端库&#xff0c;它提供了许多标准库 urllib 所不具备的高级特性。作为 Python 生态中最受欢迎的 HTTP 库之一&#xf…...

25.5 GLM-4优化RAG实战:0.1%参数实现准确率飙升30%,成本直降90%!

使用 GLM-4 优化 RAG 程序:基于标注数据的 Adapter 训练实战 关键词:GLM-4 优化, RAG 增强, 数据标注, Adapter 训练, 检索增强生成 1. RAG 系统的核心挑战与优化方向 传统 RAG(Retrieval-Augmented Generation)系统常面临以下瓶颈: graph LR A[用户提问] --> B[检…...

OrangePi入门教程(待更新)

快速上手指南 https://www.hiascend.com/developer/techArticles/20240301-1?envFlag1 教学课程(含开发板配置和推理应用开发) https://www.hiascend.com/developer/devboard 开发推理应用 https://www.hiascend.com/developer/techArticles/20240326-1?envFlag1...

基于SpringBoot+Vue实现的二手交易市场平台功能一

一、前言介绍&#xff1a; 1.1 项目摘要 随着社会的发展和人们生活水平的提高&#xff0c;消费者购买能力的提升导致产生了大量的闲置物品&#xff0c;这些闲置物品具有一定的经济价值。特别是在高校环境中&#xff0c;学生群体作为一个具有一定消费水平的群体&#xff0c;每…...

TC3xx芯片的UCB介绍

文章目录 前言一、UCB的定义及其功能简介二、UCB_BMHDx_ORIG and UCB_BMHDx_COPY (x 0 - 3)2.1 BMHD(Boot Mode Head) 三、UCB_SSW四、UCB_PFLASH_ORIG and UCB_PFLASH_COPY4.1 Password4.2 UCB Confirmation 前言 缩写全称UCBUser Configuration BlockBMHDBoot Mode Headers…...

Airflow量化入门系列:第四章 A股数据处理与存储优化

Airflow量化入门系列&#xff1a;第四章 A股数据处理与存储优化 本教程系统性地讲解了 Apache Airflow 在 A 股量化交易中的应用&#xff0c;覆盖从基础安装到高级功能的完整知识体系。通过八章内容&#xff0c;读者将掌握 Airflow 的核心概念、任务调度、数据处理、技术指标计…...

《海空重力测量理论方法及应用》之一重力仪系统组成及工作原理(下)

2、三轴稳定平台型 稳定平台的作用是隔离测量载体角运动对重力观测量的影响&#xff0c;确保重力传感器的敏感轴方向始终与重向保持一致。 当前主流的海空重力仪使用的稳定平台方案主要有4种: ①双轴阻尼陀螺平台: ②)双轴惯导加捷联方位平台: ③三轴惯导平台; ④捷联惯导…...

C++模板递归结构详解和使用

示例代码 template<typename _SourceIterator, typename _DestT> struct convert_pointer {typedef typename convert_pointer<typename _SourceIterator::pointer, _DestT>::type type; };1. 模板参数 _SourceIterator 是输入的类型&#xff0c;通常表示迭代器类…...

(八)PMSM驱动控制学习---无感控制之滑膜观测器

在FOC矢量控制中&#xff0c;我们需要实时得到转子的转速和位置 &#xff0c;但在考虑到成本和使用场合的情况下&#xff0c;往往使用无感控制&#xff0c;因为无位置传感器克服了传统机械式传感器的很多缺点和不足。比如&#xff0c;机械式传感器对环境要求比较严格&#xff0…...

蓝桥杯真题-分糖果-题解

链接&#xff1a;https://www.lanqiao.cn/problems/4124/learning/ 题目 复述&#xff1a;两种糖果&#xff0c;分别有9和16&#xff0c;分给7人&#xff0c;每个人得到的最少2&#xff0c;最多5&#xff0c;必需全部分完&#xff0c;几种分法&#xff1f; 复习-深度优先搜索 …...

推荐系统(二十二):基于MaskNet和WideDeep的商品推荐CTR模型实现

在上一篇文章《推荐系统&#xff08;二十一&#xff09;&#xff1a;基于MaskNet的商品推荐CTR模型实现》中&#xff0c;笔者基于 MaskNet 构建了一个简单的模型。笔者所经历的工业级实践证明&#xff0c;将 MaskNet 和 Wide&Deep 结合应用&#xff0c;可以取得不错的效果&…...

辅助查询是根据查询到的文档片段再去生成新的查询问题

&#x1f4a1; 辅助查询是怎么来的&#xff1f; 它是基于你当前查询&#xff08;query&#xff09;检索到的某个文档片段&#xff08;chunk_result&#xff09;&#xff0c;再去“反推”出新的相关问题&#xff08;utility queries&#xff09;&#xff0c;这些问题的作用是&a…...

Spring Cloud 框架为什么能处理高并发

Spring Cloud框架能够有效处理高并发场景&#xff0c;核心在于其微服务架构设计及多组件的协同作用&#xff0c;具体机制如下&#xff1a; 一、分布式架构设计支撑高扩展性 服务拆分与集群部署 Spring Cloud通过微服务拆分将单体系统解耦为独立子服务&#xff0c;每个服务可独…...

Pseduo LiDAR(CVPR2019)

文章目录 AbstractIntroductionRelated WorkLiDAR-based 3D object detectionStereo- and monocular-based depth estimationImage-based 3D object detection MethodDepth estimationPseudo-LiDAR generationLiDAR vs. pseudo-LiDAR3D object detectionData representation ma…...

强化学习课程:stanford_cs234 学习笔记(3)introduction to RL

文章目录 前言7 markov 实践7.1 markov 过程再叙7.2 markov 奖励过程 MRP&#xff08;markov reward process&#xff09;7.3 markov 价值函数与贝尔曼方程7.4 markov 决策过程MDP&#xff08;markov decision process&#xff09;的 状态价值函数7.4.1 状态价值函数7.4.2 状态…...

前端精度计算:Decimal.js 基本用法与详解

一、Decimal.js 简介 decimal.js 是一个用于任意精度算术运算的 JavaScript 库&#xff0c;它可以完美解决浮点数计算中的精度丢失问题。 官方API文档&#xff1a;Decimal.js 特性&#xff1a; 任意精度计算&#xff1a;支持大数、小数的高精度运算。 链式调用&#xff1a;…...

来聊聊C++中的vector

一.vector简介 vector是什么 C 中的 vector 是一种序列容器&#xff0c;它允许你在运行时动态地插入和删除元素。 vector 是基于数组的数据结构&#xff0c;但它可以自动管理内存&#xff0c;这意味着你不需要手动分配和释放内存。 与 C 数组相比&#xff0c;vector 具有更多的…...

对比学习中的NCE(Noise-Contrastive Estimation)和InfoNCE(SimCLR)损失函数+案例(附SimSiam分析)

在对比学习&#xff08;Contrastive Learning&#xff09;中&#xff0c;NCE&#xff08;Noise-Contrastive Estimation&#xff09;和InfoNCE是两种常见的目标函数&#xff0c;它们都用于通过区分正样本和负样本来学习高质量的表示。 1. NCE&#xff08;Noise-Contrastive Est…...