当前位置: 首页 > news >正文

Pytorch中的计算图(Computational Graph)是什么

🧩 一、什么是计算图?

计算图是一种“有向无环图(DAG)”,表示变量(张量)之间的运算关系

  • 节点:张量或操作(如加法、乘法)
  • :数据流(即某个操作的输入/输出)

PyTorch 利用计算图实现 自动求导(Autograd):它在前向传播时记录每一步操作,然后反向传播时根据这些操作自动求导


🚀 二、PyTorch 中的动态图机制

PyTorch 使用动态图(即计算图在运行时即时构建):

每当你执行一行涉及张量运算的代码时,PyTorch 会自动记录这步操作,形成计算图。

优点:

  • 更直观、更易调试
  • 支持条件语句和循环

🧪 三、完美案例:一步步构建计算图并求导

📌 目标函数:

我们来手动推导这个函数的导数,然后用 PyTorch 验证:

y = ( x + 2 ) 2 y = (x + 2)^2 y=(x+2)2

✅ 手动推导导数:

y = ( x + 2 ) 2 d y d x = 2 ( x + 2 ) y = (x + 2)^2 \\ \frac{dy}{dx} = 2(x + 2) y=(x+2)2dxdy=2(x+2)


💻 PyTorch 实现

import torch# 1. 创建叶子张量,设置 requires_grad=True 以便追踪梯度
x = torch.tensor([3.0], requires_grad=True)# 2. 前向传播(自动构建计算图)
z = x + 2          # 第一步:加法
y = z ** 2         # 第二步:平方运算# 3. 反向传播,计算 dy/dx
y.backward()# 4. 打印梯度
print("x的值:", x.item())           # 3.0
print("y的值:", y.item())           # (3+2)^2 = 25
print("dy/dx 的值:", x.grad.item()) # 2*(3+2) = 10

✅ 输出:

x的值: 3.0
y的值: 25.0
dy/dx 的值: 10.0

🔍 四、计算图结构分析

print("y.grad_fn:", y.grad_fn)
print("z.grad_fn:", z.grad_fn)
print("x.grad_fn:", x.grad_fn)

输出如下:

y.grad_fn: <PowBackward0 object at ...>
z.grad_fn: <AddBackward0 object at ...>
x.grad_fn: None

说明:

  • y 是通过 PowBackward0(平方操作)生成的
  • z 是通过 AddBackward0(加法操作)生成的
  • x 是“叶子节点”(Leaf Tensor),自己创建,不是由计算生成的 → grad_fn = None

📌 五、可视化计算图结构(逻辑图)

画一下这个计算图:

x (Leaf, requires_grad=True)|[Add (+2)]|z|[Power (**2)]|y

PyTorch 在前向传播时自动建立这张图,反向传播时从 y 逆着往上走,用链式法则自动求导!


📎 .requires_grad=True

开启梯度追踪。否则 PyTorch 不会构建计算图。

📎 .backward()

触发反向传播,从输出开始回传,逐步计算每个可求导变量的梯度。

📎 .grad

存储当前张量的梯度结果(默认只对标量调用 .backward(),向量需指定 gradient)。


✅ 小结

概念说明
计算图一张记录张量计算关系的有向无环图,用于自动求导
动态构建PyTorch 每次运行 forward 时自动构建计算图
grad_fn每个非叶子张量都有 grad_fn 表示它由哪个操作生成
backward()自动沿着计算图反向传播梯度
grad存储梯度值(对叶子节点而言)

附:方向导数

把“方向”想象成一根箭头(向量),指向某个你关心的方向,
问:“这个输出向量 y在这个箭头方向上的变化,是由输入 x 多大的变化引起的?”

向量函数 y ∈ R n \mathbf{y} \in \mathbb{R}^n yRn,你不能直接对它求导,因为那会得到一个 Jacobian(雅可比矩阵):

J = ∂ y ∂ x ∈ R n × m J = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{n \times m} J=xyRn×m

但如果你说:

我只关心 y \mathbf{y} y 在方向 v = [ v 1 , v 2 , . . . , v n ] \mathbf{v} = [v_1, v_2, ..., v_n] v=[v1,v2,...,vn] 上的变化,

那你实际上是在说:

组合函数:  s = v T y = v 1 y 1 + v 2 y 2 + ⋯ + v n y n \text{组合函数: } s = \mathbf{v}^T \mathbf{y} = v_1 y_1 + v_2 y_2 + \cdots + v_n y_n 组合函数: s=vTy=v1y1+v2y2++vnyn

这个 s 就是你自己手动构造的标量函数,这样 PyTorch 就能求导了。

你把这个方向向量 v \mathbf{v} v作为 .backward(gradient=...) 传入,告诉它:“请对我这个组合函数求导”。


举例:

  • 假设 y ∈ R 2 \mathbf{y} \in \mathbb{R}^2 yR2,即 y = [y1, y2] 是一个二维输出
  • 你可以选择一个方向 v = [ 0.6 , 0.8 ] \mathbf{v} = [0.6, 0.8] v=[0.6,0.8],也就是一根箭头向右上
  • 然后问:在这个方向上,如果 y 发生变化,x 的梯度是多少?

这时候你就是把 y 向这个方向投影:

v T y = 0.6 ⋅ y 1 + 0.8 ⋅ y 2 \mathbf{v}^T \mathbf{y} = 0.6 \cdot y_1 + 0.8 \cdot y_2 vTy=0.6y1+0.8y2

import torchx = torch.tensor([1.0, 2.0], requires_grad=True)
y = x ** 2          # y = [1.0, 4.0]
direction = torch.tensor([0.3, 0.7])  # 你关心的方向y.backward(gradient=direction)# 这时候你就把 direction = [0.3, 0.7]] 作为 y.backward() 的参数告诉 PyTorch,"我想反向传播的是这个方向"。print(x.grad)  # x.grad 是 y 在这个方向上线性组合的导数

分析:

  • y = [x₁², x₂²] ⇒ dy/dx = [2x₁, 2x₂] = [2.0, 4.0]
  • gradient = [0.3, 0.7]
  • 所以:
    x . g r a d = [ 2.0 ⋅ 0.3 , 4.0 ⋅ 0.7 ] = [ 0.6 , 2.8 ] x.grad = [2.0 \cdot 0.3, 4.0 \cdot 0.7] = [0.6, 2.8] x.grad=[2.00.3,4.00.7]=[0.6,2.8]

PyTorch 就会把这个结果放进 x.grad 里。


当loss是标量时:

output = model(x)  # output 是向量
loss = criterion(output, target)  # loss 是标量
loss.backward()  # ✅ 可以自动反向传播

为什么这里不需要你传 gradient?因为 loss 是标量,不需要说明方向,PyTorch知道你就是要对它求导。
但是如果你没有把向量变成标量,而是直接调用 .backward(),那 PyTorch 就不知道你想要哪个方向了,就必须你来指定。

相关文章:

Pytorch中的计算图(Computational Graph)是什么

&#x1f9e9; 一、什么是计算图&#xff1f; 计算图是一种“有向无环图&#xff08;DAG&#xff09;”&#xff0c;表示变量&#xff08;张量&#xff09;之间的运算关系。 节点&#xff1a;张量或操作&#xff08;如加法、乘法&#xff09;边&#xff1a;数据流&#xff08;即…...

Java 大视界 -- Java 大数据在航天遥测数据分析中的技术突破与应用(177)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…...

【Linux操作系统——学习笔记三】Linux环境下多级目录构建与管理的命令行实践报告

1.在用户主目录下&#xff0c;使用以下方法新建目录&#xff0c;并显示详细执行过程&#xff1a; &#xff08;1&#xff09;使用绝对路径在当前目录下创建 new_dir目录 &#xff08;2&#xff09;使用相对路径、在当前目录创建dir1、dir2、dir3目录 &#xff08;3&#xff09…...

java.util.Collections中常用api

在Java中&#xff0c;java.util.Collections 是一个工具类&#xff0c;提供了大量静态方法用于操作或返回集合&#xff08;如List、Set、Map等&#xff09;。以下是常用的API分类整理&#xff1a; 1. 排序与顺序操作 sort(List<T> list) 对List进行自然顺序排序&#xff…...

批量将图片统一色调

from PIL import Image, ImageEnhance # 确保导入 ImageEnhance 模块 import osdef adjust_image_tone(image_path, output_path, r_weight1.0, g_weight1.0, b_weight1.0, brightness1.0):"""调整图片的色调、明暗&#xff0c;并进行去图处理。参数:image_pat…...

OCC Shape 操作

#pragma once #include <iostream> #include <string> #include <filesystem> #include <TopoDS_Shape.hxx> #include <string>class GeometryIO { public:// 加载几何模型&#xff1a;支持 .brep, .step/.stp, .iges/.igsstatic TopoDS_Shape L…...

docker的run命令 笔记250406

docker的run命令 笔记250406 Docker 的 run 命令用于创建并启动一个新的容器。它是 Docker 中最常用的命令之一&#xff0c;基本语法为&#xff1a; docker run [OPTIONS] IMAGE [COMMAND] [ARG...]常用选项&#xff08;OPTIONS&#xff09; 参数说明-d 或 --detach后台运行…...

批量将 HTML 转换为 Word/Txt/PDF 等其它格式

HTML是一种超文本标记语言&#xff0c;在进行网页编辑的时候非常常见&#xff0c;我们浏览的网站内容&#xff0c;都可以保存为 html 格式&#xff0c;如果想要将 html 格式的文档转为其它格式&#xff0c;比如 Word、PDF 或者 Txt&#xff0c;我们应该怎么做呢&#xff1f;今天…...

TPS入门DAY02 服务器篇

1.创建空白插件 2.导入在线子系统以及在线steam子系统库 MultiplayerSessions.uplugin MultiplayerSessions.Build.cs 3.创建游戏实例以及初始化会话创建流程 创建会话需要的函数&#xff0c;委托&#xff0c;委托绑定的回调&#xff0c;在线子系统接口绑定某一个委托的控制其…...

C高级,终端操作

核心要点整理 刷题作业 一、基础操作 命令行提示符结构 ubuntuubuntu:~$ 当前用户 | 连接符 | 计算机名 | 当前路径 | 用户权限 用户切换 su 用户名&#xff1a;切换用户sudo passwd 用户名&#xff1a;修改用户密码 常用指令 cd -&#xff1a;返回上一次路径ls&#xff1a;显…...

Lua语言的边缘计算

Lua语言的边缘计算探索 引言 随着物联网&#xff08;IoT&#xff09;、人工智能&#xff08;AI&#xff09;和大数据技术迅速发展&#xff0c;边缘计算作为一种分布式计算架构日益受到重视。其核心理念是将计算和数据存储资源更靠近数据源&#xff0c;以降低延迟、减轻网络负…...

RabbitMQ运维

RabbitMQ运维 一.集群1.简单介绍2.集群的作用 二.搭建集群1.多机多节点搭建步骤 2.单机单节点搭建步骤 3.宕机演示 三.仲裁队列1.简单介绍2.Raft协议Raft基本概念主节点选举选举过程 3.仲裁队列的使用 四.HAProxy负载均衡1.安装HAProxy2.HAProxy的使用 一.集群 1.简单介绍 Ra…...

【ESP32】ESP32物联网应用:MQTT控制与状态监测

ESP32物联网应用&#xff1a;MQTT控制与状态监测 引言 在物联网时代&#xff0c;远程监测和控制设备已经成为现实生活中常见的需求。本文将介绍如何使用ESP32微控制器配合MQTT协议&#xff0c;实现一个简单而强大的物联网应用&#xff1a;远程状态监测和设备控制。我们将以巴…...

如何保证RabbitMQ消息的可靠传输?

在这个图中&#xff0c;消息可能丢失的场景是1&#xff0c;2&#xff0c;3 1.在生产者将消息发送给RabbitMQ的时候&#xff0c;消息到底有没有正确的到达服务器呢&#xff0c;RabbitMQ提供了两种解决方案&#xff1a; a. 通过事务机制实现&#xff08;比较消耗性能&#xff0…...

Redis高可用

主从复制 为什么要主从复制&#xff1f; 由于数据都是存储在一台服务器上&#xff0c;如果出事就完犊子了&#xff0c;比如&#xff1a; 如果服务器发生了宕机&#xff0c;由于数据恢复是需要点时间&#xff0c;那么这个期间是无法服务新的请求的&#xff1b;如果这台服务器…...

[项目总结] 在线OJ刷题系统项目技术应用(下)

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏: &#x1f9ca; Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 &#x1f355; Collection与…...

链表算法中常用操作和技巧

目 1.常用技巧 1.1.画图 1.2.添加虚拟头节点 1.3.大胆引入中间变量 1.4.快慢双指针 1.4.1判断链表是否有环 1.4.2找链表中环的入口 ​2.常用操作 2.1. 创建一个新节点 2.2.尾插 2.3.头插 1.常用技巧 1.1.画图 画图可以让一些抽象的文字语言更加形象生动 画图&#…...

MySQL基础 [二] - 数据库基础

目录 库的增删查改 查看数据库 创建数据库 删除数据库 修改数据库 认识系统编码&#xff08;字符集和校验规则&#xff09; 查看系统默认字符集以及校验规则 查看数据库支持的字符集和字符集校验规则 验证不同校验码编码的影响 校验规则对数据库的影响 数据库的备份…...

【Linux篇】基础IO - 文件描述符的引入

&#x1f4cc; 个人主页&#xff1a; 孙同学_ &#x1f527; 文章专栏&#xff1a;Liunx &#x1f4a1; 关注我&#xff0c;分享经验&#xff0c;助你少走弯路&#xff01; 文章目录 一. 理解文件1.1 侠义理解1.2 广义理解1.3 文件操作的归类认知1.4 系统角度 二. 回顾C语言文件…...

13.【.NET 8 实战--孢子记账--从单体到微服务--转向微服务】--微服务基础工具与技术--Refit

在微服务架构中&#xff0c;不同服务之间经常需要相互调用以完成复杂业务流程&#xff0c;而 Refit 能让这种“跨服务调用”变得简洁又可靠。开发者只需将对外暴露的 REST 接口抽象成 C# 接口&#xff0c;并通过共享库或内部 NuGet 包在各服务中引用&#xff0c;这种契约优先的…...

C++ 并发性能优化实战:提升多线程应用的效率与稳定性

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家、CSDN平台优质创作者&#xff0c;获得2024年博客之星荣誉证书&#xff0c;高级开发工程师&#xff0c;数学专业&#xff0c;拥有高级工程师证书&#xff1b;擅长C/C、C#等开发语言&#xff0c;熟悉Java常用开发技术&#xff0c…...

前端性能优化的全方位方案【待进一步结合项目】

以下是前端性能优化的全方位方案&#xff0c;结合代码配置和最佳实践&#xff0c;涵盖从代码编写到部署的全流程优化&#xff1a; 一、代码层面优化 1. HTML结构优化 <!-- 语义化标签减少嵌套 --> <header><nav>...</nav> </header> <main&…...

(undone) 并行计算 CS149 Lecture3 (现代多核处理器2 + ISPC编程抽象)

url: https://www.bilibili.com/video/BV1du17YfE5G?spm_id_from333.788.videopod.sections&vd_source7a1a0bc74158c6993c7355c5490fc600&p3 如上堂课&#xff0c;超线程技术通过储存不同线程的 execution context&#xff0c;能够在一个线程等待 IO 的时候低成本切换…...

DiffAD:自动驾驶的统一扩散建模方法

25年3月来自新加坡公司 Carion 和北航的论文“DiffAD: A Unified Diffusion Modeling Approach for Autonomous Driving”。 端到端自动驾驶 (E2E-AD) 已迅速成为实现完全自动驾驶的一种有前途的方法。然而&#xff0c;现有的 E2E-AD 系统通常采用传统的多任务框架&#xff0c…...

QScrollArea 内部滚动条 QSS 样式失效问题及解决方案

在使用 Qt 进行 UI 开发时,我们经常希望通过 QSS(Qt Style Sheets)自定义控件的外观,比如为 QScrollArea 的内部滚动条设置特定的样式。然而,有开发者遇到了这样的问题:在 UI 设计器中预览 QSS 显示效果正常,但程序运行时却显示为系统默认样式。经过反复测试和调试,最终…...

换脸视频FaceFusion3.1.0-附整合包

2025版最强换脸软件FaceFusion来了&#xff08;附整合包&#xff09;超变态的AI换脸教程 2025版最强换脸软件FaceFusion来了&#xff08;附整合包&#xff09;超变态的AI换脸教程 整合包地址&#xff1a; 「Facefusion_V3.1.0」 链接&#xff1a;https://pan.quark.cn/s/f71601…...

Qt 入门 1 之第一个程序 Hello World

Qt 入门1之第一个程序 Hello World 直接上操作步骤从头开始认识&#xff0c;打开Qt Creator&#xff0c;创建一个新项目&#xff0c;并依次执行以下操作 在Qt Creator中&#xff0c;一个Kits 表示一个完整的构建环境&#xff0c;包括编译器、Qt版本、调试器等。在上图中可以直…...

无锁队列简介与实现示例

1. 简介 无锁队列是一种数据结构&#xff0c;旨在在多线程环境中实现高效的并发访问&#xff0c;而无需使用传统的锁机制&#xff08;如互斥锁&#xff09;。无锁队列通过使用原子操作&#xff08;如CAS&#xff0c;Compare-And-Swap&#xff09;来确保线程安全&#xff0c;从…...

SpringMVC与SpringCloud的区别

SpringMVC与SpringCloud的核心区别 功能定位 • SpringMVC&#xff1a; 基于Spring框架的Web层开发模块&#xff0c;采用MVC&#xff08;Model-View-Controller&#xff09;模式&#xff0c;专注于处理HTTP请求、路由分发&#xff08;如DispatcherServlet&#xff09;和视图…...

STM32F103C8T6单片机开发:简单说说单片机的外部GPIO中断(标准库)

目录 前言 如何使用STM32F1系列的标准库完成外部中断的抽象 初始化我们的GPIO为输入的一个模式 初识GPIO复用&#xff0c;开启GPIO的复用功能时钟 GPIO_EXTILineConfig和EXTI_Init配置外部中断参数 插入一个小知识——如何正确的配置结构体&#xff1f; 初始化中断&#…...

Python urllib3 全面指南:从基础到实战应用

欢迎来到涛涛的频道&#xff0c;今天用到了urllib3&#xff0c;和大家分享下。 1、介绍 urllib3 urllib3 是 Python 中一个功能强大且用户友好的 HTTP 客户端库&#xff0c;它提供了许多标准库 urllib 所不具备的高级特性。作为 Python 生态中最受欢迎的 HTTP 库之一&#xf…...

25.5 GLM-4优化RAG实战:0.1%参数实现准确率飙升30%,成本直降90%!

使用 GLM-4 优化 RAG 程序:基于标注数据的 Adapter 训练实战 关键词:GLM-4 优化, RAG 增强, 数据标注, Adapter 训练, 检索增强生成 1. RAG 系统的核心挑战与优化方向 传统 RAG(Retrieval-Augmented Generation)系统常面临以下瓶颈: graph LR A[用户提问] --> B[检…...

OrangePi入门教程(待更新)

快速上手指南 https://www.hiascend.com/developer/techArticles/20240301-1?envFlag1 教学课程(含开发板配置和推理应用开发) https://www.hiascend.com/developer/devboard 开发推理应用 https://www.hiascend.com/developer/techArticles/20240326-1?envFlag1...

基于SpringBoot+Vue实现的二手交易市场平台功能一

一、前言介绍&#xff1a; 1.1 项目摘要 随着社会的发展和人们生活水平的提高&#xff0c;消费者购买能力的提升导致产生了大量的闲置物品&#xff0c;这些闲置物品具有一定的经济价值。特别是在高校环境中&#xff0c;学生群体作为一个具有一定消费水平的群体&#xff0c;每…...

TC3xx芯片的UCB介绍

文章目录 前言一、UCB的定义及其功能简介二、UCB_BMHDx_ORIG and UCB_BMHDx_COPY (x 0 - 3)2.1 BMHD(Boot Mode Head) 三、UCB_SSW四、UCB_PFLASH_ORIG and UCB_PFLASH_COPY4.1 Password4.2 UCB Confirmation 前言 缩写全称UCBUser Configuration BlockBMHDBoot Mode Headers…...

Airflow量化入门系列:第四章 A股数据处理与存储优化

Airflow量化入门系列&#xff1a;第四章 A股数据处理与存储优化 本教程系统性地讲解了 Apache Airflow 在 A 股量化交易中的应用&#xff0c;覆盖从基础安装到高级功能的完整知识体系。通过八章内容&#xff0c;读者将掌握 Airflow 的核心概念、任务调度、数据处理、技术指标计…...

《海空重力测量理论方法及应用》之一重力仪系统组成及工作原理(下)

2、三轴稳定平台型 稳定平台的作用是隔离测量载体角运动对重力观测量的影响&#xff0c;确保重力传感器的敏感轴方向始终与重向保持一致。 当前主流的海空重力仪使用的稳定平台方案主要有4种: ①双轴阻尼陀螺平台: ②)双轴惯导加捷联方位平台: ③三轴惯导平台; ④捷联惯导…...

C++模板递归结构详解和使用

示例代码 template<typename _SourceIterator, typename _DestT> struct convert_pointer {typedef typename convert_pointer<typename _SourceIterator::pointer, _DestT>::type type; };1. 模板参数 _SourceIterator 是输入的类型&#xff0c;通常表示迭代器类…...

(八)PMSM驱动控制学习---无感控制之滑膜观测器

在FOC矢量控制中&#xff0c;我们需要实时得到转子的转速和位置 &#xff0c;但在考虑到成本和使用场合的情况下&#xff0c;往往使用无感控制&#xff0c;因为无位置传感器克服了传统机械式传感器的很多缺点和不足。比如&#xff0c;机械式传感器对环境要求比较严格&#xff0…...

蓝桥杯真题-分糖果-题解

链接&#xff1a;https://www.lanqiao.cn/problems/4124/learning/ 题目 复述&#xff1a;两种糖果&#xff0c;分别有9和16&#xff0c;分给7人&#xff0c;每个人得到的最少2&#xff0c;最多5&#xff0c;必需全部分完&#xff0c;几种分法&#xff1f; 复习-深度优先搜索 …...

推荐系统(二十二):基于MaskNet和WideDeep的商品推荐CTR模型实现

在上一篇文章《推荐系统&#xff08;二十一&#xff09;&#xff1a;基于MaskNet的商品推荐CTR模型实现》中&#xff0c;笔者基于 MaskNet 构建了一个简单的模型。笔者所经历的工业级实践证明&#xff0c;将 MaskNet 和 Wide&Deep 结合应用&#xff0c;可以取得不错的效果&…...

辅助查询是根据查询到的文档片段再去生成新的查询问题

&#x1f4a1; 辅助查询是怎么来的&#xff1f; 它是基于你当前查询&#xff08;query&#xff09;检索到的某个文档片段&#xff08;chunk_result&#xff09;&#xff0c;再去“反推”出新的相关问题&#xff08;utility queries&#xff09;&#xff0c;这些问题的作用是&a…...

Spring Cloud 框架为什么能处理高并发

Spring Cloud框架能够有效处理高并发场景&#xff0c;核心在于其微服务架构设计及多组件的协同作用&#xff0c;具体机制如下&#xff1a; 一、分布式架构设计支撑高扩展性 服务拆分与集群部署 Spring Cloud通过微服务拆分将单体系统解耦为独立子服务&#xff0c;每个服务可独…...

Pseduo LiDAR(CVPR2019)

文章目录 AbstractIntroductionRelated WorkLiDAR-based 3D object detectionStereo- and monocular-based depth estimationImage-based 3D object detection MethodDepth estimationPseudo-LiDAR generationLiDAR vs. pseudo-LiDAR3D object detectionData representation ma…...

强化学习课程:stanford_cs234 学习笔记(3)introduction to RL

文章目录 前言7 markov 实践7.1 markov 过程再叙7.2 markov 奖励过程 MRP&#xff08;markov reward process&#xff09;7.3 markov 价值函数与贝尔曼方程7.4 markov 决策过程MDP&#xff08;markov decision process&#xff09;的 状态价值函数7.4.1 状态价值函数7.4.2 状态…...

前端精度计算:Decimal.js 基本用法与详解

一、Decimal.js 简介 decimal.js 是一个用于任意精度算术运算的 JavaScript 库&#xff0c;它可以完美解决浮点数计算中的精度丢失问题。 官方API文档&#xff1a;Decimal.js 特性&#xff1a; 任意精度计算&#xff1a;支持大数、小数的高精度运算。 链式调用&#xff1a;…...

来聊聊C++中的vector

一.vector简介 vector是什么 C 中的 vector 是一种序列容器&#xff0c;它允许你在运行时动态地插入和删除元素。 vector 是基于数组的数据结构&#xff0c;但它可以自动管理内存&#xff0c;这意味着你不需要手动分配和释放内存。 与 C 数组相比&#xff0c;vector 具有更多的…...

对比学习中的NCE(Noise-Contrastive Estimation)和InfoNCE(SimCLR)损失函数+案例(附SimSiam分析)

在对比学习&#xff08;Contrastive Learning&#xff09;中&#xff0c;NCE&#xff08;Noise-Contrastive Estimation&#xff09;和InfoNCE是两种常见的目标函数&#xff0c;它们都用于通过区分正样本和负样本来学习高质量的表示。 1. NCE&#xff08;Noise-Contrastive Est…...

基于FAN网络的图像识别系统设计与实现

基于FAN网络的图像识别系统设计与实现 一、系统概述 本系统旨在利用FAN(Fourier Analysis Networks)网络架构实现高效的图像识别功能,并通过Python语言设计一个直观的用户界面,方便用户操作与使用。FAN网络在处理周期性特征方面具有独特优势,有望提升图像识别在复杂场景…...

【瑞萨 RA-Eco-RA2E1-48PIN-V1.0 开发板测评】PWM

【瑞萨 RA-Eco-RA2E1-48PIN-V1.0 开发板测评】PWM 本文介绍了瑞萨 RA2E1 开发板使用内置时钟和定时器实现 PWM 输出以及呼吸灯的项目设计。 项目介绍 介绍了 PWM 和 RA2E1 的 PWM 资源。 PWM 脉冲宽度调制&#xff08;Pulse Width Modulation, PWM&#xff09;是一种对模拟…...