当前位置: 首页 > news >正文

0101安装matplotlib_numpy_pandas-报错-python

文章目录

    • 1 前言
    • 2 报错
      • 报错1:ModuleNotFoundError: No module named 'distutils'
      • 报错2:ERROR:root:code for hash blake2b was not found.
      • 报错3:**`ModuleNotFoundError: No module named '_tkinter'`**
      • 报错4:UserWarning: Glyph 39044 (\N{CJK UNIFIED IDEOGRAPH-9884}) missing from font(s) DejaVu Sans.
        • 方法 1:安装支持 CJK(中日韩)的字体
          • 步骤 1:安装思源黑体(Noto Sans CJK)
          • 步骤 2:清理 Matplotlib 字体缓存
        • 方法 2:代码中指定中文字体
        • 方法 3:修改 Matplotlib 配置文件
          • 步骤 1:查找配置文件路径
          • 步骤 2:编辑配置文件
        • 验证是否生效
      • 错误5 AttributeError: 'FigureCanvasInterAgg' object has no attribute 'tostring_rgb'. Did you mean: 'tostring_argb'?
    • 结语

1 前言

最近在学习人工智能-机器学习入门,想通过python解决下线性回归问题。本人电脑为macos m1 pro,使用homebrew管理包依赖,

安装pyenv管理python版本,python版本3.12.x,openssl@1.1和python@3共存。

2 报错

报错1:ModuleNotFoundError: No module named ‘distutils’

产生过程:安装matplotlib报错ModuleNotFoundError: No module named ‘distutils’

原因分析:Python 3.12+ 移除了 distutils:官方不再维护此模块,改用 setuptools 替代

解决方案:

# 强制升级 setuptools 和 pip
pip install --upgrade --force-reinstall setuptools pip

报错2:ERROR:root:code for hash blake2b was not found.

产生过程:运行如下代码

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import datasets, linear_model# read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的CCPP目录里
data = pd.read_csv('./ccpp.csv')
data.head()

原因分析:

  1. 此错误通常表示当前 Python 环境中缺少 blake2b 哈希算法的支持,OpenSSL 依赖缺失或版本过低(需要 OpenSSL 1.1.1 或更高版本)。

解决方案:通过homebrew 卸载低版本openssl,升级最新版本openssl ,重新编译安装python

brew uninstall --ignore-dependencies openssl@1.1
brew install openssl
pyenv uninstall 3.12
pyenv install 3.12
pyenv global 3.12.9

报错3:ModuleNotFoundError: No module named '_tkinter'

  • 产生过程:编译安装python的时候报错

  • 产生原因:此错误表示 Python 环境中缺少 Tkinter 模块的支持,通常是因为在编译 Python 时未正确安装 Tcl/Tk 开发库

  • 解决方案:安装依赖,重新编译安装python

    brew install tcl-tk
    

最后环境配置正常如下图:

在这里插入图片描述

报错4:UserWarning: Glyph 39044 (\N{CJK UNIFIED IDEOGRAPH-9884}) missing from font(s) DejaVu Sans.

在 macOS M1 Pro 上使用 Matplotlib 绘图时,如果遇到 UserWarning: Glyph XXXX missing from font(s) DejaVu Sans 警告,通常是因为 Matplotlib 默认字体 DejaVu Sans 不支持某些 Unicode 字符(如中文、日文、韩文字符)。


方法 1:安装支持 CJK(中日韩)的字体
步骤 1:安装思源黑体(Noto Sans CJK)

推荐安装 Google 的 Noto Sans CJK 字体,它覆盖了大部分 Unicode 字符:

bash

复制

# 通过 Homebrew 安装(需提前安装 Homebrew)
brew install font-noto-sans-cjk font-noto-sans-cjk-sc# 或者手动下载并安装:
# 从官网下载:https://www.google.com/get/noto/
# 解压后双击 .ttf 文件,点击 "安装"。
步骤 2:清理 Matplotlib 字体缓存

Matplotlib 会缓存字体列表,安装新字体后需删除缓存:

bash

复制

# 查找缓存路径
python -c "import matplotlib; print(matplotlib.get_cachedir())"# 输出类似:/Users/username/.matplotlib
# 删除该目录下的 fontlist-* 文件
rm -rf /Users/username/.matplotlib/fontlist-*

方法 2:代码中指定中文字体

在 Python 代码中直接指定使用已安装的中文字体(如 Noto Sans CJK):

python

复制

import matplotlib.pyplot as plt
import numpy as np# 设置 Matplotlib 使用支持中文的字体
plt.rcParams['font.sans-serif'] = ['Noto Sans CJK JP']  # 根据字体名称调整
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 示例:绘制带中文标签的图表
plt.plot(np.random.rand(10))
plt.title('示例图表')  # 中文标题
plt.xlabel('X轴')
plt.ylabel('Y轴')
plt.show()

方法 3:修改 Matplotlib 配置文件
步骤 1:查找配置文件路径

bash

复制

python -c "import matplotlib; print(matplotlib.matplotlib_fname())"
# 输出类似:/Users/username/.virtualenvs/venv/lib/python3.9/site-packages/matplotlib/mpl-data/matplotlibrc
步骤 2:编辑配置文件

找到以下两行并修改:

bash

复制

# 去掉注释并设置字体
font.family : sans-serif
font.sans-serif : Noto Sans CJK JP, DejaVu Sans, Arial  # 添加 Noto Sans CJK 到字体列表开头

验证是否生效

运行以下代码检查是否支持中文:

python

复制

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['Noto Sans CJK JP']
plt.plot([1, 2, 3], [4, 5, 6])
plt.title('测试中文')
plt.show()

如果图表标题正常显示中文,则问题解决。

错误5 AttributeError: ‘FigureCanvasInterAgg’ object has no attribute ‘tostring_rgb’. Did you mean: ‘tostring_argb’?

解决方案,更换matplotlib后端

matplotlib.use('TkAgg') 

效果如下图所示:

在这里插入图片描述

结语

❓QQ:806797785

⭐️仓库地址:https://gitee.com/gaogzhen

⭐️仓库地址:https://github.com/gaogzhen

[1]deepseek[CP/OL].

[2]用scikit-learn和pandas学习线性回归[CP/OL].

相关文章:

0101安装matplotlib_numpy_pandas-报错-python

文章目录 1 前言2 报错报错1:ModuleNotFoundError: No module named distutils报错2:ERROR:root:code for hash blake2b was not found.报错3:**ModuleNotFoundError: No module named _tkinter**报错4:UserWarning: Glyph 39044 …...

SQL ServerAlways On 可用性组配置失败

问题现象: 配置 Always On 可用性组时,报错 “无法将数据库加入可用性组”(错误 41158),或提示 “WSFC 群集资源无法联机”(错误 19471)。 快速诊断 验证 WSFC 群集状态: # 检查群集…...

01 - UnLua访问蓝图

前文回顾:配置好了智能提示和调试 分别对私有的和公开函数,变量,组件,事件进行测试。 测试 在BeginPlay中,分别访问他们。这里引入了GetDisplayName函数打印相机组件名 打印结果: 结论 不管是私有的&…...

6.5.图的基本操作

一.图的基本操作&#xff1a; 1.判断图G是否存在弧<x,y>或边(x,y)&#xff1a; a.使用邻接矩阵来实现判断无向图G中是否存在边(x,y)&#xff1a; 以上述图片的无向图为例&#xff0c;用邻接矩阵存储无向图时想要判断两个顶点之间是否有边是很方便的&#xff0c; 比如判…...

2025全新开源双端系统源码:获取通讯录、相册、短信、定位及已装应用信息

分享一套全新上线的双端信息采集系统源码&#xff0c;支持提取通讯录、相册、短信、定位信息及已安装应用数据。源码完全开源&#xff0c;只做轻微测试需要的自取&#xff0c;简易教程放在压缩包里面了&#xff0c;欢迎有需要的朋友自取参考。 下载地址&#xff1a;下载地址.t…...

es基本概念

Elasticsearch 的架构与基本概念 Elasticsearch&#xff08;简称 ES&#xff09;是一个开源的分布式搜索和分析引擎&#xff0c;基于 Apache Lucene 构建。它被广泛用于全文搜索、日志分析、实时数据分析等场景。以下是其架构概述及其基本概念的详细解释。 Elasticsearch 的架…...

算法刷题记录——LeetCode篇(2.5) [第141~150题](持续更新)

更新时间&#xff1a;2025-04-04 算法题解目录汇总&#xff1a;算法刷题记录——题解目录汇总技术博客总目录&#xff1a;计算机技术系列博客——目录页 141. 环形链表 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通…...

【Rust学习】Rust数据类型,函数,条件语句,循环

本文专栏&#xff1a;Rust学习 目录 一&#xff0c;数据类型 1&#xff0c;标量类型 1.1&#xff0c;整型 1.2&#xff0c;整型溢出 1.3&#xff0c;浮点数型 1.4&#xff0c;布尔类型 1.5&#xff0c;字符型 2&#xff0c;复合类型 2.1&#xff0c;Tuple(元组) 2.2&am…...

PgVectore的使用

PgVectore的使用 一、PgVector的安装 参照博客&#xff1a;https://blog.csdn.net/u012953777/article/details/147013691?spm1001.2014.3001.5501 二、PgVector的使用 1、创建表与插入数据​ ​​定义向量字段​​&#xff1a; CREATE TABLE items (id SERIAL PRIMARY …...

智能工厂的数字孪生与信息物理系统架构研究

摘要 本文以工业 4.0 为背景&#xff0c;系统分析数字孪生&#xff08;Digital Twin&#xff09;与信息物理系统&#xff08;CPS&#xff09;在智能工厂中的协同架构。通过构建 "感知 - 映射 - 决策 - 执行" 的四层技术框架&#xff0c;结合三一重工、海尔等企业案例…...

基于YOLO11实例分割与奥比中光相机的快递包裹抓取点检测

本博客来源于CSDN机器鱼&#xff0c;未同意任何人转载。 更多内容&#xff0c;欢迎点击本专栏&#xff0c;查看更多内容。 0 引言 项目采用六轴机械臂搭配末端真空吸盘&#xff0c;从无序包裹中抓取想要的包裹。AI算法需要提供各包裹的抓取点的3D坐标与3D姿态。由于快递包裹含…...

简单程序语言理论与编译技术·22 实现一个从AST到RISCV的编译器

本文是记录专业课“程序语言理论与编译技术”的部分笔记。 LECTURE 22&#xff08;实现一个从AST到RISCV的编译器&#xff09; 一、问题分析 1、完整的编译器&#xff08;如LLVM&#xff09;需先完成AST到IR的转换&#xff0c;并进行代码优化&#xff0c;再到汇编&#xff0…...

无锡无人机驾驶证培训费用

无锡无人机驾驶证培训费用&#xff0c;随着科技的迅速发展&#xff0c;无人机在众多行业中发挥着举足轻重的作用。从影视制作到农业监测&#xff0c;再到物流运输与城市规划&#xff0c;无人机的应用场景不断扩展&#xff0c;因此越来越多的人开始意识到学习无人机驾驶技能的重…...

[ctfshow web入门] web5

前置知识 引用博客&#xff1a;phps的利用 当服务器配置了 .phps 文件类型时&#xff0c;访问 .phps 文件会以语法高亮的形式直接显示 PHP 源代码&#xff0c;而不是执行它。.phps被作为辅助开发者的一种功能&#xff0c;开发者可以通过网站上访问xxx.phps直接获取高亮源代码 …...

第五章:架构安全性_《凤凰架构:构建可靠的大型分布式系统》

第五章 架构安全性 一、认证机制 核心知识点&#xff1a; 认证标准&#xff1a; HTTP Basic认证&#xff1a;Base64编码传输凭证&#xff0c;需配合HTTPS使用OAuth 2.0&#xff1a;授权框架&#xff0c;重点掌握四种授权模式&#xff1a; 授权码模式&#xff08;最安全&#…...

控件主题效果添加程序设计

以下是针对Qt Designer设计的控件添加阴影效果的完整解决方案&#xff0c;结合可视化设置与动态主题支持&#xff1a; 一、基础阴影效果实现方案 1. 通过QSS实现简易阴影&#xff08;适用于简单需求&#xff09; /* 使用多重边框模拟阴影效果 */ QFrame#customWidget {borde…...

用swift playground写个ios应用和大模型或者网站交互

import SwiftUIstruct ContentView: View {State private var textFieldText: String ""State private var outputText: String "输出将会显示在这里"private let tip:String "消息已发送&#xff0c;请等待"State private var history:[Stri…...

Mlivus Cloud SDK v2的革新:从痛点剖析到实战优化

目录 从V1到V2:开发者体验的范式转变 深度解析SDK v2的架构革新 1. 统一接口范式:终结API混乱时代 2. 原生异步支持:高并发场景的性能救星 3. Schema Cache机制:性能优化的隐形冠军 4. 全功能REST API:简化集成的关键 实战指南:从迁移到深度优化 平滑迁移策略 性…...

【图像处理基石】什么是AWB?

1. AWB&#xff08;自动白平衡&#xff09;的定义 AWB&#xff08;Auto White Balance&#xff09;是一种图像处理技术&#xff0c;通过算法校正不同色温光源下图像的色彩偏差&#xff0c;使白色在任何光照条件下都能准确呈现为白色&#xff0c;从而让图像颜色更接近人眼真实感…...

[蓝桥杯 2017 省 B] k 倍区间

P8649 [蓝桥杯 2017 省 B] k 倍区间 题目描述 给定一个长度为 N N N 的数列&#xff0c; A 1 , A 2 , ⋯ A N A_1,A_2, \cdots A_N A1​,A2​,⋯AN​&#xff0c;如果其中一段连续的子序列 A i , A i 1 , ⋯ A j ( i ≤ j ) A_i,A_{i1}, \cdots A_j(i \le j) Ai​,Ai1​,⋯…...

基于SSM的高校宿舍水电管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…...

【LLM系列】1.大模型简介

1. 基础 1.1 如何权衡模型的复杂度和性能&#xff1f; ├── a. 模型架构选择 │ ├── 简化架构 │ │ └── 选择较小的网络层数和宽度&#xff0c;降低复杂度&#xff1b; │ │ 可使用高性能基础模型如 Transformers 作为起点&#xff0c;根据需求缩放模型。 │ └──…...

从概念和设计哲学的角度详细解析工厂模式

从概念和设计哲学的角度详细解析工厂模式。 1. 工厂模式的核心目标 解耦&#xff1a;将对象的创建过程与使用过程分离&#xff0c;使用者无需关心对象如何被创建。 统一入口&#xff1a;通过一个接口或方法控制对象的生成&#xff0c;隐藏底层实现细节。 类比现实中的工厂&am…...

AI小白:机器学习VS深度学习

1 特征工程的范式革命 传统机器学习&#xff1a;手工特征工程的艺术 在传统机器学习中&#xff0c;特征工程是一个关键步骤&#xff0c;它涉及将原始数据转化为能够被机器学习模型高效利用的特征。这通常需要领域专家的经验和知识&#xff0c;以手动设计和提取特征。 例如&a…...

对应列表数据的分割和分组

要基于指定的流派列表分割数据&#xff0c;可以使用 布尔索引 或 groupby 结合筛选。以下是具体方法&#xff1a; 场景假设 数据列 genres 中的值可能是多流派的字符串&#xff0c;例如 "drama,action" 或 ["drama", "action"]。目标&#xff1…...

信息物理系统(CPS):中国 AI(DEEPSEEK)的未来路径

一、引言 人工智能&#xff08;AI&#xff09;的发展正从通用模型向垂直领域渗透&#xff0c;而信息物理系统&#xff08;CPS&#xff09;作为连接数字世界与物理世界的桥梁&#xff0c;为 AI 提供了新的发展方向。中国 AI 企业如 DEEPSEEK 通过开源策略和本土化优势&#xff…...

SEO长尾词优化实战技巧

内容概要 长尾关键词作为SEO策略的重要组成部分&#xff0c;能够有效捕捉细分领域的精准流量&#xff0c;降低竞争成本的同时提升转化效率。本文系统梳理了从关键词挖掘到流量转化的全链路优化方法&#xff0c;重点解析工具使用、布局策略及搜索意图匹配三大核心模块。通过结合…...

爬虫自动化工具:DrissionPage

1. DrissionPage初始 官网地址&#xff1a;&#x1f6f0;️ 概述 | DrissionPage官网 在当今互联网高速发展的时代&#xff0c;网页数据的获取和处理变得愈发重要。传统的自动化工具如 Selenium 在某些方面逐渐显露出一些局限性&#xff0c;而 DrissionPage 正是在这样的背景下…...

扩展库Scrapy:Python网络爬虫的利器

目录 一、扩展机制的核心原理 二、六大实用扩展库详解 1. 动态渲染神器&#xff1a;scrapy-playwright 2. 分布式架构&#xff1a;scrapy-redis 3. 反反爬利器&#xff1a;scrapy-zyte-smartproxy 4. 智能调度&#xff1a;scrapy-thunder 5. 数据管道&#xff1a;scrapy…...

L3-21

exer01 Message # 1.定义Message消息类和cmd,content,sender,to四个属性&#xff0c;其中to默认为None class Message:def __init__(self, cmd, content, sender, toNone):self.cmd cmdself.content contentself.sender senderself.to to # 2. 创建登录消息对象msg1,聊天消…...

04.游戏开发-unity编辑器详细-工具栏、菜单栏、工作识图详解

04.游戏开发&#xff0c;unity编辑器详细-工具栏、菜单栏、工作识图详解 提示&#xff1a;帮帮志会陆续更新非常多的IT技术知识&#xff0c;希望分享的内容对您有用。本章分享的是Python基础语法。前后每一小节的内容是存在的有&#xff1a;学习and理解的关联性&#xff0c;希…...

GRBL运动控制算法(二)圆弧插补

前言 GRBL 是一款高性能、开源的嵌入式 CNC&#xff08;计算机数控&#xff09;控制器固件&#xff0c;专为 Arduino 平台优化&#xff0c;广泛应用于雕刻机、激光切割机、3D 打印机及其他精密运动控制场景。自 2009 年发布以来&#xff0c;GRBL 凭借其高效的运动规划算法、稳…...

《P1072 [NOIP 2009 提高组] Hankson 的趣味题》

题目描述 Hanks 博士是 BT&#xff08;Bio-Tech&#xff0c;生物技术) 领域的知名专家&#xff0c;他的儿子名叫 Hankson。现在&#xff0c;刚刚放学回家的 Hankson 正在思考一个有趣的问题。 今天在课堂上&#xff0c;老师讲解了如何求两个正整数 c1​ 和 c2​ 的最大公约数…...

矩阵分解中的梯度下降:详细实现方案(包含数学推导、代码实现和优化技巧)

矩阵分解中的梯度下降:详细实现方案(包含数学推导、代码实现和优化技巧) 矩阵分解是机器学习和数据科学中重要的技术,广泛应用于推荐系统、自然语言处理、图像处理等领域。梯度下降作为一种优化算法,在矩阵分解中常用于最小化目标函数以找到最佳的矩阵近似。本指南将详细…...

STM32F103C8T6实现 SG90 360 °电机转动

简介 基于上一篇 STM32F103C8T6实现 SG90 180 电机任意角度转动 本来想实现角度转动, 但靠舵机本身无法实现限位, 需要记录位置, 并且根据转速计算大概位置, 存在误差&#xff0c; 不实现角度转动了, 只实现正反转 代码 正向速度0.75为最大速度, 反向2.25&#xff0c; 接近1.5…...

RTDETR融合[CVPR2025]DnLUT中的MuLUTUnit模块

RT-DETR使用教程&#xff1a; RT-DETR使用教程 RT-DETR改进汇总贴&#xff1a;RT-DETR更新汇总贴 《DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables》 一、 模块介绍 论文链接&#xff1a;https://arxiv.org/pdf/2503.15931 代码链接&#xf…...

大数据Spark(五十七):Spark运行架构与MapReduce区别

文章目录 Spark运行架构与MapReduce区别 一、Spark运行架构 二、Spark与MapReduce区别 Spark运行架构与MapReduce区别 一、Spark运行架构 Master:Spark集群中资源管理主节点&#xff0c;负责管理Worker节点。Worker:Spark集群中资源管理的从节点&#xff0c;负责任务的运行…...

二:python基础(黑马)

一&#xff1a;了解 1.1: python特点 python是完全面向对象的语言 函数&#xff0c;模块&#xff0c;数字&#xff0c;字符串都是对象&#xff0c;在python中一切皆对象 完全支持继承&#xff0c;重载&#xff0c;多重继承 支持重载运算符&#xff0c;也支持泛型设计 py…...

【马拉车 KMP 差分数组】P6216 回文匹配|省选-

本文涉及知识点 较难理解的字符串查找算法KMP C差分数组 马拉车算法 P6216 回文匹配 题目描述 对于一对字符串 ( s 1 , s 2 ) (s_1,s_2) (s1​,s2​)&#xff0c;若 s 1 s_1 s1​ 的长度为奇数的子串 ( l , r ) (l,r) (l,r) 满足 ( l , r ) (l,r) (l,r) 是回文的&#…...

C/C++测试框架googletest使用示例

文章目录 文档编译安装示例参考文章 文档 https://github.com/google/googletest https://google.github.io/googletest/ 编译安装 googletest是cmake项目&#xff0c;可以用cmake指令编译 cmake -B build && cmake --build build将编译产物lib和include 两个文件夹…...

提高MCU的效率方法

要提高MCU(微控制器单元)的编程效率,需要从硬件特性、代码优化、算法选择、资源管理等多方面入手。以下是一些关键策略: 1. 硬件相关优化 时钟与频率: 根据需求选择合适的时钟源(内部/外部振荡器),避免过高的时钟频率导致功耗浪费。关闭未使用的外设时钟(如定时器、UA…...

Ansible 实战:Roles,运维的 “魔法函数”

一、介绍 你现在已经学过tasks和handlers&#xff0c;那么&#xff0c;最好的playbook组织方式是什么呢&#xff1f;答案很简单&#xff1a;使用roles&#xff01;roles基于一种已知的文件结构&#xff0c;能够自动加载特定的vars_files、tasks以及handlers。通过roles对内容进…...

GO简单开发grpc

什么是grpc 首先我们需要了解&#xff0c;什么是grpc gRPC&#xff08;全称&#xff1a;google remote procedure call&#xff09;是由Google开发的一个高性能、开源的远程过程调用&#xff08;RPC&#xff09;框架。它基于 HTTP/2 协议&#xff0c;并且使用 Protocol Buffer…...

强引用,弱引用,软引用,虚引用,自旋锁,读写锁

强引用&#xff1a;强引用GC不会回收 软引用&#xff1a;内存够的话不回收&#xff0c;内存不够的话回收 弱引用&#xff1a;不管内存够不够&#xff0c;只要有GC就回收 虚引用&#xff1a;点get是null&#xff0c;但是GC后他会把引用放到引用队列里边 自旋锁&#xff1a;是指尝…...

C++异常处理 throw try catch

C 异常处理概述 C 异常处理机制提供了一种在程序运行时捕获错误或异常情况的方式。异常处理的目的是使得程序在遇到错误时能够优雅地终止或恢复&#xff0c;并防止程序出现崩溃。C 使用 try, throw, 和 catch 关键字来实现异常处理。 异常处理的基本结构&#xff1a; throw: …...

优化 Web 性能:管理第三方资源(Third-Party Summary)

在现代 Web 开发中&#xff0c;第三方资源&#xff08;如分析工具、广告脚本、字体服务&#xff09;为网站提供了丰富的功能&#xff0c;但也可能成为性能瓶颈。Google 的 Lighthouse 工具在性能审计中提供了“第三方资源概要”&#xff08;Third-Party Summary&#xff09;&am…...

第六章、 系统级 I/O

真题考点 考点一&#xff1a;Unix I/O 所有的 I/O 设备(例如网络、磁盘和终端)都被模型化为文件&#xff0c;而所有的输入和输出都被当作对相应文件的读和写来执行。这种将设备优雅地映射为文件的方式&#xff0c;允许 Linux 内核引出一个简单、低级的应用接口&#xff0c;称为…...

Jetpack Compose 自定义标题栏终极指南:从基础到高级实战

Jetpack Compose 自定义标题栏终极指南&#xff1a;从基础到高级实战 本文将带你彻底掌握 Compose 标题栏开发&#xff0c;涵盖 5 种专业级实现方案 性能优化技巧 完整可运行代码。 &#x1f4da; 核心方案对比 方案特点适用场景复杂度基础Row布局完全自定义&#xff0c;灵…...

晶晨S905-S905L-S905LB_S905M2通刷_安卓6.0.1_16S极速开机_线刷固件包

晶晨S905-S905L-S905LB_S905M2通刷_安卓6.0.1_16S极速开机_线刷固件包 线刷方法&#xff1a;&#xff08;新手参考借鉴一下&#xff09; 刷机工具版本请用2.2.0以上&#xff0c;导入固件后&#xff0c;刷机工具右侧两个擦除打勾&#xff0c;然后点开始。插上刷机神器&#xf…...

tkiner模块的初步学习

文章目录 一、前言二、概念2.1 安装2.2 窗口 三、小部件3.1 概述3.2 常用小部件3.2.1 Label3.2.2 Button3.2.3 Entry3.2.4 Text3.2.5 Listbox3.2.6 Checkbutton3.2.7 Radiobutton3.2.8 Scrollbar 3.3 更多小部件3.3.1 Scale3.3.2 Spinbox3.3.3. Progressbar 3.4 主题小部件 四、…...