当前位置: 首页 > news >正文

es基本概念

Elasticsearch 的架构与基本概念

Elasticsearch(简称 ES)是一个开源的分布式搜索和分析引擎,基于 Apache Lucene 构建。它被广泛用于全文搜索、日志分析、实时数据分析等场景。以下是其架构概述及其基本概念的详细解释。

Elasticsearch 的架构

Elasticsearch 的架构设计为分布式、高可用和可扩展,核心是一个多节点的集群结构。以下是其主要组成部分和工作方式:

1. 集群(Cluster)

  • 定义:一个 Elasticsearch 集群由多个节点(Node)组成,共同工作以存储数据和处理请求。
  • 特性
    • 集群有一个唯一的名称(默认 elasticsearch),用于区分不同的集群。
    • 节点通过网络通信,共同维护数据和状态。

2. 节点(Node)

  • 定义:运行 Elasticsearch 实例的单个服务器或进程。
  • 角色(可组合):
    • 主节点(Master Node):负责集群管理(如分片分配、节点加入/退出)。
    • 数据节点(Data Node):存储数据,执行索引和搜索操作。
    • 摄取节点(Ingest Node):预处理数据。
    • 协调节点(Coordinating Node):路由请求和聚合结果。
  • 配置:通过 node.roles 指定(7.9+),例如 node.roles: ["master", "data"]
  • 特点:节点可以动态加入或离开集群,自动重新平衡数据。

3. 索引(Index)

  • 定义:类似于传统数据库中的“数据库”,是数据的逻辑容器。
  • 特性
    • 每个索引包含一组文档(Document),并定义了数据的结构(Mapping)。
    • 索引被分成多个分片存储在集群中。
  • 示例logs-2023-01(日志索引)。

4. 分片(Shard)

  • 定义:索引被分成多个分片,每个分片是一个独立的 Lucene 实例,存储部分数据。
  • 类型
    • 主分片(Primary Shard):原始数据存储位置,负责写入。
    • 副本分片(Replica Shard):主分片的副本,用于冗余和高可用。
  • 特点
    • 分片数量在创建索引时指定(默认 1),不可更改。
    • 副本数量可动态调整(默认 1)。
  • 分布:分片分布在集群的多个节点上,实现负载均衡和容错。

5. 文档(Document)

  • 定义:索引中的基本数据单元,类似于数据库中的一行。
  • 格式:JSON 格式,包含字段(Field)和值。
  • 示例
    {"id": 1,"title": "Elasticsearch Guide","content": "This is a guide to ES."
    }
    

6. 映射(Mapping)

  • 定义:定义文档字段的类型和存储方式,类似于数据库的表结构。
  • 类型:文本(text)、关键字(keyword)、数字(integer/float)、日期(date)等。
  • 动态性
    • 默认动态映射:自动推断字段类型。
    • 显式映射:手动定义以优化性能。

7. 倒排索引(Inverted Index)

  • 定义:Lucene 核心数据结构,将词(term)映射到包含该词的文档 ID。
  • 作用:支持快速全文搜索。
  • 示例
    Term       | Doc IDs
    -----------|---------
    elastic    | 1, 3
    search     | 1, 2
    

基本概念

以下是 Elasticsearch 的核心概念,帮助理解其工作机制:

  1. 集群(Cluster)

    • 一组协同工作的节点,共享数据和负载。
    • 通过 cluster.name 标识。
  2. 节点(Node)

    • 集群中的单个实例,承担特定角色。
    • 通过配置文件(如 elasticsearch.yml)设置。
  3. 索引(Index)

    • 数据的逻辑分组,包含多个分片。
    • 通过 REST API 创建,例如:
      curl -X PUT "localhost:9200/my-index"
      
  4. 分片(Shard)

    • 数据分片单元,主分片和副本分片共同确保高可用和性能。
    • 主分片数影响并行性,副本数影响容错性。
  5. 文档(Document)

    • JSON 格式的数据单元,存储在索引中。
    • 通过唯一 ID 标识,例如:
      curl -X POST "localhost:9200/my-index/_doc/1" -d '{"title": "Test"}'
      
  6. 映射(Mapping)

    • 定义字段的类型和索引方式。
    • 示例:
      {"mappings": {"properties": {"title": { "type": "text" },"date": { "type": "date" }}}
      }
      
  7. 倒排索引(Inverted Index)

    • 搜索的核心,支持关键词快速定位文档。
  8. 主选举(Master Election)

    • 集群通过选举选择一个主节点,负责协调操作。
    • 使用 Zen Discovery(6.x)或 Voting(7.x+)机制。
  9. 复制(Replication)

    • 数据在主分片和副本分片间复制,确保高可用。
    • 写入主分片后同步到副本。
  10. 查询(Query)

    • 通过 REST API 执行搜索和分析。
    • 示例:
      curl -X GET "localhost:9200/my-index/_search?q=title:elastic"
      

架构工作流程

写入流程

  1. 客户端发送写入请求到协调节点。
  2. 协调节点路由请求到主分片所在的数据节点。
  3. 主分片写入数据并同步到副本分片。
  4. 多数副本确认后,返回成功响应。

搜索流程

  1. 客户端发送搜索请求到协调节点。
  2. 协调节点广播查询到所有相关分片(主分片或副本)。
  3. 各分片执行查询并返回结果。
  4. 协调节点聚合结果,返回给客户端。

容错机制

  • 主节点故障:自动选举新主节点。
  • 数据节点故障:副本分片接管,集群重新分配分片。

架构图示(简易版)

[Client] --> [Coordinating Node]|+-----------+-----------+|                       |
[Master Node]       [Data Nodes]|[Shards: P0, R0, P1, R1]
  • Client:发送请求。
  • Coordinating Node:路由和聚合。
  • Master Node:管理集群状态。
  • Data Nodes:存储分片(P=Primary, R=Replica)。

优点与特性

  • 分布式:数据和负载分布在多节点。
  • 高可用:副本分片提供冗余。
  • 可扩展:动态添加节点。
  • 实时性:近实时搜索(默认 1 秒刷新)。

总结

Elasticsearch 的架构是一个分布式系统,核心由集群、节点、索引、分片和文档组成。它通过倒排索引实现高效搜索,通过主分片和副本分片确保数据可靠性和性能。基本概念如映射、复制和查询是理解其功能的关键。如果需要深入某部分(例如分片分配或查询优化),可以告诉我,我会进一步讲解!


相关文章:

es基本概念

Elasticsearch 的架构与基本概念 Elasticsearch(简称 ES)是一个开源的分布式搜索和分析引擎,基于 Apache Lucene 构建。它被广泛用于全文搜索、日志分析、实时数据分析等场景。以下是其架构概述及其基本概念的详细解释。 Elasticsearch 的架…...

算法刷题记录——LeetCode篇(2.5) [第141~150题](持续更新)

更新时间:2025-04-04 算法题解目录汇总:算法刷题记录——题解目录汇总技术博客总目录:计算机技术系列博客——目录页 141. 环形链表 给你一个链表的头节点 head ,判断链表中是否有环。 如果链表中有某个节点,可以通…...

【Rust学习】Rust数据类型,函数,条件语句,循环

本文专栏:Rust学习 目录 一,数据类型 1,标量类型 1.1,整型 1.2,整型溢出 1.3,浮点数型 1.4,布尔类型 1.5,字符型 2,复合类型 2.1,Tuple(元组) 2.2&am…...

PgVectore的使用

PgVectore的使用 一、PgVector的安装 参照博客:https://blog.csdn.net/u012953777/article/details/147013691?spm1001.2014.3001.5501 二、PgVector的使用 1、创建表与插入数据​ ​​定义向量字段​​: CREATE TABLE items (id SERIAL PRIMARY …...

智能工厂的数字孪生与信息物理系统架构研究

摘要 本文以工业 4.0 为背景,系统分析数字孪生(Digital Twin)与信息物理系统(CPS)在智能工厂中的协同架构。通过构建 "感知 - 映射 - 决策 - 执行" 的四层技术框架,结合三一重工、海尔等企业案例…...

基于YOLO11实例分割与奥比中光相机的快递包裹抓取点检测

本博客来源于CSDN机器鱼,未同意任何人转载。 更多内容,欢迎点击本专栏,查看更多内容。 0 引言 项目采用六轴机械臂搭配末端真空吸盘,从无序包裹中抓取想要的包裹。AI算法需要提供各包裹的抓取点的3D坐标与3D姿态。由于快递包裹含…...

简单程序语言理论与编译技术·22 实现一个从AST到RISCV的编译器

本文是记录专业课“程序语言理论与编译技术”的部分笔记。 LECTURE 22(实现一个从AST到RISCV的编译器) 一、问题分析 1、完整的编译器(如LLVM)需先完成AST到IR的转换,并进行代码优化,再到汇编&#xff0…...

无锡无人机驾驶证培训费用

无锡无人机驾驶证培训费用,随着科技的迅速发展,无人机在众多行业中发挥着举足轻重的作用。从影视制作到农业监测,再到物流运输与城市规划,无人机的应用场景不断扩展,因此越来越多的人开始意识到学习无人机驾驶技能的重…...

[ctfshow web入门] web5

前置知识 引用博客:phps的利用 当服务器配置了 .phps 文件类型时,访问 .phps 文件会以语法高亮的形式直接显示 PHP 源代码,而不是执行它。.phps被作为辅助开发者的一种功能,开发者可以通过网站上访问xxx.phps直接获取高亮源代码 …...

第五章:架构安全性_《凤凰架构:构建可靠的大型分布式系统》

第五章 架构安全性 一、认证机制 核心知识点: 认证标准: HTTP Basic认证:Base64编码传输凭证,需配合HTTPS使用OAuth 2.0:授权框架,重点掌握四种授权模式: 授权码模式(最安全&#…...

控件主题效果添加程序设计

以下是针对Qt Designer设计的控件添加阴影效果的完整解决方案,结合可视化设置与动态主题支持: 一、基础阴影效果实现方案 1. 通过QSS实现简易阴影(适用于简单需求) /* 使用多重边框模拟阴影效果 */ QFrame#customWidget {borde…...

用swift playground写个ios应用和大模型或者网站交互

import SwiftUIstruct ContentView: View {State private var textFieldText: String ""State private var outputText: String "输出将会显示在这里"private let tip:String "消息已发送,请等待"State private var history:[Stri…...

Mlivus Cloud SDK v2的革新:从痛点剖析到实战优化

目录 从V1到V2:开发者体验的范式转变 深度解析SDK v2的架构革新 1. 统一接口范式:终结API混乱时代 2. 原生异步支持:高并发场景的性能救星 3. Schema Cache机制:性能优化的隐形冠军 4. 全功能REST API:简化集成的关键 实战指南:从迁移到深度优化 平滑迁移策略 性…...

【图像处理基石】什么是AWB?

1. AWB(自动白平衡)的定义 AWB(Auto White Balance)是一种图像处理技术,通过算法校正不同色温光源下图像的色彩偏差,使白色在任何光照条件下都能准确呈现为白色,从而让图像颜色更接近人眼真实感…...

[蓝桥杯 2017 省 B] k 倍区间

P8649 [蓝桥杯 2017 省 B] k 倍区间 题目描述 给定一个长度为 N N N 的数列, A 1 , A 2 , ⋯ A N A_1,A_2, \cdots A_N A1​,A2​,⋯AN​,如果其中一段连续的子序列 A i , A i 1 , ⋯ A j ( i ≤ j ) A_i,A_{i1}, \cdots A_j(i \le j) Ai​,Ai1​,⋯…...

基于SSM的高校宿舍水电管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏:…...

【LLM系列】1.大模型简介

1. 基础 1.1 如何权衡模型的复杂度和性能? ├── a. 模型架构选择 │ ├── 简化架构 │ │ └── 选择较小的网络层数和宽度,降低复杂度; │ │ 可使用高性能基础模型如 Transformers 作为起点,根据需求缩放模型。 │ └──…...

从概念和设计哲学的角度详细解析工厂模式

从概念和设计哲学的角度详细解析工厂模式。 1. 工厂模式的核心目标 解耦:将对象的创建过程与使用过程分离,使用者无需关心对象如何被创建。 统一入口:通过一个接口或方法控制对象的生成,隐藏底层实现细节。 类比现实中的工厂&am…...

AI小白:机器学习VS深度学习

1 特征工程的范式革命 传统机器学习:手工特征工程的艺术 在传统机器学习中,特征工程是一个关键步骤,它涉及将原始数据转化为能够被机器学习模型高效利用的特征。这通常需要领域专家的经验和知识,以手动设计和提取特征。 例如&a…...

对应列表数据的分割和分组

要基于指定的流派列表分割数据,可以使用 布尔索引 或 groupby 结合筛选。以下是具体方法: 场景假设 数据列 genres 中的值可能是多流派的字符串,例如 "drama,action" 或 ["drama", "action"]。目标&#xff1…...

信息物理系统(CPS):中国 AI(DEEPSEEK)的未来路径

一、引言 人工智能(AI)的发展正从通用模型向垂直领域渗透,而信息物理系统(CPS)作为连接数字世界与物理世界的桥梁,为 AI 提供了新的发展方向。中国 AI 企业如 DEEPSEEK 通过开源策略和本土化优势&#xff…...

SEO长尾词优化实战技巧

内容概要 长尾关键词作为SEO策略的重要组成部分,能够有效捕捉细分领域的精准流量,降低竞争成本的同时提升转化效率。本文系统梳理了从关键词挖掘到流量转化的全链路优化方法,重点解析工具使用、布局策略及搜索意图匹配三大核心模块。通过结合…...

爬虫自动化工具:DrissionPage

1. DrissionPage初始 官网地址:🛰️ 概述 | DrissionPage官网 在当今互联网高速发展的时代,网页数据的获取和处理变得愈发重要。传统的自动化工具如 Selenium 在某些方面逐渐显露出一些局限性,而 DrissionPage 正是在这样的背景下…...

扩展库Scrapy:Python网络爬虫的利器

目录 一、扩展机制的核心原理 二、六大实用扩展库详解 1. 动态渲染神器:scrapy-playwright 2. 分布式架构:scrapy-redis 3. 反反爬利器:scrapy-zyte-smartproxy 4. 智能调度:scrapy-thunder 5. 数据管道:scrapy…...

L3-21

exer01 Message # 1.定义Message消息类和cmd,content,sender,to四个属性,其中to默认为None class Message:def __init__(self, cmd, content, sender, toNone):self.cmd cmdself.content contentself.sender senderself.to to # 2. 创建登录消息对象msg1,聊天消…...

04.游戏开发-unity编辑器详细-工具栏、菜单栏、工作识图详解

04.游戏开发,unity编辑器详细-工具栏、菜单栏、工作识图详解 提示:帮帮志会陆续更新非常多的IT技术知识,希望分享的内容对您有用。本章分享的是Python基础语法。前后每一小节的内容是存在的有:学习and理解的关联性,希…...

GRBL运动控制算法(二)圆弧插补

前言 GRBL 是一款高性能、开源的嵌入式 CNC(计算机数控)控制器固件,专为 Arduino 平台优化,广泛应用于雕刻机、激光切割机、3D 打印机及其他精密运动控制场景。自 2009 年发布以来,GRBL 凭借其高效的运动规划算法、稳…...

《P1072 [NOIP 2009 提高组] Hankson 的趣味题》

题目描述 Hanks 博士是 BT(Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。 今天在课堂上,老师讲解了如何求两个正整数 c1​ 和 c2​ 的最大公约数…...

矩阵分解中的梯度下降:详细实现方案(包含数学推导、代码实现和优化技巧)

矩阵分解中的梯度下降:详细实现方案(包含数学推导、代码实现和优化技巧) 矩阵分解是机器学习和数据科学中重要的技术,广泛应用于推荐系统、自然语言处理、图像处理等领域。梯度下降作为一种优化算法,在矩阵分解中常用于最小化目标函数以找到最佳的矩阵近似。本指南将详细…...

STM32F103C8T6实现 SG90 360 °电机转动

简介 基于上一篇 STM32F103C8T6实现 SG90 180 电机任意角度转动 本来想实现角度转动, 但靠舵机本身无法实现限位, 需要记录位置, 并且根据转速计算大概位置, 存在误差, 不实现角度转动了, 只实现正反转 代码 正向速度0.75为最大速度, 反向2.25, 接近1.5…...

RTDETR融合[CVPR2025]DnLUT中的MuLUTUnit模块

RT-DETR使用教程: RT-DETR使用教程 RT-DETR改进汇总贴:RT-DETR更新汇总贴 《DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables》 一、 模块介绍 论文链接:https://arxiv.org/pdf/2503.15931 代码链接&#xf…...

大数据Spark(五十七):Spark运行架构与MapReduce区别

文章目录 Spark运行架构与MapReduce区别 一、Spark运行架构 二、Spark与MapReduce区别 Spark运行架构与MapReduce区别 一、Spark运行架构 Master:Spark集群中资源管理主节点,负责管理Worker节点。Worker:Spark集群中资源管理的从节点,负责任务的运行…...

二:python基础(黑马)

一:了解 1.1: python特点 python是完全面向对象的语言 函数,模块,数字,字符串都是对象,在python中一切皆对象 完全支持继承,重载,多重继承 支持重载运算符,也支持泛型设计 py…...

【马拉车 KMP 差分数组】P6216 回文匹配|省选-

本文涉及知识点 较难理解的字符串查找算法KMP C差分数组 马拉车算法 P6216 回文匹配 题目描述 对于一对字符串 ( s 1 , s 2 ) (s_1,s_2) (s1​,s2​),若 s 1 s_1 s1​ 的长度为奇数的子串 ( l , r ) (l,r) (l,r) 满足 ( l , r ) (l,r) (l,r) 是回文的&#…...

C/C++测试框架googletest使用示例

文章目录 文档编译安装示例参考文章 文档 https://github.com/google/googletest https://google.github.io/googletest/ 编译安装 googletest是cmake项目,可以用cmake指令编译 cmake -B build && cmake --build build将编译产物lib和include 两个文件夹…...

提高MCU的效率方法

要提高MCU(微控制器单元)的编程效率,需要从硬件特性、代码优化、算法选择、资源管理等多方面入手。以下是一些关键策略: 1. 硬件相关优化 时钟与频率: 根据需求选择合适的时钟源(内部/外部振荡器),避免过高的时钟频率导致功耗浪费。关闭未使用的外设时钟(如定时器、UA…...

Ansible 实战:Roles,运维的 “魔法函数”

一、介绍 你现在已经学过tasks和handlers,那么,最好的playbook组织方式是什么呢?答案很简单:使用roles!roles基于一种已知的文件结构,能够自动加载特定的vars_files、tasks以及handlers。通过roles对内容进…...

GO简单开发grpc

什么是grpc 首先我们需要了解,什么是grpc gRPC(全称:google remote procedure call)是由Google开发的一个高性能、开源的远程过程调用(RPC)框架。它基于 HTTP/2 协议,并且使用 Protocol Buffer…...

强引用,弱引用,软引用,虚引用,自旋锁,读写锁

强引用:强引用GC不会回收 软引用:内存够的话不回收,内存不够的话回收 弱引用:不管内存够不够,只要有GC就回收 虚引用:点get是null,但是GC后他会把引用放到引用队列里边 自旋锁:是指尝…...

C++异常处理 throw try catch

C 异常处理概述 C 异常处理机制提供了一种在程序运行时捕获错误或异常情况的方式。异常处理的目的是使得程序在遇到错误时能够优雅地终止或恢复,并防止程序出现崩溃。C 使用 try, throw, 和 catch 关键字来实现异常处理。 异常处理的基本结构: throw: …...

优化 Web 性能:管理第三方资源(Third-Party Summary)

在现代 Web 开发中,第三方资源(如分析工具、广告脚本、字体服务)为网站提供了丰富的功能,但也可能成为性能瓶颈。Google 的 Lighthouse 工具在性能审计中提供了“第三方资源概要”(Third-Party Summary)&am…...

第六章、 系统级 I/O

真题考点 考点一:Unix I/O 所有的 I/O 设备(例如网络、磁盘和终端)都被模型化为文件,而所有的输入和输出都被当作对相应文件的读和写来执行。这种将设备优雅地映射为文件的方式,允许 Linux 内核引出一个简单、低级的应用接口,称为…...

Jetpack Compose 自定义标题栏终极指南:从基础到高级实战

Jetpack Compose 自定义标题栏终极指南:从基础到高级实战 本文将带你彻底掌握 Compose 标题栏开发,涵盖 5 种专业级实现方案 性能优化技巧 完整可运行代码。 📚 核心方案对比 方案特点适用场景复杂度基础Row布局完全自定义,灵…...

晶晨S905-S905L-S905LB_S905M2通刷_安卓6.0.1_16S极速开机_线刷固件包

晶晨S905-S905L-S905LB_S905M2通刷_安卓6.0.1_16S极速开机_线刷固件包 线刷方法:(新手参考借鉴一下) 刷机工具版本请用2.2.0以上,导入固件后,刷机工具右侧两个擦除打勾,然后点开始。插上刷机神器&#xf…...

tkiner模块的初步学习

文章目录 一、前言二、概念2.1 安装2.2 窗口 三、小部件3.1 概述3.2 常用小部件3.2.1 Label3.2.2 Button3.2.3 Entry3.2.4 Text3.2.5 Listbox3.2.6 Checkbutton3.2.7 Radiobutton3.2.8 Scrollbar 3.3 更多小部件3.3.1 Scale3.3.2 Spinbox3.3.3. Progressbar 3.4 主题小部件 四、…...

Java常用数据结构操作方法全面总结

目录 一、List接口及其实现类二、Set接口及其实现类三、Map接口及其实现类四、Queue/Deque队列五、Stack栈六、树形结构七、注意事项与最佳实践总结 一、List接口及其实现类 核心实现类 ArrayList:基于动态数组LinkedList:基于双向链表 常用操作方法…...

Java的Selenium的特殊元素操作与定位之select下拉框

如果页面元素是一个下拉框,我们可以将此web元素封装为Select对象 Select selectnew Select(WebElement element); Select对象常用api select.getOptions();//获取所有选项select.selectBylndex(index);//根据索引选中对应的元素select.selectByValue(value);//选…...

STM32单片机入门学习——第15节: [6-3] TIM输出比较

写这个文章是用来学习的,记录一下我的学习过程。希望我能一直坚持下去,我只是一个小白,只是想好好学习,我知道这会很难,但我还是想去做! 本文写于:2025.04.05 STM32开发板学习——第15节: [6-3] TIM输出比较 前言开发板说明引用解答和科普一…...

力扣经典算法篇-9-跳跃游戏(贪心算法,反向递推)

题干: 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。 示例 …...

java面向对象 - 封装、继承和多态

1.封装 定义 封装是把对象的属性和操作(或服务)结合为一个独立的整体,并尽可能隐藏对象的内部实现细节。通过访问控制修饰符(如private、protected、public)对属性和方法的访问进行限制,以此提升代码的安全性与可维护性。 要点 访问控制:运用private修饰属性,防止外部直…...