深度学习R8周:RNN实现阿尔兹海默症(pytorch)
- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊
数据集包含2149名患者的广泛健康信息,每名患者的ID范围从4751到6900不等。该数据集包括人口统计详细信息、生活方式因素、病史、临床测量、认知和功能评估、症状以及阿尔兹海默症的诊断。
一、前期准备工作
1.设置硬件设备
import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as sns#设置GPU训练,也可以使用CPU
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
结果输出:
2.导入数据
df = pd.read_csv("alzheimers_disease_data.csv")
# 删除第一列和最后一列
df = df.iloc[:, 1:-1]
print(df)
结果输出:
二、构建数据集
1.标准化
#构建数据集
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_splitX = df.iloc[:,:-1]
y = df.iloc[:,-1]# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X = sc.fit_transform(X)
2.划分数据集
#划分数据集
X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)X_train, X_test, y_train, y_test = train_test_split(X, y,test_size = 0.1,random_state = 1)print(X_train.shape, y_train.shape)
3.构建数据加载器
#构建数据加载器
from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(X_train, y_train),batch_size=64,shuffle=False)test_dl = DataLoader(TensorDataset(X_test, y_test),batch_size=64,shuffle=False)
输出结果:
三、模型训练
1.构建模型
#构建模型
class model_rnn(nn.Module):def __init__(self):super(model_rnn, self).__init__()self.rnn0 = nn.RNN(input_size=32, hidden_size=200,num_layers=1, batch_first=True)self.fc0 = nn.Linear(200, 50)self.fc1 = nn.Linear(50, 2)def forward(self, x):out, hidden1 = self.rnn0(x)out = self.fc0(out)out = self.fc1(out)return outmodel = model_rnn().to(device)
print(model)
结果输出:
如何来看模型的输出数据集格式是什么?
#查看数据集输出格式是什么
print(model(torch.rand(30,32).to(device)).shape)
结果输出:
2.定义训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset) # 训练集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0 # 初始化训练损失和正确率for X, y in dataloader: # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X) # 网络输出loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad() # grad属性归零loss.backward() # 反向传播optimizer.step() # 每一步自动更新# 记录acc与losstrain_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc, train_loss
3.定义测试函数
def test (dataloader, model, loss_fn):size = len(dataloader.dataset) # 测试集的大小num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss = loss_fn(target_pred, target)test_loss += loss.item()test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc /= sizetest_loss /= num_batchesreturn test_acc, test_loss
4.正式训练模型
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 5e-5 # 学习率
opt = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs = 50train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))print("="*20, 'Done', "="*20)
输出结果:
四、模型评估
1.Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 200 #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
输出结果:
2.混淆矩阵
print("=========输入数据Shape为=========")
print("X_test.shape: ", X_test.shape)
print("y_test.shape: ", y_test.shape)pred = model(X_test.to(device)).argmax(1).cpu().numpy()print("\n======输出数据Shape为 ======")
print("pred.shape: ",pred.shape)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay#计算混淆矩阵
cm = confusion_matrix(y_test, pred)plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm, annot=True, fmt="d",cmap="Blues")#修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Confusion Matrix", fontsize=12)
plt.xlabel("Predicted Label",fontsize=10)
plt.ylabel("True Label", fontsize=10)#显示图
plt.tight_layout()
plt.show()
3.调用模型进行预测
text_X = X_test[0].reshape(1,-1) #test[0]为输入数据pred = model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:“,pred")
print("=="*20)
print("0:未患病")
print("1:已患病")
五、优化特征选择版
特征选择的思路值得学习。
数据维度多,一般是先特征提取,降维等操作。
特征提取:①首先想到相关性分析,用热力图,但分析得出与是否患病相关性比较强的只有四个特征,而日常以为的年龄、日常生活得分这些没有看出有相关性。②通过画图分析特征是否与目标有关,但特征纬度多,不是有效的一个方式。③采用随机森林进行分析,效果很好。
六、总结
根据对数据的预处理,帮助实验精度提高。RNN也是很基础的模型,跟着教案,逐渐开始体会实验的思路。看完流程图,也对自己该怎么干,如何干有了大致的方向。
相关文章:
深度学习R8周:RNN实现阿尔兹海默症(pytorch)
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 数据集包含2149名患者的广泛健康信息,每名患者的ID范围从4751到6900不等。该数据集包括人口统计详细信息、生活方式因素、病史、临床测量、认知和功…...
字节跳动发布 Trae AI IDE!支持 DeepSeek R1 V3,AI 编程新时代来了!
3 月 3 日,字节跳动重磅发布国内首款 AI 原生集成开发环境(AI IDE)——Trae 国内版! Trae 不只是一个传统的 IDE,它深度融合 AI,搭载 doubao-1.5-pro 大模型,同时支持DeepSeek R1 & V3&…...
智能合约安全指南 [特殊字符]️
智能合约安全指南 🛡️ 1. 安全基础 1.1 常见漏洞类型 重入攻击整数溢出权限控制缺陷随机数漏洞前后运行攻击签名重放 1.2 安全开发原则 最小权限原则检查-生效-交互模式状态机安全失败保护机制 2. 重入攻击防护 2.1 基本防护模式 contract ReentrancyGuarde…...
DeepSeek 全套资料pdf合集免费下载(持续更新)
有很多朋友都关注DeepSeek相关使用的教程资料,本站也一直持续分享DeepSeek 学习相关的pdf资料,由于比较零散,这篇文章主要就是做一个汇总,并且持续更新,让大家可以及时获取下载最新的相关DeepSeek的资料。 持续更新地…...
IDEA 接入 Deepseek
在本篇文章中,我们将详细介绍如何在 JetBrains IDEA 中使用 Continue 插件接入 DeepSeek,让你的 AI 编程助手更智能,提高开发效率。 一、前置准备 在开始之前,请确保你已经具备以下条件: 安装了 JetBrains IDEA&…...
将md格式转jupyter并运行
将md格式转jupyter并运行 有时候我们需要将这种文档以学习的形式记笔记到jupyter中(任务) 但是内容太多了,一个一个粘贴又不方便,怎么办呢? 发现直接粘贴到md中是带格式的!!! 那…...
SOUI基于Zint生成EAN码
EAN码广泛应用与欧洲的零售业。包括EAN-2、EAN-5、EAN-8和EAN-12码。分别编码 2、5、7 或 12 位数字。此外,可以使用 字符将 EAN-2 和 EAN-5 附加符号添加到 EAN-8 和 EAN-13 符号中,就像 UPC 符号一样。 EAN-8校验码计算: 从左往右奇数位的…...
StarRocks-fe工程在Cursor中不能识别为Java项目
SR简介 StarRocks 是一款高性能分析型数据库,支持实时、多维度、高并发的数据分析。本指南旨在解决在使用 VSCode 或 Cursor 开发 StarRocks 后端项目时遇到的模块识别问题。 问题描述 使用 Cursor 或 VSCode 打开 StarRocks 的后端工程 fe 时,spark-…...
AI是否能真正理解人类情感?从语音助手到情感机器人
引言:AI与情感的交集 在过去的几十年里,人工智能(AI)的发展速度令人惊叹,从简单的语音识别到如今的深度学习和情感计算,AI已经深入到我们生活的方方面面。尤其是在语音助手和情感机器人领域,AI不…...
【Linux】【网络】UDP打洞-->不同子网下的客户端和服务器通信(成功版)
【Linux】【网络】UDP打洞–>不同子网下的客户端和服务器通信(成功版) 根据上个文章的分析 问题可能出现在代码逻辑上面 我这里重新查找资料怀疑: 1 NAT映射可能需要多次数据包的发送才能建立。 2 NAT映射保存时间太短ÿ…...
【微知】如何查看Mellanox网卡上的光模块的信息?(ethtool -m enp1s0f0 看型号、厂商、生产日期等)
背景 服务器上插入的光模块经常被忽略,往往这里是定位问题最根本的地方。如何通过命令查看? 命令 ethtool提供了-m参数,m是module-info的意思,他是从光模块的eeprom中读取数据。(应该是用i2c协议读取的)…...
图论基础算法: 二分图的判定(C++)
二分图的基本概念 什么是二分图? 二分图(Bipartite Graph)是指一个图的顶点集可以被分割为两个互不相交的子集 U U U 和 V V V, 并且图中的每一条边都连接 U U U 中的一个顶点和 V V V 中的一个顶点. 换句话说, 二分图中的顶点可以被分成两组, 组内的顶点之间没有边相连…...
AI赋能校园安全:科技助力预防与应对校园霸凌
校园本应是学生快乐学习、健康成长的地方,然而,校园霸凌却成为威胁学生身心健康的隐形“毒瘤”。近年来,随着人工智能(AI)技术的快速发展,AI在校园安全领域的应用逐渐成为解决校园霸凌问题的新突破口。通过…...
PyTorch系列教程:评估和推理模式下模型预测
使用PyTorch时,将模型从训练阶段过渡到推理阶段是至关重要的一步。在推理过程中,该模型用于对以前从未见过的新数据进行预测。这种转换的一个重要方面是使用推理模式,它通过禁用仅在训练期间需要的操作来帮助优化模型的性能。 理解推理模式 …...
Linux注册进程终止处理函数
atexit() 是一个标准库函数,用于注册在进程正常终止时要调用的函数。通过 atexit(),你可以确保在程序结束时自动执行一些清理工作,比如释放资源、保存状态等。 函数原型如下: #include <stdlib.h> int atexit(void (*func…...
Lumerical INTERCONNECT 中的自相位调制 (SPM)
一、自相位调制的数学介绍 A.非线性薛定谔方程(NLSE): NLSE 是光学中的一个关键方程。它告诉我们光脉冲在具有非线性和色散特性的介质中的行为方式。该方程如下所示: i ∂A/∂z β2/2 ∂A/∂t γ|A|A 0 其中: - …...
DICOM服务中的C-STORE、 C-FIND、C-MOVE、C-GET、Worklist
DICOM服务说明 DICOM(Digital Imaging and Communications in Medicine)是一种用于处理、存储、打印和传输医学影像的标准。DICOM定义了多种服务类,其中C-STORE、C-FIND、C-MOVE和C-GET是与影像数据查询和检索相关的四个主要服务类ÿ…...
Python的pdf2image库将PDF文件转换为PNG图片
您可以使用Python的pdf2image库将PDF文件转换为PNG图片。以下是一个完整的示例,包含安装步骤、代码示例和注意事项。 安装依赖库 首先,您需要安装pdf2image库: pip install pdf2imagepdf2image依赖于poppler库来解析PDF文件。 Windows系统…...
在Blender中给SP分纹理组
在Blender中怎么分SP的纹理组/纹理集 其实纹理组就是材质 把同一组的材质分给同一组的模型 导入到sp里面自然就是同一个纹理组 把模型导入SP之后 就自动分好了...
import模块到另一个文件夹报错:ModuleNotFoundError: No module named xxx
1. 问题 打开项目文件夹my_code,将bb.py的函数或者类import到aa.py中,然后运行aa.py文件,可能会报错ModuleNotFoundError: No module named xxx。 E:\Desktop\my_code ├── a │ ├── train.sh │ └── aa.py └── b└── b…...
[SystemVerilog]例化
SystemVerilog 的例化方式和Verilog 类似 如果信号输入输出name一致 abc abc_inst( .a(a), .b(b), c(c) ); 使用SystemVerilog abc abc_inst( .a, .b, .c ); 或者 abc abc_inst( .* ); 在SystemVerilog中,可以简化例化方式。 可以使用…...
Java方法详解
Java方法详解 方法1.方法的概念(1).什么是方法(2).方法的定义(3).实参与形参的关系 2.方法重载(1).方法重载的概念 3.递归(C语言详细讲过) 方法 1.方法的概念 (1).什么是方法 方法类似于C语言中的函数,我们重在体会与理解,不必…...
springboot自动插入创建时间和更新时间到数据库
springboot自动插入创建时间和更新时间到数据库 1.添加TableField注解2.添加TimeMetaObjectHandler配置3.测试 1.添加TableField注解 /*** 创建时间*/TableField(fill FieldFill.INSERT) // 插入时生效private LocalDateTime createTime;/*** 修改时间*/TableField(fill Fiel…...
如何将JAR交由Systemctl管理?
AI越来越火了,我们想要不被淘汰就得主动拥抱。推荐一个人工智能学习网站,通俗易懂,风趣幽默,最重要的屌图甚多,忍不住分享一下给大家。点击跳转到网站 废话不多说,进入正题。下面开始说如何使用 systemctl…...
VMware Workstation Pro安装openKylin 2.0全流程指南
原文链接:VMware Workstation Pro安装openKylin 2.0全流程指南 Hello,大家好啊!今天给大家带来一篇在VMware Workstation Pro 上安装 openKylin 2.0 SP1 的文章。openKylin 2.0 作为国产开源桌面操作系统,目前已经发布了最新版本&…...
网络安全检查漏洞内容回复 网络安全的漏洞
网络安全的核心目标是保障业务系统的可持续性和数据的安全性,而这两点的主要威胁来自于蠕虫的暴发、黑客的攻击、拒绝服务攻击、木马。蠕虫、黑客攻击问题都和漏洞紧密联系在一起,一旦有重大安全漏洞出现,整个互联网就会面临一次重大挑战。虽…...
数据仓库的特点
数据仓库的主要特点可以概括为:面向主题、集成性、非易失性、时变性、高性能和可扩展性、支持复杂查询和分析、分层架构以及数据质量管理。 1. 面向主题(Subject-Oriented) 数据仓库是面向主题的,而不是面向事务的。这意味着数据…...
02_NLP文本预处理之文本张量表示法
文本张量表示法 概念 将文本使用张量进行表示,一般将词汇表示为向量,称为词向量,再由各个词向量按顺序组成矩阵形成文本表示 例如: ["人生", "该", "如何", "起头"]># 每个词对应矩阵中的一个向量 [[1.32, 4,32, 0,32, 5.2],[3…...
青蛙跳杯子(BFS)
#include <iostream> #include <queue> #include <string> #include <unordered_set> using namespace std;int main() {string a, b;cin >> a >> b; int n a.size(); // 字符串长度int d[] {1, -1, -2, 2, -3, 3}; // 跳跃距离queue&…...
【前端基础】1、HTML概述(HTML基本结构)
一、网页组成 HTML:网页的内容CSS:网页的样式JavaScript:网页的功能 二、HTML概述 HTML:全称为超文本标记语言,是一种标记语言。 超文本:文本、声音、图片、视频、表格、链接标记:由许许多多…...
Arm64架构的Linux服务器安装jdk8
一、下载 JDK8 打开浏览器,访问 oracle官网找到适用于自己服务器的 arm64 架构的 JDK8 安装包。 二、安装 JDK8 将下载好的 JDK 压缩包上传到服务器上 解压 JDK 压缩包: tar -zxvf jdk-8uXXX-linux-arm64.tar.gz选择安装目录,我将 JDK 安装…...
深入探索Python机器学习算法:模型调优
深入探索Python机器学习算法:模型调优 文章目录 深入探索Python机器学习算法:模型调优模型调优1. 超参数搜索方法1.1 网格搜索(Grid Search)1.2 随机搜索(Random Search)1.3 贝叶斯优化(Bayesia…...
【Linux】冯诺依曼体系结构-操作系统
一.冯诺依曼体系结构 我们所使用的计算机,如笔记本等都是按照冯诺依曼来设计的: 截止目前,我们所知道的计算机都是由一个一个的硬件组装起来的,这些硬件又由于功能的不同被分为了输入设备,输出设备,存储器…...
Linux第五讲----gcc与g++,makefile/make
1.代码编译 1.1预处理 我们通过vim编辑完文件之后,想看一下运行结果这时我们便可以试用gcc编译C语言,g编译c. 编译代码: 上述两种方法均可,code.c是我的c语言文件,mycode是我给编译后产生的二进制文件起的名&#x…...
FastGPT 源码:基于 LLM 实现 Rerank (含Prompt)
文章目录 基于 LLM 实现 Rerank函数定义预期输出实现说明使用建议完整 Prompt 基于 LLM 实现 Rerank 下边通过设计 Prompt 让 LLM 实现重排序的功能。 函数定义 class LLMReranker:def __init__(self, llm_client):self.llm llm_clientdef rerank(self, query: str, docume…...
Virtual Box虚拟机安装Mac苹果Monterey和big sur版本实践
虚拟机安装苹果实践,在Windows10系统,安装Virtual Box7.1.6,安装虚拟苹果Monterey版本Monterey (macOS 12) 。碰到的主要问题是安装光盘不像Windows那么容易拿到,而且根据网上很多文章制作的光盘,在viritualBox里都无法…...
【高并发】Java 并行与串行深入解析:性能优化与实战指南
Java 并行与串行深入解析:性能优化与实战指南 在高性能应用开发中,我们常常会面临 串行(Serial) 和 并行(Parallel) 的选择。串行执行任务简单直观,但并行能更高效地利用 CPU 资源,…...
软考中级-数据库-3.2 数据结构-数组和矩阵
数组 一维数组是长度固定的线性表,数组中的每个数据元素类型相同。n维数组是定长线性表在维数上的扩张,即线性表中的元素又是一个线性表。 例如一维数组a[5][a1,a2,a3,a4,a5] 二维数组a[2][3]是一个2行2列的数组 第一行[a11,a12,a13] 第二行[a21,a22,a23…...
LeetCode 解题思路 9(Hot 100)
解题思路: 遍历并调整数组: 对于每个元素 nums[i],若其值为正且不超过数组长度 len,则将其逐步交换到它应该在的位置。查找缺失的正整数: 遍历调整后的数组,若某个位置的值不等于其索引加1,则说…...
交叉编译 perl-5.40.0 perl-cross-1.5.3
1.下载地址: https://www.cpan.org/src/5.0/ https://github.com/arsv/perl-cross/tags2.编译 # 进入源码目录 cd /opt/snmp/perl # 合并perl-cross到Perl源码 cp -R perl-cross-1.5.3/* perl-5.40.0/ cd perl-5.40.0./configure --targetaarch64-poky-linux --p…...
go前后端开源项目go-admin,本地启动
https://github.com/go-admin-team/go-admin 教程 1.拉取项目 git clone https://github.com/go-admin-team/go-admin.git 2.更新整理依赖 go mod tidy会整理依赖,下载缺少的包,移除不用的,并更新go.sum。 # 更新整理依赖 go mod tidy 3.编…...
突破光学成像局限:全视野光学血管造影技术新进展
全视野光学血管造影(FFOA)作为一种实时、无创的成像技术,能够提取生物血液微循环信息,为深入探究生物组织的功能和病理变化提供关键数据。然而,传统FFOA成像方法受到光学镜头景深(DOF)的限制&am…...
RefuseManualStart/Stop增强Linux系统安全性?详解systemd单元保护机制
一、引子:一个“手滑”引发的血案 某天凌晨,运维工程师小张在维护生产服务器时,误输入了 systemctl start reboot.target,导致整台服务器瞬间重启,线上服务中断30分钟,直接损失数十万元。事后排查发现&…...
国产编辑器EverEdit - 超级丰富的标签样式设置!
1 设置-高级-标签 1.1 设置说明 选择主菜单工具 -> 设置 -> 常规,在弹出的选项窗口中选择标签分类,如下图所示: 1.1.1 多文档标签样式 默认 平坦 渐变填充 1.1.2 停靠窗格标签样式 默认 平坦 渐变填充 1.1.3 激活Tab的…...
装饰器模式:灵活扩展对象功能的利器
一、从咖啡加料说起:什么是装饰器模式? 假设您走进咖啡馆点单: 基础款:美式咖啡(15元)加料需求:加牛奶(3元)、加焦糖(5元)、加奶油(…...
# [Linux] [Anaconda]解决在 WSL Ubuntu 中安装 Anaconda 报错问题
在 Windows 10 中安装了 WSL(Windows Subsystem for Linux)并使用 Ubuntu 后,你可能会下载 Anaconda 的 Linux 版本进行安装。但在安装过程中,可能会遇到 tar (child): bzip2: Cannot exec: No such file or directory 这样的错误…...
【回溯】216. 组合总和 III
题目 216. 组合总和 III 思路 不知道for有几层时,使用回溯,比上一题多了一个条件,组合需要和为n。 代码 class Solution { private:vector<vector<int>>result;vector<int>path;void backtracking(int target,int k,i…...
AI编程工具-(四)
250304今天用【通义灵码】做了下简单的分析建模工作。不够丝滑,但是在数据预处理方面还是有用。 目录 准备工作一分析工作建模结论 这个数据集是网上随手找的时许指标数据,然后分析时序指标A和B关联关系。 准备工作一 问大模型,这个场景有哪…...
一种事件驱动的设计模式-Reactor 模型
Reactor 模型 是一种事件驱动的设计模式,主要用于处理高并发的 I/O 操作(如网络请求、文件读写等)。其核心思想是通过事件分发机制,将 I/O 事件的监听和处理解耦,从而高效管理大量并发连接,避免传统多线程模…...
AI-Ollama本地大语言模型运行框架与Ollama javascript接入
1.Ollama Ollama 是一个开源的大型语言模型(LLM)平台,旨在让用户能够轻松地在本地运行、管理和与大型语言模型进行交互。 Ollama 提供了一个简单的方式来加载和使用各种预训练的语言模型,支持文本生成、翻译、代码编写、问答等多种…...