当前位置: 首页 > news >正文

突破光学成像局限:全视野光学血管造影技术新进展

全视野光学血管造影(FFOA)作为一种实时、无创的成像技术,能够提取生物血液微循环信息,为深入探究生物组织的功能和病理变化提供关键数据。然而,传统FFOA成像方法受到光学镜头景深(DOF)的限制,难以捕捉到包含所有血流信息的图像。近期一项发表于《Frontiers in Physics》的研究,看看它是如何在全视野光学血管造影(FFOA)技术上实现创新突破的。

血液微循环研究的临床价值

研究肿瘤微血管的变化,能帮助我们开发出精准打击癌细胞的抗血管生成疗法。长期的高血糖会侵蚀视网膜的微血管,导致血管渗漏,进而引发缺血性新生血管。实时监测视网膜微循环的变化,医生就能准确地实施治疗,保护患者的视力。微血管稀疏化是高血压和冠脉微循环障碍的重要标志。通过高分辨率成像评估血管内皮功能和血流储备,能提前发现心血管疾病的隐患。

传统光学成像的景深瓶颈

为了看清血液微循环,科学家们运用了多种光学成像技术,包括FFOA技术。然而都受到景深(DOF)的限制。由于生物样本结构复杂,现有光学成像技术很难一次让所有深度的血管都清晰成像。增加镜头放大倍数,会使景深范围变得更窄,更多的血管无法清晰成像,严重阻碍了对生物组织的深入研究。

多焦点融合技术的崛起

多焦点图像融合技术通过改变成像系统的焦距,获取同一物体在不同景深下的多幅图像,然后提取聚焦特征并融合,扩大了成像的景深范围。在工业检测、文物保护等领域,这项技术已展现出巨大潜力,在生物医学成像领域也有望突破现有技术瓶颈。

基于梯度特征检测的FFOA图像融合方案

研究开发了基于梯度特征检测(GFD)的FFOA图像融合方案。首先用非下采样轮廓波变换(NSCT)把源图像分解为低频系数(LFCs)、高频方向系数(HFDCs)和低频差分图像(LFDIs)。针对低频系数,采用基于和修正拉普拉斯(SML)与局部能量(LE)相结合的融合规则(SMLE),全面评估低频系数的特征,挑选出融合后的低频系数。处理高频方向系数时,运用基于结构张量和局部清晰度变化度量(SOLS)的融合规则,构建并优化决策图,指导高频方向系数的融合,保留源图像细节信息。最后,对融合后的系数进行逆NSCT变换,生成最终的融合图像,扩展了FFOA图像的景深。

image.png

基于梯度特征检测的FFOA融合系统

image.png

提出的FFOA图像融合方案

NSCT在图像融合中的优势

与传统的金字塔变换相比,NSCT具有灵活性、多尺度性、多方向性和移位不变性,能在多个方向上分解图像,捕捉更丰富的细节信息,获得更准确的融合结果。实验表明,在多焦点图像融合方面,NSCT性能优于其他多尺度变换方法,为FFOA图像融合提供了更强大的技术支持。

image.png

NSCT概述

融合规则的设计与优化

融合规则决定如何从源图像的不同系数中选择最优信息进行融合,融合规则有效反映低频系数的能量和亮度变化,保留源图像重要的低频信息。基于局部清晰度变化度量的融合规则充分考虑高频方向系数中局部几何结构(LGS)的变化,减少错误信息引入,提高融合图像质量。

成像实验与结果分析

幻影实验:模拟真实场景的验证

研究人员进行幻影实验,模拟真实生物血管场景。通过电动变焦镜头(EZL)获取不同景深的FFOA图像,将景深从1mm扩展到约3.2mm。结果显示,该研究提出的方法和U2Fusion方法在融合图像中残留信息较少,能更好地保留源图像信息。在客观评价指标上,该研究方法在多个指标上表现出色,略优于NSSR方法,证明其在保留源图像信息和提高融合图像质量方面的优势。

image.png

幻影实验的主观评价

动物实验:体内成像的真实考验

研究人员用小鼠耳朵进行动物实验,将景深从0.8mm扩展到约3.3mm。在不同组实验中,针对不同血管厚度和背景组织情况,该研究方法都展现出优势。在量化评估中,该方法在大多数指标上优于其他对比方法,平均指标值最高,表明其在动物实验中能有效扩展景深,保留源图像信息,呈现血管细节。

image.png

体模实验的客观评价

image.png

小鼠耳实验第一组的主观评价

image.png

小鼠耳实验第一组的客观评价

image.png

小鼠耳实验第二组的主观评价

image.png

小鼠耳实验第二组的客观评价

公共数据集实验:通用性的有力证明

除了幻影实验和动物实验,研究人员利用公共数据集进行实验,以验证所提方法的通用性。他们选用了包含20对多焦点图像的数据集,该数据集包含运动场和金属网格等复杂场景,对验证方法的性能具有较高价值。结果显示,在保留源图像亮度和颜色信息方面,所有方法表现良好,但在图像清晰度方面,NSSR和该研究方法更出色。在客观评估中,该研究方法在多个指标上排名第一,尽管在VIF指标上略低于NSSR,但综合来看,该方法在整体客观评估中的指标表现最佳。这充分证明了该方法不仅在特定的实验场景中表现优异,而且在不同类型的多焦点图像融合任务中都具有良好的通用性和有效性,能够广泛应用于各种实际场景。

image.png

数据集的主观评价

总结与展望

基于GFD的FFOA图像融合方案为生物医学研究带来新契机。在肿瘤研究领域,有助于揭示肿瘤生长和转移机制,为开发抗肿瘤药物提供靶点。在心血管疾病研究中,能更准确评估血管状况,对早期诊断至关重要,为制定个性化治疗方案提供依据。目前该技术存在一些局限,如聚焦速度有限,无法实时成像,计算效率有待提升。未来,研究人员将优化硬件设备,提高成像速度,开发智能参数选择方法,减少人工经验依赖,并优化计算过程,提高计算效率。随着技术的改进和完善,该融合技术在临床诊断中,可辅助医生更准确地诊断眼科、皮肤科等疾病。在药物研发方面,能评估药物对血管的作用效果。

论文信息

Wang G, Li J, Tan H and Li X (2024) Fusion of full-field optical angiography images via gradient feature detection. Front. Phys. 12:1397732.

DOI:10.3389/fphy.2024.1397732.

相关文章:

突破光学成像局限:全视野光学血管造影技术新进展

全视野光学血管造影(FFOA)作为一种实时、无创的成像技术,能够提取生物血液微循环信息,为深入探究生物组织的功能和病理变化提供关键数据。然而,传统FFOA成像方法受到光学镜头景深(DOF)的限制&am…...

RefuseManualStart/Stop增强Linux系统安全性?详解systemd单元保护机制

一、引子:一个“手滑”引发的血案 某天凌晨,运维工程师小张在维护生产服务器时,误输入了 systemctl start reboot.target,导致整台服务器瞬间重启,线上服务中断30分钟,直接损失数十万元。事后排查发现&…...

国产编辑器EverEdit - 超级丰富的标签样式设置!

1 设置-高级-标签 1.1 设置说明 选择主菜单工具 -> 设置 -> 常规,在弹出的选项窗口中选择标签分类,如下图所示: 1.1.1 多文档标签样式 默认 平坦 渐变填充 1.1.2 停靠窗格标签样式 默认 平坦 渐变填充 1.1.3 激活Tab的…...

装饰器模式:灵活扩展对象功能的利器

一、从咖啡加料说起:什么是装饰器模式? 假设您走进咖啡馆点单: 基础款:美式咖啡(15元)加料需求:加牛奶(3元)、加焦糖(5元)、加奶油(…...

# [Linux] [Anaconda]解决在 WSL Ubuntu 中安装 Anaconda 报错问题

在 Windows 10 中安装了 WSL(Windows Subsystem for Linux)并使用 Ubuntu 后,你可能会下载 Anaconda 的 Linux 版本进行安装。但在安装过程中,可能会遇到 tar (child): bzip2: Cannot exec: No such file or directory 这样的错误…...

【回溯】216. 组合总和 III

题目 216. 组合总和 III 思路 不知道for有几层时&#xff0c;使用回溯&#xff0c;比上一题多了一个条件&#xff0c;组合需要和为n。 代码 class Solution { private:vector<vector<int>>result;vector<int>path;void backtracking(int target,int k,i…...

AI编程工具-(四)

250304今天用【通义灵码】做了下简单的分析建模工作。不够丝滑&#xff0c;但是在数据预处理方面还是有用。 目录 准备工作一分析工作建模结论 这个数据集是网上随手找的时许指标数据&#xff0c;然后分析时序指标A和B关联关系。 准备工作一 问大模型&#xff0c;这个场景有哪…...

一种事件驱动的设计模式-Reactor 模型

Reactor 模型 是一种事件驱动的设计模式&#xff0c;主要用于处理高并发的 I/O 操作&#xff08;如网络请求、文件读写等&#xff09;。其核心思想是通过事件分发机制&#xff0c;将 I/O 事件的监听和处理解耦&#xff0c;从而高效管理大量并发连接&#xff0c;避免传统多线程模…...

AI-Ollama本地大语言模型运行框架与Ollama javascript接入

1.Ollama Ollama 是一个开源的大型语言模型&#xff08;LLM&#xff09;平台&#xff0c;旨在让用户能够轻松地在本地运行、管理和与大型语言模型进行交互。 Ollama 提供了一个简单的方式来加载和使用各种预训练的语言模型&#xff0c;支持文本生成、翻译、代码编写、问答等多种…...

XPath路径表达式

1. 绝对路径表达式 语法&#xff1a;/根元素/子元素/子子元素... 特点**&#xff1a;**必须从根元素开始&#xff0c;完整地逐层写路径。 示例代码&#xff1a; <!-- XML结构 --> <school> <class id"1"> <student>小明</student> &l…...

大语言模型的逻辑:从“鹦鹉学舌”到“举一反三”

引言 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09;在自然语言处理领域取得了突破性进展&#xff0c;其强大的文本生成和理解能力令人惊叹。然而&#xff0c;随着应用的深入&#xff0c;人们也开始关注LLM的“逻辑”问题&#xff1a;它究竟是机械地模仿人类语言&a…...

从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(0)系统设计与工具链说明

文章大纲 系统简介Version 1Version2环境摄像机数据流websocket 发送图像帧RTSP 视频流树莓派windows消息队列参考文献项目地址提示词系统简介 Version 1 Version2 环境 # 配置 conda 源 # 配置conda安装源 conda config --add channels https://mirrors.tuna.tsinghua.edu.c…...

在Linux环境部署SpringBoot项目

在xshell中手动开放8080端口 sudo ufw allow 8080/tcp systemctl reload ufw systemctl restart ufw 配置文件要求 也可以使用maven来分平台 部署到linux服务器上 1.建一个文件夹 2.将jar包拖拽到文件夹中 3.运行nohup java -jar jar包 &的命令启动程序 //后台启动 …...

8. 保存应用数据

一、课程笔记 1.0 引入 针对那些体积小&#xff0c;访问频率高&#xff0c;且对它的速度有一定要求的轻量化数据。例如&#xff0c;用户偏好设置用配置参数等&#xff0c;使用传统的惯性数据库进行存储&#xff0c;不惊险的笨重&#xff0c;还可能引入不必要的性能开销。 此时…...

ADC采集模块与MCU内置ADC性能对比

2.5V基准电压源&#xff1a; 1. 精度更高&#xff0c;误差更小 ADR03B 具有 0.1% 或更小的初始精度&#xff0c;而 电阻分压方式的误差主要来自电阻的容差&#xff08;通常 1% 或 0.5%&#xff09;。长期稳定性更好&#xff0c;分压电阻容易受到温度、老化的影响&#xff0c;长…...

量子算法:英译名、概念、历史、现状与展望?

李升伟 整理 #### 英译名 量子算法的英文为 **Quantum Algorithm**。 #### 概念 量子算法是利用量子力学原理&#xff08;如叠加态、纠缠态和干涉&#xff09;设计的算法&#xff0c;旨在通过量子计算机高效解决经典计算机难以处理的问题。其核心在于利用量子比特&#xff08…...

水仙花数(华为OD)

题目描述 所谓水仙花数&#xff0c;是指一个n位的正整数&#xff0c;其各位数字的n次方和等于该数本身。 例如153是水仙花数&#xff0c;153是一个3位数&#xff0c;并且153 13 53 33。 输入描述 第一行输入一个整数n&#xff0c;表示一个n位的正整数。n在3到7之间&#x…...

基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析

基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析 文章目录 **基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析** 摘要引言一、技术可行性深度剖析1.1 现有编程语言…...

【Linux】【网络】UDP打洞-->不同子网下的客户端和服务器通信(未成功版)

【Linux】【网络】UDP打洞–>不同子网下的客户端和服务器通信&#xff08;未成功版&#xff09; 上次说基于UDP的打洞程序改了五版一直没有成功&#xff0c;要写一下问题所在&#xff0c;但是我后续又查询了一些资料&#xff0c;成功实现了&#xff0c;这次先写一下未成功的…...

C# 中的Action和Func是什么?Unity 中的UnityAction是什么? 他们有什么区别?

所属范围&#xff1a;Action 和 Func 是 C# 语言标准库中的委托类型&#xff0c;可在任何 C# 项目里使用&#xff1b;UnityAction 是 Unity 引擎专门定义的委托类型&#xff0c;只能在 Unity 项目中使用。 返回值&#xff1a;Action 和 UnityAction 封装的方法没有返回值&…...

SparkStreaming之03:容错、语义、整合kafka、Exactly-Once、ScalikeJDBC

SparkStreaming进阶 一 、要点:star:4.1 SparkStreaming容错4.1.1 SparkStreaming运行流程4.1.2 如果Executor失败&#xff1f;:star:4.1.3 如果Driver失败&#xff1f;4.1.4 数据丢失如何处理:star:4.1.5 当一个task很慢容错 :star:4.2 SparkSreaming语义4.3 SparkStreaming与…...

让单链表不再云里雾里

一日不见&#xff0c;如三月兮&#xff01;接下来与我一起创建单链表吧&#xff01; 目录 单链表的结构&#xff1a; 创建单链表&#xff1a; 增加结点&#xff1a; 插入结点&#xff1a; 删除结点&#xff1a; 打印单链表&#xff1a; 单链表查找&#xff1a; 单链表…...

Linux系统管理(十八)——Ubuntu Server环境下载安装图形化界面、英伟达显卡驱动、Cuda、cudnn、conda的深度学习环境

安装ubuntu系统 镜像源地址&#xff1a;https://ubuntu.com/download/server 安装镜像是最好联网&#xff0c;这样不需要自己配置网络地址&#xff0c;会自动生成动态地址 配置镜像源 在装系统时最好设置好镜像源地址 清华镜像源&#xff1a;https://mirrors.tuna.tsinghua.…...

深度学习的隐身术:详解 PyTorch nn.Dropout

前言 你是否遇到过这样的情况?训练时模型表现得像个学霸,准确率高得离谱,可一到测试集就原形毕露,像是考试作弊被抓包的学生,成绩一落千丈。这种现象叫过拟合,你的模型可能只是死记硬背了训练数据,并没有真正理解其中的模式。 别慌!解决过拟合的方法之一就是Dropout,…...

vscode工作区看不清光标

案例分析&#xff1a; 有的时候当我们把vscode的背景色设置成黑色或者默认黑色时 "workbench.colorTheme": "Visual Studio Dark"这时鼠标指针在非停留状态(指针移动时就看不清)&#xff0c;需要改下系统的鼠标指针设置&#xff0c;而不是vscode的光标设置…...

2025-03-04 学习记录--C/C++-PTA 习题5-4 使用函数求素数和

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、题目描述 ⭐️ 二、代码&#xff08;C语言&#xff09;⭐️ #include <stdio.h>// 函数声明&#xff1a;判断一个数是…...

Open3D 学习指南 (持续学习)

本章仅为个人学习整理。 Open3D: https://www.open3d.org/ Github repo: https://github.com/isl-org/Open3D 1. 概述 Open3D 是一个开源库&#xff0c;旨在为 3D 数据处理提供高效且易用的工具。它由 Intel 开发和维护&#xff0c;支持多种 3D 数据处理任务&#xff0c;如…...

端口安全测试全方位指南:风险、流程与防护策略

在数字化时代&#xff0c;网络安全至关重要&#xff0c;而端口安全作为网络防护的前沿阵地&#xff0c;稍有疏忽就可能为恶意攻击者打开入侵的大门。以下为您详细阐述端口安全测试的全面流程、核心风险点、应对策略及防护建议。 一、测试前的周密筹备 &#xff08;一&#xf…...

3dsmax烘焙光照贴图然后在unity中使用

效果预览 看不清[完蛋&#xff01;] 实现步骤 使用 软件 软体名称地址photoshophttps://www.adobe.com/products/photoshop.htmlunity3Dhttps://unity.com/3dsmaxhttps://www.autodesk.com.cn/products/3ds-max/free-trialpacker-iohttps://www.uv-packer.com/HDR 贴图地址…...

GCN从理论到实践——基于PyTorch的图卷积网络层实现

Hi&#xff0c;大家好&#xff0c;我是半亩花海。图卷积网络&#xff08;Graph Convolutional Network, GCN&#xff09;是一种处理图结构数据的深度学习模型。它通过聚合邻居节点的信息来更新每个节点的特征表示&#xff0c;广泛应用于社交网络分析、推荐系统和生物信息学等领…...

Ollama存在安全风险的情况通报及解决方案

据清华大学网络空间测绘联合研究中心分析&#xff0c;开源跨平台大模型工具Ollama默认配置存在未授权访问与模型窃取等安全隐患。鉴于目前DeepSeek等大模型的研究部署和应用非常广泛&#xff0c;多数用户使用Ollama私有化部署且未修改默认配置&#xff0c;存在数据泄露、算力盗…...

大模型在高血压预测及围手术期管理中的应用研究报告

目录 一、引言 1.1 研究背景与意义 1.2 研究目的 1.3 国内外研究现状 二、大模型预测高血压的原理与方法 2.1 常用大模型介绍 2.2 数据收集与预处理 2.3 模型训练与验证 三、术前风险预测与手术方案制定 3.1 术前风险因素分析 3.2 大模型预测术前风险的方法与结果 …...

网络安全rt是什么意思

1.什么时EDR :完全不同以往的端点被防护思路&#xff0c;而是通过云端威胁情报&#xff0c;机器学习&#xff0c;异常行为分析&#xff0c;攻击指示器等方式&#xff0c;主动发现来自外部或内部的安全威胁 。并进行自动化的阻止&#xff0c;取证&#xff0c;补救和溯源从而有效…...

数据结构篇—栈(stack)

一、引入 在数学史上有这样一个经典问题——汉诺塔问题。 通过动图演示我们发现每一个圆片的运动是什么样的呢&#xff1f; 我们发现&#xff0c;第一个放入的最大圆片将位于整个塔的最底端。所以若想将最大圆片拿出来&#xff0c;就得将压在它身上的所有圆片先按顺序取出才能将…...

python3.13安装教程【2025】python3.13超详细图文教程(包含安装包)

文章目录 前言一、python3.13安装包下载二、Python 3.13安装步骤三、Python3.13验证 前言 本教程将为你详细介绍 Python 3.13 python3.13安装教程&#xff0c;帮助你顺利搭建起 Python 3.13 开发环境&#xff0c;快速投身于 Python 编程的精彩实践中。 一、python3.13安装包下…...

动态内存分配

动态内存分配 1. malloc1.1函数原型1.2参数1.3特点1.4注意事项 2.calloc2.1函数原型2.2参数2.3特点2.4注意事项 3.realloc3.1函数原型3.2参数3.3特点3.4注意事项 4.free4.1 函数原型4.2参数4.3特点 结语 在 C 语言中&#xff0c;主要使用标准库函数 <stdlib.h> 中的几个函…...

物联网设备数据割裂难题:基于OAuth2.0的分布式用户画像系统设计!格行代理是不是套路?2025有什么比较好的副业?低成本的创业好项目有哪些?

一、行业基本面&#xff1a;双赛道增长逻辑验证 1.1 随身WiFi市场&#xff1a;场景红利与技术博弈 移动办公、户外直播等场景推动随身WiFi需求持续增长&#xff0c;格行核心的三网切换技术&#xff08;移动/联通/电信自动择优&#xff09;有效解决单一运营商信号覆盖盲区问题&…...

17.10 LangSmith Evaluation 深度实战:构建智能评估体系驱动大模型进化

LangSmith Evaluation 深度实战:构建智能评估体系驱动大模型进化 关键词:LangSmith 评估体系, 大模型质量评估, 自动化评测流水线, 多维度指标分析, 生产环境模型监控 1. 评估体系设计哲学 LangSmith Evaluation 采用 规则评估+模型评估+人工反馈 三位一体的评估框架: #me…...

Gravitino SparkConnector 实现原理

Gravitino SparkConnector 实现原理 本文参考了官网介绍&#xff0c;想看官方解析请参考 官网地址 本文仅仅介绍原理 文章目录 Gravitino SparkConnector 实现原理背景知识-Spark Plugin 介绍(1) **插件加载**(2) **DriverPlugin 初始化**(3) **ExecutorPlugin 初始化**(4) *…...

前端开发好用的AI工具介绍

以下是前端开发中提升效率的 AI 工具 推荐&#xff0c;涵盖代码生成、UI设计、调试优化等场景&#xff1a; 一、代码生成与辅助工具 工具名称特点适用场景GitHub Copilot基于 OpenAI&#xff0c;智能代码补全&#xff08;支持 JS/TS/React/Vue&#xff09;快速生成代码片段、函…...

Linux的用户与权限--第二天

认知root用户&#xff08;超级管理员&#xff09; root用户用于最大的系统操作权限 普通用户的权限&#xff0c;一般在HOME目录内部不受限制 su与exit命令 su命令&#xff1a; su [-] 用户名 -符号是可选的&#xff0c;表示切换用户后加载环境变量 参数为用户名&#xff0c…...

COUNT(CASE WHEN ... THEN ... END)详解

在 SQL 查询中&#xff0c;COUNT(CASE WHEN ... THEN ... END) 是一种常见的用法&#xff0c;用于统计满足特定条件的记录数。具体例子&#xff1a; # sexType 2表示女生 COUNT(CASE WHEN h_employee.sexType 2 THEN 1 END) AS 女员工人数解释 CASE WHEN ... THEN ... END&a…...

音视频入门基础:RTP专题(14)——FFmpeg源码中,对H.264的各种RTP有效载荷结构的解析

一、引言 由《音视频入门基础&#xff1a;RTP专题&#xff08;10&#xff09;——FFmpeg源码中&#xff0c;解析RTP header的实现》可以知道&#xff0c;FFmpeg源码的rtp_parse_packet_internal函数的前半部分实现了解析某个RTP packet的RTP header的功能。而在解析完RTP head…...

FPGA——4位全加器及3-8译码器的实现

文章目录 一、全加器1、Verilog实现四位全加器2、下载测试 二、3-8译码器1、Verilog实现3-8译码器2、7段数码管显示3-8译码器 三、总结四、参考资料 一、全加器 全加器的定义&#xff1a; 全加器英语名称为full-adder&#xff0c;是用门电路实现两个二进制数相加并求出和的组合…...

软考中级-数据库-3.4 数据结构-图

图的定义 一个图G(Graph)是由两个集合:V和E所组成的&#xff0c;V是有限的非空顶点(Vertex)集合&#xff0c;E是用顶点表示的边(Edge)集合&#xff0c;图G的顶点集和边集分别记为V(G)和E(G)&#xff0c;而将图G记作G(V&#xff0c;E)。可以看出&#xff0c;一个顶点集合与连接这…...

软考中级-数据库-3.3 数据结构-树

定义:树是n(n>=0)个结点的有限集合。当n=0时称为空树。在任一非空树中,有且仅有一个称为根的结点:其余结点可分为m(m>=0)个互不相交的有限集T1,T2,T3...,Tm…,其中每个集合又都是一棵树,并且称为根结点的子树。 树的相关概念 1、双亲、孩子和兄弟: 2、结点的度:一个结…...

Win11被背刺,官方泄露免费激活方法

AI已经成为科技圈的主旋律了&#xff0c;在PC圈的龙头微软也不例外。 但最近喜欢背刺用户、极力推崇AI的微软被自家产品背刺了一把。 罪魁祸首就是Microsoft Copilot&#xff0c;如果向Microsoft Copilot提问&#xff0c;是否可以帮忙提供激活Windows11的脚本。 Copilot会立马…...

第十天-字符串:编程世界的文本基石

在编程的广阔领域中&#xff0c;字符串是极为重要的数据类型&#xff0c;它就像一座桥梁&#xff0c;连接着人类的自然语言和计算机能够理解与处理的数字信息。下面&#xff0c;让我们深入探索字符串的世界。 一、字符串简介 字符串是由零个或多个字符组成的有序序列&#xff…...

CentOS7 安装Redis 6.2.6 详细教程

本文主要介绍CentOS7系统下安装Redis6.2.6的详细教程。 1.安装依赖 redis是基于C语言开发&#xff0c;因此想要在服务器上运行redis需要验证是否安装了gcc&#xff0c;没有安装gcc则需先安装 查看是否安装gcc gcc -v如果没有安装gcc&#xff0c;则通过如下命令安装 yum in…...

VsCode使用

vscode前端vue项目启动&#xff1a;Vue项目的创建启动及注意事项-CSDN博客 vscode使用教程&#xff1a;史上最全vscode配置使用教程 - 夏天的思考 - 博客园 vscode如何从git拉取代码&#xff1a;vscode如何从git拉取代码 • Worktile社区...