当前位置: 首页 > news >正文

数据仓库的特点

数据仓库的主要特点可以概括为:面向主题、集成性、非易失性、时变性、高性能和可扩展性、支持复杂查询和分析、分层架构以及数据质量管理。

1. 面向主题(Subject-Oriented)

数据仓库是面向主题的,而不是面向事务的。这意味着数据仓库中的数据是围绕特定的业务主题组织的,例如销售、客户、供应链、财务等。与事务型数据库(如关系型数据库)不同,事务型数据库面向的是具体的业务流程(如订单处理、库存管理等),而数据仓库则关注于数据的分析和决策支持。
特点:数据仓库中的数据是经过整合的,消除了数据源之间的冗余和不一致性,使得数据能够从全局角度支持企业决策。
举例:在销售主题中,数据仓库可以整合来自不同销售渠道(如线上、线下、经销商)的销售数据,形成统一的销售主题视图。

2. 集成性(Integrated)

数据仓库中的数据来源于多个异构的数据源,包括关系型数据库、文件系统、外部数据源等。这些数据在进入数据仓库之前,需要经过抽取(Extract)、转换(Transform)和加载(Load)的过程,即ETL过程。ETL过程确保了数据的一致性、完整性和准确性。
特点:数据仓库中的数据是经过清洗、转换和整合的,消除了数据源之间的差异和冗余。
举例:企业可能有多个业务系统,如ERP系统、CRM系统和财务系统,数据仓库通过ETL将这些系统的数据整合在一起,形成统一的数据视图。

3. 非易失性(Non-Volatile)

数据仓库中的数据是相对稳定的,不会因为日常业务操作而频繁更新。数据一旦加载到数据仓库中,通常只会被查询和分析,而不是频繁修改。这种特性使得数据仓库能够支持历史数据分析和趋势预测。
特点:数据仓库中的数据是历史性的、不可变的,适合进行长期的数据分析。
举例:销售数据在数据仓库中会保留多年,用于分析销售趋势、季节性变化等。

4. 时变性(Time-Variant)

数据仓库中的数据是随时间变化的,能够反映历史数据的变化趋势。数据仓库通常会保留多个时间点的数据,以便分析数据随时间的变化情况。这种特性使得数据仓库能够支持趋势分析、时间序列分析等。
特点:数据仓库中的数据是带有时间戳的,能够反映数据在不同时间点的状态。
举例:企业可以分析过去几年的销售数据,了解哪些产品在哪些时间段表现最好,从而制定未来的销售策略。

5. 高性能和可扩展性

数据仓库通常需要处理海量的数据,因此需要具备高性能和良好的扩展性。数据仓库的架构设计通常会采用分区存储、索引优化、并行处理等技术来提高查询性能。同时,数据仓库也需要能够支持数据量的动态增长。
特点:数据仓库能够高效地处理大规模数据,并支持数据量的动态扩展。
举例:企业数据量可能从TB级增长到PB级,数据仓库需要能够适应这种增长,同时保持良好的性能。

6. 支持复杂查询和分析

数据仓库的核心功能是支持复杂的数据查询和分析,包括多维分析(OLAP)、数据挖掘、机器学习等。数据仓库通过提供强大的分析工具和接口,使得用户能够从多个角度分析数据,发现数据中的隐藏模式和趋势。
特点:数据仓库支持复杂的查询和分析操作,能够满足企业决策支持的需求。
举例:企业可以通过数据仓库分析客户行为,预测客户的购买倾向,从而进行精准营销。

7. 数据层次结构

数据仓库通常采用分层架构,常见的有三层架构:数据源层、数据仓库层(DW)和数据集市层(DM)。
数据源层:包含企业内部和外部的各种数据源。
数据仓库层:是数据的核心存储区域,存储经过清洗和整合的数据。
数据集市层:是数据仓库的子集,针对特定的业务部门或用户群体提供数据支持。
这种分层架构使得数据仓库能够更好地管理数据,同时提高数据的可用性和安全性。
8. 数据质量管理
数据仓库对数据质量要求极高,需要确保数据的准确性、一致性和完整性。数据仓库通过数据清洗、数据校验、数据更新等机制,确保数据的质量。
特点:数据仓库中的数据经过严格的质量控制,能够为决策提供可靠的数据支持。
举例:在数据加载过程中,数据仓库会检查数据的格式、范围和一致性,确保数据的准确性。

相关文章:

数据仓库的特点

数据仓库的主要特点可以概括为:面向主题、集成性、非易失性、时变性、高性能和可扩展性、支持复杂查询和分析、分层架构以及数据质量管理。 1. 面向主题(Subject-Oriented) 数据仓库是面向主题的,而不是面向事务的。这意味着数据…...

02_NLP文本预处理之文本张量表示法

文本张量表示法 概念 将文本使用张量进行表示,一般将词汇表示为向量,称为词向量,再由各个词向量按顺序组成矩阵形成文本表示 例如: ["人生", "该", "如何", "起头"]># 每个词对应矩阵中的一个向量 [[1.32, 4,32, 0,32, 5.2],[3…...

青蛙跳杯子(BFS)

#include <iostream> #include <queue> #include <string> #include <unordered_set> using namespace std;int main() {string a, b;cin >> a >> b; int n a.size(); // 字符串长度int d[] {1, -1, -2, 2, -3, 3}; // 跳跃距离queue&…...

【前端基础】1、HTML概述(HTML基本结构)

一、网页组成 HTML&#xff1a;网页的内容CSS&#xff1a;网页的样式JavaScript&#xff1a;网页的功能 二、HTML概述 HTML&#xff1a;全称为超文本标记语言&#xff0c;是一种标记语言。 超文本&#xff1a;文本、声音、图片、视频、表格、链接标记&#xff1a;由许许多多…...

Arm64架构的Linux服务器安装jdk8

一、下载 JDK8 打开浏览器&#xff0c;访问 oracle官网找到适用于自己服务器的 arm64 架构的 JDK8 安装包。 二、安装 JDK8 将下载好的 JDK 压缩包上传到服务器上 解压 JDK 压缩包&#xff1a; tar -zxvf jdk-8uXXX-linux-arm64.tar.gz选择安装目录&#xff0c;我将 JDK 安装…...

深入探索Python机器学习算法:模型调优

深入探索Python机器学习算法&#xff1a;模型调优 文章目录 深入探索Python机器学习算法&#xff1a;模型调优模型调优1. 超参数搜索方法1.1 网格搜索&#xff08;Grid Search&#xff09;1.2 随机搜索&#xff08;Random Search&#xff09;1.3 贝叶斯优化&#xff08;Bayesia…...

【Linux】冯诺依曼体系结构-操作系统

一.冯诺依曼体系结构 我们所使用的计算机&#xff0c;如笔记本等都是按照冯诺依曼来设计的&#xff1a; 截止目前&#xff0c;我们所知道的计算机都是由一个一个的硬件组装起来的&#xff0c;这些硬件又由于功能的不同被分为了输入设备&#xff0c;输出设备&#xff0c;存储器…...

Linux第五讲----gcc与g++,makefile/make

1.代码编译 1.1预处理 我们通过vim编辑完文件之后&#xff0c;想看一下运行结果这时我们便可以试用gcc编译C语言&#xff0c;g编译c. 编译代码&#xff1a; 上述两种方法均可&#xff0c;code.c是我的c语言文件&#xff0c;mycode是我给编译后产生的二进制文件起的名&#x…...

FastGPT 源码:基于 LLM 实现 Rerank (含Prompt)

文章目录 基于 LLM 实现 Rerank函数定义预期输出实现说明使用建议完整 Prompt 基于 LLM 实现 Rerank 下边通过设计 Prompt 让 LLM 实现重排序的功能。 函数定义 class LLMReranker:def __init__(self, llm_client):self.llm llm_clientdef rerank(self, query: str, docume…...

Virtual Box虚拟机安装Mac苹果Monterey和big sur版本实践

虚拟机安装苹果实践&#xff0c;在Windows10系统&#xff0c;安装Virtual Box7.1.6&#xff0c;安装虚拟苹果Monterey版本Monterey (macOS 12) 。碰到的主要问题是安装光盘不像Windows那么容易拿到&#xff0c;而且根据网上很多文章制作的光盘&#xff0c;在viritualBox里都无法…...

【高并发】Java 并行与串行深入解析:性能优化与实战指南

Java 并行与串行深入解析&#xff1a;性能优化与实战指南 在高性能应用开发中&#xff0c;我们常常会面临 串行&#xff08;Serial&#xff09; 和 并行&#xff08;Parallel&#xff09; 的选择。串行执行任务简单直观&#xff0c;但并行能更高效地利用 CPU 资源&#xff0c;…...

软考中级-数据库-3.2 数据结构-数组和矩阵

数组 一维数组是长度固定的线性表&#xff0c;数组中的每个数据元素类型相同。n维数组是定长线性表在维数上的扩张&#xff0c;即线性表中的元素又是一个线性表。 例如一维数组a[5][a1,a2,a3,a4,a5] 二维数组a[2][3]是一个2行2列的数组 第一行[a11,a12,a13] 第二行[a21,a22,a23…...

LeetCode 解题思路 9(Hot 100)

解题思路&#xff1a; 遍历并调整数组&#xff1a; 对于每个元素 nums[i]&#xff0c;若其值为正且不超过数组长度 len&#xff0c;则将其逐步交换到它应该在的位置。查找缺失的正整数&#xff1a; 遍历调整后的数组&#xff0c;若某个位置的值不等于其索引加1&#xff0c;则说…...

交叉编译 perl-5.40.0 perl-cross-1.5.3

1.下载地址&#xff1a; https://www.cpan.org/src/5.0/ https://github.com/arsv/perl-cross/tags2.编译 # 进入源码目录 cd /opt/snmp/perl # 合并perl-cross到Perl源码 cp -R perl-cross-1.5.3/* perl-5.40.0/ cd perl-5.40.0./configure --targetaarch64-poky-linux --p…...

go前后端开源项目go-admin,本地启动

https://github.com/go-admin-team/go-admin 教程 1.拉取项目 git clone https://github.com/go-admin-team/go-admin.git 2.更新整理依赖 go mod tidy会整理依赖&#xff0c;下载缺少的包&#xff0c;移除不用的&#xff0c;并更新go.sum。 # 更新整理依赖 go mod tidy 3.编…...

突破光学成像局限:全视野光学血管造影技术新进展

全视野光学血管造影&#xff08;FFOA&#xff09;作为一种实时、无创的成像技术&#xff0c;能够提取生物血液微循环信息&#xff0c;为深入探究生物组织的功能和病理变化提供关键数据。然而&#xff0c;传统FFOA成像方法受到光学镜头景深&#xff08;DOF&#xff09;的限制&am…...

RefuseManualStart/Stop增强Linux系统安全性?详解systemd单元保护机制

一、引子&#xff1a;一个“手滑”引发的血案 某天凌晨&#xff0c;运维工程师小张在维护生产服务器时&#xff0c;误输入了 systemctl start reboot.target&#xff0c;导致整台服务器瞬间重启&#xff0c;线上服务中断30分钟&#xff0c;直接损失数十万元。事后排查发现&…...

国产编辑器EverEdit - 超级丰富的标签样式设置!

1 设置-高级-标签 1.1 设置说明 选择主菜单工具 -> 设置 -> 常规&#xff0c;在弹出的选项窗口中选择标签分类&#xff0c;如下图所示&#xff1a; 1.1.1 多文档标签样式 默认 平坦 渐变填充 1.1.2 停靠窗格标签样式 默认 平坦 渐变填充 1.1.3 激活Tab的…...

装饰器模式:灵活扩展对象功能的利器

一、从咖啡加料说起&#xff1a;什么是装饰器模式&#xff1f; 假设您走进咖啡馆点单&#xff1a; 基础款&#xff1a;美式咖啡&#xff08;15元&#xff09;加料需求&#xff1a;加牛奶&#xff08;3元&#xff09;、加焦糖&#xff08;5元&#xff09;、加奶油&#xff08;…...

# [Linux] [Anaconda]解决在 WSL Ubuntu 中安装 Anaconda 报错问题

在 Windows 10 中安装了 WSL&#xff08;Windows Subsystem for Linux&#xff09;并使用 Ubuntu 后&#xff0c;你可能会下载 Anaconda 的 Linux 版本进行安装。但在安装过程中&#xff0c;可能会遇到 tar (child): bzip2: Cannot exec: No such file or directory 这样的错误…...

【回溯】216. 组合总和 III

题目 216. 组合总和 III 思路 不知道for有几层时&#xff0c;使用回溯&#xff0c;比上一题多了一个条件&#xff0c;组合需要和为n。 代码 class Solution { private:vector<vector<int>>result;vector<int>path;void backtracking(int target,int k,i…...

AI编程工具-(四)

250304今天用【通义灵码】做了下简单的分析建模工作。不够丝滑&#xff0c;但是在数据预处理方面还是有用。 目录 准备工作一分析工作建模结论 这个数据集是网上随手找的时许指标数据&#xff0c;然后分析时序指标A和B关联关系。 准备工作一 问大模型&#xff0c;这个场景有哪…...

一种事件驱动的设计模式-Reactor 模型

Reactor 模型 是一种事件驱动的设计模式&#xff0c;主要用于处理高并发的 I/O 操作&#xff08;如网络请求、文件读写等&#xff09;。其核心思想是通过事件分发机制&#xff0c;将 I/O 事件的监听和处理解耦&#xff0c;从而高效管理大量并发连接&#xff0c;避免传统多线程模…...

AI-Ollama本地大语言模型运行框架与Ollama javascript接入

1.Ollama Ollama 是一个开源的大型语言模型&#xff08;LLM&#xff09;平台&#xff0c;旨在让用户能够轻松地在本地运行、管理和与大型语言模型进行交互。 Ollama 提供了一个简单的方式来加载和使用各种预训练的语言模型&#xff0c;支持文本生成、翻译、代码编写、问答等多种…...

XPath路径表达式

1. 绝对路径表达式 语法&#xff1a;/根元素/子元素/子子元素... 特点**&#xff1a;**必须从根元素开始&#xff0c;完整地逐层写路径。 示例代码&#xff1a; <!-- XML结构 --> <school> <class id"1"> <student>小明</student> &l…...

大语言模型的逻辑:从“鹦鹉学舌”到“举一反三”

引言 近年来&#xff0c;大语言模型&#xff08;LLM&#xff09;在自然语言处理领域取得了突破性进展&#xff0c;其强大的文本生成和理解能力令人惊叹。然而&#xff0c;随着应用的深入&#xff0c;人们也开始关注LLM的“逻辑”问题&#xff1a;它究竟是机械地模仿人类语言&a…...

从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(0)系统设计与工具链说明

文章大纲 系统简介Version 1Version2环境摄像机数据流websocket 发送图像帧RTSP 视频流树莓派windows消息队列参考文献项目地址提示词系统简介 Version 1 Version2 环境 # 配置 conda 源 # 配置conda安装源 conda config --add channels https://mirrors.tuna.tsinghua.edu.c…...

在Linux环境部署SpringBoot项目

在xshell中手动开放8080端口 sudo ufw allow 8080/tcp systemctl reload ufw systemctl restart ufw 配置文件要求 也可以使用maven来分平台 部署到linux服务器上 1.建一个文件夹 2.将jar包拖拽到文件夹中 3.运行nohup java -jar jar包 &的命令启动程序 //后台启动 …...

8. 保存应用数据

一、课程笔记 1.0 引入 针对那些体积小&#xff0c;访问频率高&#xff0c;且对它的速度有一定要求的轻量化数据。例如&#xff0c;用户偏好设置用配置参数等&#xff0c;使用传统的惯性数据库进行存储&#xff0c;不惊险的笨重&#xff0c;还可能引入不必要的性能开销。 此时…...

ADC采集模块与MCU内置ADC性能对比

2.5V基准电压源&#xff1a; 1. 精度更高&#xff0c;误差更小 ADR03B 具有 0.1% 或更小的初始精度&#xff0c;而 电阻分压方式的误差主要来自电阻的容差&#xff08;通常 1% 或 0.5%&#xff09;。长期稳定性更好&#xff0c;分压电阻容易受到温度、老化的影响&#xff0c;长…...

量子算法:英译名、概念、历史、现状与展望?

李升伟 整理 #### 英译名 量子算法的英文为 **Quantum Algorithm**。 #### 概念 量子算法是利用量子力学原理&#xff08;如叠加态、纠缠态和干涉&#xff09;设计的算法&#xff0c;旨在通过量子计算机高效解决经典计算机难以处理的问题。其核心在于利用量子比特&#xff08…...

水仙花数(华为OD)

题目描述 所谓水仙花数&#xff0c;是指一个n位的正整数&#xff0c;其各位数字的n次方和等于该数本身。 例如153是水仙花数&#xff0c;153是一个3位数&#xff0c;并且153 13 53 33。 输入描述 第一行输入一个整数n&#xff0c;表示一个n位的正整数。n在3到7之间&#x…...

基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析

基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析 文章目录 **基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析** 摘要引言一、技术可行性深度剖析1.1 现有编程语言…...

【Linux】【网络】UDP打洞-->不同子网下的客户端和服务器通信(未成功版)

【Linux】【网络】UDP打洞–>不同子网下的客户端和服务器通信&#xff08;未成功版&#xff09; 上次说基于UDP的打洞程序改了五版一直没有成功&#xff0c;要写一下问题所在&#xff0c;但是我后续又查询了一些资料&#xff0c;成功实现了&#xff0c;这次先写一下未成功的…...

C# 中的Action和Func是什么?Unity 中的UnityAction是什么? 他们有什么区别?

所属范围&#xff1a;Action 和 Func 是 C# 语言标准库中的委托类型&#xff0c;可在任何 C# 项目里使用&#xff1b;UnityAction 是 Unity 引擎专门定义的委托类型&#xff0c;只能在 Unity 项目中使用。 返回值&#xff1a;Action 和 UnityAction 封装的方法没有返回值&…...

SparkStreaming之03:容错、语义、整合kafka、Exactly-Once、ScalikeJDBC

SparkStreaming进阶 一 、要点:star:4.1 SparkStreaming容错4.1.1 SparkStreaming运行流程4.1.2 如果Executor失败&#xff1f;:star:4.1.3 如果Driver失败&#xff1f;4.1.4 数据丢失如何处理:star:4.1.5 当一个task很慢容错 :star:4.2 SparkSreaming语义4.3 SparkStreaming与…...

让单链表不再云里雾里

一日不见&#xff0c;如三月兮&#xff01;接下来与我一起创建单链表吧&#xff01; 目录 单链表的结构&#xff1a; 创建单链表&#xff1a; 增加结点&#xff1a; 插入结点&#xff1a; 删除结点&#xff1a; 打印单链表&#xff1a; 单链表查找&#xff1a; 单链表…...

Linux系统管理(十八)——Ubuntu Server环境下载安装图形化界面、英伟达显卡驱动、Cuda、cudnn、conda的深度学习环境

安装ubuntu系统 镜像源地址&#xff1a;https://ubuntu.com/download/server 安装镜像是最好联网&#xff0c;这样不需要自己配置网络地址&#xff0c;会自动生成动态地址 配置镜像源 在装系统时最好设置好镜像源地址 清华镜像源&#xff1a;https://mirrors.tuna.tsinghua.…...

深度学习的隐身术:详解 PyTorch nn.Dropout

前言 你是否遇到过这样的情况?训练时模型表现得像个学霸,准确率高得离谱,可一到测试集就原形毕露,像是考试作弊被抓包的学生,成绩一落千丈。这种现象叫过拟合,你的模型可能只是死记硬背了训练数据,并没有真正理解其中的模式。 别慌!解决过拟合的方法之一就是Dropout,…...

vscode工作区看不清光标

案例分析&#xff1a; 有的时候当我们把vscode的背景色设置成黑色或者默认黑色时 "workbench.colorTheme": "Visual Studio Dark"这时鼠标指针在非停留状态(指针移动时就看不清)&#xff0c;需要改下系统的鼠标指针设置&#xff0c;而不是vscode的光标设置…...

2025-03-04 学习记录--C/C++-PTA 习题5-4 使用函数求素数和

合抱之木&#xff0c;生于毫末&#xff1b;九层之台&#xff0c;起于累土&#xff1b;千里之行&#xff0c;始于足下。&#x1f4aa;&#x1f3fb; 一、题目描述 ⭐️ 二、代码&#xff08;C语言&#xff09;⭐️ #include <stdio.h>// 函数声明&#xff1a;判断一个数是…...

Open3D 学习指南 (持续学习)

本章仅为个人学习整理。 Open3D: https://www.open3d.org/ Github repo: https://github.com/isl-org/Open3D 1. 概述 Open3D 是一个开源库&#xff0c;旨在为 3D 数据处理提供高效且易用的工具。它由 Intel 开发和维护&#xff0c;支持多种 3D 数据处理任务&#xff0c;如…...

端口安全测试全方位指南:风险、流程与防护策略

在数字化时代&#xff0c;网络安全至关重要&#xff0c;而端口安全作为网络防护的前沿阵地&#xff0c;稍有疏忽就可能为恶意攻击者打开入侵的大门。以下为您详细阐述端口安全测试的全面流程、核心风险点、应对策略及防护建议。 一、测试前的周密筹备 &#xff08;一&#xf…...

3dsmax烘焙光照贴图然后在unity中使用

效果预览 看不清[完蛋&#xff01;] 实现步骤 使用 软件 软体名称地址photoshophttps://www.adobe.com/products/photoshop.htmlunity3Dhttps://unity.com/3dsmaxhttps://www.autodesk.com.cn/products/3ds-max/free-trialpacker-iohttps://www.uv-packer.com/HDR 贴图地址…...

GCN从理论到实践——基于PyTorch的图卷积网络层实现

Hi&#xff0c;大家好&#xff0c;我是半亩花海。图卷积网络&#xff08;Graph Convolutional Network, GCN&#xff09;是一种处理图结构数据的深度学习模型。它通过聚合邻居节点的信息来更新每个节点的特征表示&#xff0c;广泛应用于社交网络分析、推荐系统和生物信息学等领…...

Ollama存在安全风险的情况通报及解决方案

据清华大学网络空间测绘联合研究中心分析&#xff0c;开源跨平台大模型工具Ollama默认配置存在未授权访问与模型窃取等安全隐患。鉴于目前DeepSeek等大模型的研究部署和应用非常广泛&#xff0c;多数用户使用Ollama私有化部署且未修改默认配置&#xff0c;存在数据泄露、算力盗…...

大模型在高血压预测及围手术期管理中的应用研究报告

目录 一、引言 1.1 研究背景与意义 1.2 研究目的 1.3 国内外研究现状 二、大模型预测高血压的原理与方法 2.1 常用大模型介绍 2.2 数据收集与预处理 2.3 模型训练与验证 三、术前风险预测与手术方案制定 3.1 术前风险因素分析 3.2 大模型预测术前风险的方法与结果 …...

网络安全rt是什么意思

1.什么时EDR :完全不同以往的端点被防护思路&#xff0c;而是通过云端威胁情报&#xff0c;机器学习&#xff0c;异常行为分析&#xff0c;攻击指示器等方式&#xff0c;主动发现来自外部或内部的安全威胁 。并进行自动化的阻止&#xff0c;取证&#xff0c;补救和溯源从而有效…...

数据结构篇—栈(stack)

一、引入 在数学史上有这样一个经典问题——汉诺塔问题。 通过动图演示我们发现每一个圆片的运动是什么样的呢&#xff1f; 我们发现&#xff0c;第一个放入的最大圆片将位于整个塔的最底端。所以若想将最大圆片拿出来&#xff0c;就得将压在它身上的所有圆片先按顺序取出才能将…...

python3.13安装教程【2025】python3.13超详细图文教程(包含安装包)

文章目录 前言一、python3.13安装包下载二、Python 3.13安装步骤三、Python3.13验证 前言 本教程将为你详细介绍 Python 3.13 python3.13安装教程&#xff0c;帮助你顺利搭建起 Python 3.13 开发环境&#xff0c;快速投身于 Python 编程的精彩实践中。 一、python3.13安装包下…...