Python的pdf2image库将PDF文件转换为PNG图片
您可以使用Python的pdf2image
库将PDF文件转换为PNG图片。以下是一个完整的示例,包含安装步骤、代码示例和注意事项。
安装依赖库
首先,您需要安装pdf2image
库:
pip install pdf2image
pdf2image
依赖于poppler
库来解析PDF文件。
-
Windows系统:
- 下载 Poppler for Windows。
- 将下载的Poppler解压缩,记下其bin文件夹的路径(例如
C:\poppler-0.68.0\bin
)。 - 将该路径添加到系统环境变量中,这样
pdf2image
就能找到poppler
。
-
macOS系统:
使用Homebrew安装Poppler:
brew install poppler
-
Linux系统(例如Ubuntu):
sudo apt-get install poppler-utils
示例代码
以下是将PDF转换为PNG图片的示例代码:
import os
from pdf2image import convert_from_path# PDF文件路径
pdf_path = 'your_file.pdf'
# 输出图片的文件夹
output_folder = './output_images'
# 输出图片的命名格式
output_name = 'page'# 如果输出文件夹不存在,创建它
if not os.path.exists(output_folder):os.makedirs(output_folder)# 将PDF转换为图像列表,设置分辨率为300 DPI
images = convert_from_path(pdf_path, dpi=300)# 保存每一页为PNG图片
for i, image in enumerate(images):image.save(f'{output_folder}/{output_name}_{i+1}.png', 'PNG')
代码说明
-
导入必要的库:
import os from pdf2image import convert_from_path
-
设置文件路径和输出目录:
pdf_path = 'your_file.pdf' # 替换为您的PDF文件路径 output_folder = './output_images' # 输出图片的文件夹 output_name = 'page' # 输出图片的命名前缀
-
创建输出文件夹:
如果指定的输出文件夹不存在,使用
os.makedirs()
创建它。if not os.path.exists(output_folder):os.makedirs(output_folder)
-
将PDF转换为图像:
使用
convert_from_path()
函数,将PDF的每一页转换为图像。您可以使用dpi
参数设置输出图片的分辨率。images = convert_from_path(pdf_path, dpi=300)
-
保存图像:
遍历
images
列表,保存每一页为PNG格式的图片。for i, image in enumerate(images):image.save(f'{output_folder}/{output_name}_{i+1}.png', 'PNG')
可选参数和高级用法
-
转换特定页面:
如果只想转换特定的页面,可以使用
first_page
和last_page
参数。images = convert_from_path(pdf_path, first_page=1, last_page=2, dpi=300)
-
指定
poppler
路径:如果没有将
poppler
添加到系统环境变量,您可以在代码中指定它的路径。poppler_path = r'C:\path\to\poppler\bin' # 替换为poppler的实际路径 images = convert_from_path(pdf_path, dpi=300, poppler_path=poppler_path)
-
设置输出图像的格式和参数:
除了PNG格式,您也可以将图像保存为JPEG等其他格式。
image.save(f'{output_folder}/{output_name}_{i+1}.jpg', 'JPEG', quality=95)
注意事项
-
文件路径中的中文问题:
如果文件路径或文件名中包含中文,可能会导致编码问题。确保使用前,在文件路径字符串前加上
r
,或者使用Unicode字符串。pdf_path = r'您的PDF文件路径.pdf'
-
性能考虑:
- 对于大型PDF文件,转换可能需要较长时间。
- 您可以使用多线程或多进程方式加速转换。
-
错误处理:
在实际应用中,建议添加错误处理机制,捕获并处理可能出现的异常。
try:images = convert_from_path(pdf_path, dpi=300) except Exception as e:print(f'转换出错:{e}')
总结
通过以上步骤,您可以使用Python成功地将PDF文件转换为PNG图片。如果您有任何疑问或需要进一步的帮助,请随时提问。
相关文章:
Python的pdf2image库将PDF文件转换为PNG图片
您可以使用Python的pdf2image库将PDF文件转换为PNG图片。以下是一个完整的示例,包含安装步骤、代码示例和注意事项。 安装依赖库 首先,您需要安装pdf2image库: pip install pdf2imagepdf2image依赖于poppler库来解析PDF文件。 Windows系统…...
在Blender中给SP分纹理组
在Blender中怎么分SP的纹理组/纹理集 其实纹理组就是材质 把同一组的材质分给同一组的模型 导入到sp里面自然就是同一个纹理组 把模型导入SP之后 就自动分好了...
import模块到另一个文件夹报错:ModuleNotFoundError: No module named xxx
1. 问题 打开项目文件夹my_code,将bb.py的函数或者类import到aa.py中,然后运行aa.py文件,可能会报错ModuleNotFoundError: No module named xxx。 E:\Desktop\my_code ├── a │ ├── train.sh │ └── aa.py └── b└── b…...
[SystemVerilog]例化
SystemVerilog 的例化方式和Verilog 类似 如果信号输入输出name一致 abc abc_inst( .a(a), .b(b), c(c) ); 使用SystemVerilog abc abc_inst( .a, .b, .c ); 或者 abc abc_inst( .* ); 在SystemVerilog中,可以简化例化方式。 可以使用…...
Java方法详解
Java方法详解 方法1.方法的概念(1).什么是方法(2).方法的定义(3).实参与形参的关系 2.方法重载(1).方法重载的概念 3.递归(C语言详细讲过) 方法 1.方法的概念 (1).什么是方法 方法类似于C语言中的函数,我们重在体会与理解,不必…...
springboot自动插入创建时间和更新时间到数据库
springboot自动插入创建时间和更新时间到数据库 1.添加TableField注解2.添加TimeMetaObjectHandler配置3.测试 1.添加TableField注解 /*** 创建时间*/TableField(fill FieldFill.INSERT) // 插入时生效private LocalDateTime createTime;/*** 修改时间*/TableField(fill Fiel…...
如何将JAR交由Systemctl管理?
AI越来越火了,我们想要不被淘汰就得主动拥抱。推荐一个人工智能学习网站,通俗易懂,风趣幽默,最重要的屌图甚多,忍不住分享一下给大家。点击跳转到网站 废话不多说,进入正题。下面开始说如何使用 systemctl…...
VMware Workstation Pro安装openKylin 2.0全流程指南
原文链接:VMware Workstation Pro安装openKylin 2.0全流程指南 Hello,大家好啊!今天给大家带来一篇在VMware Workstation Pro 上安装 openKylin 2.0 SP1 的文章。openKylin 2.0 作为国产开源桌面操作系统,目前已经发布了最新版本&…...
网络安全检查漏洞内容回复 网络安全的漏洞
网络安全的核心目标是保障业务系统的可持续性和数据的安全性,而这两点的主要威胁来自于蠕虫的暴发、黑客的攻击、拒绝服务攻击、木马。蠕虫、黑客攻击问题都和漏洞紧密联系在一起,一旦有重大安全漏洞出现,整个互联网就会面临一次重大挑战。虽…...
数据仓库的特点
数据仓库的主要特点可以概括为:面向主题、集成性、非易失性、时变性、高性能和可扩展性、支持复杂查询和分析、分层架构以及数据质量管理。 1. 面向主题(Subject-Oriented) 数据仓库是面向主题的,而不是面向事务的。这意味着数据…...
02_NLP文本预处理之文本张量表示法
文本张量表示法 概念 将文本使用张量进行表示,一般将词汇表示为向量,称为词向量,再由各个词向量按顺序组成矩阵形成文本表示 例如: ["人生", "该", "如何", "起头"]># 每个词对应矩阵中的一个向量 [[1.32, 4,32, 0,32, 5.2],[3…...
青蛙跳杯子(BFS)
#include <iostream> #include <queue> #include <string> #include <unordered_set> using namespace std;int main() {string a, b;cin >> a >> b; int n a.size(); // 字符串长度int d[] {1, -1, -2, 2, -3, 3}; // 跳跃距离queue&…...
【前端基础】1、HTML概述(HTML基本结构)
一、网页组成 HTML:网页的内容CSS:网页的样式JavaScript:网页的功能 二、HTML概述 HTML:全称为超文本标记语言,是一种标记语言。 超文本:文本、声音、图片、视频、表格、链接标记:由许许多多…...
Arm64架构的Linux服务器安装jdk8
一、下载 JDK8 打开浏览器,访问 oracle官网找到适用于自己服务器的 arm64 架构的 JDK8 安装包。 二、安装 JDK8 将下载好的 JDK 压缩包上传到服务器上 解压 JDK 压缩包: tar -zxvf jdk-8uXXX-linux-arm64.tar.gz选择安装目录,我将 JDK 安装…...
深入探索Python机器学习算法:模型调优
深入探索Python机器学习算法:模型调优 文章目录 深入探索Python机器学习算法:模型调优模型调优1. 超参数搜索方法1.1 网格搜索(Grid Search)1.2 随机搜索(Random Search)1.3 贝叶斯优化(Bayesia…...
【Linux】冯诺依曼体系结构-操作系统
一.冯诺依曼体系结构 我们所使用的计算机,如笔记本等都是按照冯诺依曼来设计的: 截止目前,我们所知道的计算机都是由一个一个的硬件组装起来的,这些硬件又由于功能的不同被分为了输入设备,输出设备,存储器…...
Linux第五讲----gcc与g++,makefile/make
1.代码编译 1.1预处理 我们通过vim编辑完文件之后,想看一下运行结果这时我们便可以试用gcc编译C语言,g编译c. 编译代码: 上述两种方法均可,code.c是我的c语言文件,mycode是我给编译后产生的二进制文件起的名&#x…...
FastGPT 源码:基于 LLM 实现 Rerank (含Prompt)
文章目录 基于 LLM 实现 Rerank函数定义预期输出实现说明使用建议完整 Prompt 基于 LLM 实现 Rerank 下边通过设计 Prompt 让 LLM 实现重排序的功能。 函数定义 class LLMReranker:def __init__(self, llm_client):self.llm llm_clientdef rerank(self, query: str, docume…...
Virtual Box虚拟机安装Mac苹果Monterey和big sur版本实践
虚拟机安装苹果实践,在Windows10系统,安装Virtual Box7.1.6,安装虚拟苹果Monterey版本Monterey (macOS 12) 。碰到的主要问题是安装光盘不像Windows那么容易拿到,而且根据网上很多文章制作的光盘,在viritualBox里都无法…...
【高并发】Java 并行与串行深入解析:性能优化与实战指南
Java 并行与串行深入解析:性能优化与实战指南 在高性能应用开发中,我们常常会面临 串行(Serial) 和 并行(Parallel) 的选择。串行执行任务简单直观,但并行能更高效地利用 CPU 资源,…...
软考中级-数据库-3.2 数据结构-数组和矩阵
数组 一维数组是长度固定的线性表,数组中的每个数据元素类型相同。n维数组是定长线性表在维数上的扩张,即线性表中的元素又是一个线性表。 例如一维数组a[5][a1,a2,a3,a4,a5] 二维数组a[2][3]是一个2行2列的数组 第一行[a11,a12,a13] 第二行[a21,a22,a23…...
LeetCode 解题思路 9(Hot 100)
解题思路: 遍历并调整数组: 对于每个元素 nums[i],若其值为正且不超过数组长度 len,则将其逐步交换到它应该在的位置。查找缺失的正整数: 遍历调整后的数组,若某个位置的值不等于其索引加1,则说…...
交叉编译 perl-5.40.0 perl-cross-1.5.3
1.下载地址: https://www.cpan.org/src/5.0/ https://github.com/arsv/perl-cross/tags2.编译 # 进入源码目录 cd /opt/snmp/perl # 合并perl-cross到Perl源码 cp -R perl-cross-1.5.3/* perl-5.40.0/ cd perl-5.40.0./configure --targetaarch64-poky-linux --p…...
go前后端开源项目go-admin,本地启动
https://github.com/go-admin-team/go-admin 教程 1.拉取项目 git clone https://github.com/go-admin-team/go-admin.git 2.更新整理依赖 go mod tidy会整理依赖,下载缺少的包,移除不用的,并更新go.sum。 # 更新整理依赖 go mod tidy 3.编…...
突破光学成像局限:全视野光学血管造影技术新进展
全视野光学血管造影(FFOA)作为一种实时、无创的成像技术,能够提取生物血液微循环信息,为深入探究生物组织的功能和病理变化提供关键数据。然而,传统FFOA成像方法受到光学镜头景深(DOF)的限制&am…...
RefuseManualStart/Stop增强Linux系统安全性?详解systemd单元保护机制
一、引子:一个“手滑”引发的血案 某天凌晨,运维工程师小张在维护生产服务器时,误输入了 systemctl start reboot.target,导致整台服务器瞬间重启,线上服务中断30分钟,直接损失数十万元。事后排查发现&…...
国产编辑器EverEdit - 超级丰富的标签样式设置!
1 设置-高级-标签 1.1 设置说明 选择主菜单工具 -> 设置 -> 常规,在弹出的选项窗口中选择标签分类,如下图所示: 1.1.1 多文档标签样式 默认 平坦 渐变填充 1.1.2 停靠窗格标签样式 默认 平坦 渐变填充 1.1.3 激活Tab的…...
装饰器模式:灵活扩展对象功能的利器
一、从咖啡加料说起:什么是装饰器模式? 假设您走进咖啡馆点单: 基础款:美式咖啡(15元)加料需求:加牛奶(3元)、加焦糖(5元)、加奶油(…...
# [Linux] [Anaconda]解决在 WSL Ubuntu 中安装 Anaconda 报错问题
在 Windows 10 中安装了 WSL(Windows Subsystem for Linux)并使用 Ubuntu 后,你可能会下载 Anaconda 的 Linux 版本进行安装。但在安装过程中,可能会遇到 tar (child): bzip2: Cannot exec: No such file or directory 这样的错误…...
【回溯】216. 组合总和 III
题目 216. 组合总和 III 思路 不知道for有几层时,使用回溯,比上一题多了一个条件,组合需要和为n。 代码 class Solution { private:vector<vector<int>>result;vector<int>path;void backtracking(int target,int k,i…...
AI编程工具-(四)
250304今天用【通义灵码】做了下简单的分析建模工作。不够丝滑,但是在数据预处理方面还是有用。 目录 准备工作一分析工作建模结论 这个数据集是网上随手找的时许指标数据,然后分析时序指标A和B关联关系。 准备工作一 问大模型,这个场景有哪…...
一种事件驱动的设计模式-Reactor 模型
Reactor 模型 是一种事件驱动的设计模式,主要用于处理高并发的 I/O 操作(如网络请求、文件读写等)。其核心思想是通过事件分发机制,将 I/O 事件的监听和处理解耦,从而高效管理大量并发连接,避免传统多线程模…...
AI-Ollama本地大语言模型运行框架与Ollama javascript接入
1.Ollama Ollama 是一个开源的大型语言模型(LLM)平台,旨在让用户能够轻松地在本地运行、管理和与大型语言模型进行交互。 Ollama 提供了一个简单的方式来加载和使用各种预训练的语言模型,支持文本生成、翻译、代码编写、问答等多种…...
XPath路径表达式
1. 绝对路径表达式 语法:/根元素/子元素/子子元素... 特点**:**必须从根元素开始,完整地逐层写路径。 示例代码: <!-- XML结构 --> <school> <class id"1"> <student>小明</student> &l…...
大语言模型的逻辑:从“鹦鹉学舌”到“举一反三”
引言 近年来,大语言模型(LLM)在自然语言处理领域取得了突破性进展,其强大的文本生成和理解能力令人惊叹。然而,随着应用的深入,人们也开始关注LLM的“逻辑”问题:它究竟是机械地模仿人类语言&a…...
从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(0)系统设计与工具链说明
文章大纲 系统简介Version 1Version2环境摄像机数据流websocket 发送图像帧RTSP 视频流树莓派windows消息队列参考文献项目地址提示词系统简介 Version 1 Version2 环境 # 配置 conda 源 # 配置conda安装源 conda config --add channels https://mirrors.tuna.tsinghua.edu.c…...
在Linux环境部署SpringBoot项目
在xshell中手动开放8080端口 sudo ufw allow 8080/tcp systemctl reload ufw systemctl restart ufw 配置文件要求 也可以使用maven来分平台 部署到linux服务器上 1.建一个文件夹 2.将jar包拖拽到文件夹中 3.运行nohup java -jar jar包 &的命令启动程序 //后台启动 …...
8. 保存应用数据
一、课程笔记 1.0 引入 针对那些体积小,访问频率高,且对它的速度有一定要求的轻量化数据。例如,用户偏好设置用配置参数等,使用传统的惯性数据库进行存储,不惊险的笨重,还可能引入不必要的性能开销。 此时…...
ADC采集模块与MCU内置ADC性能对比
2.5V基准电压源: 1. 精度更高,误差更小 ADR03B 具有 0.1% 或更小的初始精度,而 电阻分压方式的误差主要来自电阻的容差(通常 1% 或 0.5%)。长期稳定性更好,分压电阻容易受到温度、老化的影响,长…...
量子算法:英译名、概念、历史、现状与展望?
李升伟 整理 #### 英译名 量子算法的英文为 **Quantum Algorithm**。 #### 概念 量子算法是利用量子力学原理(如叠加态、纠缠态和干涉)设计的算法,旨在通过量子计算机高效解决经典计算机难以处理的问题。其核心在于利用量子比特(…...
水仙花数(华为OD)
题目描述 所谓水仙花数,是指一个n位的正整数,其各位数字的n次方和等于该数本身。 例如153是水仙花数,153是一个3位数,并且153 13 53 33。 输入描述 第一行输入一个整数n,表示一个n位的正整数。n在3到7之间&#x…...
基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析
基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析 文章目录 **基于编程语言的建筑行业施工图设计系统开发可行性研究————从参数化建模到全流程自动化的技术路径分析** 摘要引言一、技术可行性深度剖析1.1 现有编程语言…...
【Linux】【网络】UDP打洞-->不同子网下的客户端和服务器通信(未成功版)
【Linux】【网络】UDP打洞–>不同子网下的客户端和服务器通信(未成功版) 上次说基于UDP的打洞程序改了五版一直没有成功,要写一下问题所在,但是我后续又查询了一些资料,成功实现了,这次先写一下未成功的…...
C# 中的Action和Func是什么?Unity 中的UnityAction是什么? 他们有什么区别?
所属范围:Action 和 Func 是 C# 语言标准库中的委托类型,可在任何 C# 项目里使用;UnityAction 是 Unity 引擎专门定义的委托类型,只能在 Unity 项目中使用。 返回值:Action 和 UnityAction 封装的方法没有返回值&…...
SparkStreaming之03:容错、语义、整合kafka、Exactly-Once、ScalikeJDBC
SparkStreaming进阶 一 、要点:star:4.1 SparkStreaming容错4.1.1 SparkStreaming运行流程4.1.2 如果Executor失败?:star:4.1.3 如果Driver失败?4.1.4 数据丢失如何处理:star:4.1.5 当一个task很慢容错 :star:4.2 SparkSreaming语义4.3 SparkStreaming与…...
让单链表不再云里雾里
一日不见,如三月兮!接下来与我一起创建单链表吧! 目录 单链表的结构: 创建单链表: 增加结点: 插入结点: 删除结点: 打印单链表: 单链表查找: 单链表…...
Linux系统管理(十八)——Ubuntu Server环境下载安装图形化界面、英伟达显卡驱动、Cuda、cudnn、conda的深度学习环境
安装ubuntu系统 镜像源地址:https://ubuntu.com/download/server 安装镜像是最好联网,这样不需要自己配置网络地址,会自动生成动态地址 配置镜像源 在装系统时最好设置好镜像源地址 清华镜像源:https://mirrors.tuna.tsinghua.…...
深度学习的隐身术:详解 PyTorch nn.Dropout
前言 你是否遇到过这样的情况?训练时模型表现得像个学霸,准确率高得离谱,可一到测试集就原形毕露,像是考试作弊被抓包的学生,成绩一落千丈。这种现象叫过拟合,你的模型可能只是死记硬背了训练数据,并没有真正理解其中的模式。 别慌!解决过拟合的方法之一就是Dropout,…...
vscode工作区看不清光标
案例分析: 有的时候当我们把vscode的背景色设置成黑色或者默认黑色时 "workbench.colorTheme": "Visual Studio Dark"这时鼠标指针在非停留状态(指针移动时就看不清),需要改下系统的鼠标指针设置,而不是vscode的光标设置…...
2025-03-04 学习记录--C/C++-PTA 习题5-4 使用函数求素数和
合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。💪🏻 一、题目描述 ⭐️ 二、代码(C语言)⭐️ #include <stdio.h>// 函数声明:判断一个数是…...