当前位置: 首页 > news >正文

数据融合的经典模型:早期融合、中期融合与后期融合的对比

数据融合是处理多源数据时非常重要的技术,尤其是在多模态学习、传感器网络和智能系统中。它的目标是将来自不同来源、不同模态的数据进行有效结合,从而获得更准确、更全面的信息。在数据融合的过程中,不同的融合策略能够在性能、效率和应用场景上有所不同。常见的融合方法包括早期融合(Early Fusion)中期融合(Intermediate Fusion)后期融合(Late Fusion)。这些方法的主要区别在于融合的时机、方式和所解决的问题。

本文将详细分析这三种数据融合策略的原理、优缺点以及适用场景,并进行对比,帮助读者理解何时使用哪种融合方法。

1. 早期融合(Early Fusion)

定义与原理

早期融合是指在数据输入阶段将多个模态的数据进行融合,通常是在原始数据或特征提取后直接进行拼接或组合。在早期融合中,多个模态的数据被视为一个整体,输入到后续的模型中进行统一处理。

早期融合的典型流程包括:

  • 从各个数据源(如图像、文本、传感器等)提取特征。
  • 将不同模态的特征拼接在一起,构成一个大的特征向量。
  • 将这个融合后的特征向量输入到模型进行进一步处理(如分类、回归等)。
优点
  1. 信息最大化利用:在最初的阶段就将不同模态的信息全部考虑进去,避免了信息丢失。
  2. 强耦合性:通过融合不同模态的特征,能够深度挖掘模态之间的内在关系。
缺点
  1. 计算复杂度高:如果数据维度非常高,融合后的特征向量可能非常庞大,导致计算资源需求增大。
  2. 噪声敏感:如果某一模态的质量较差,可能会影响整个模型的性能。
  3. 对齐要求高:不同模态的数据需要非常精确地对齐,否则可能会导致信息损失或干扰。
适用场景
  • 当多个模态的数据之间具有强关联,且对模型输出的解释性和可用信息要求较高时,适合使用早期融合。
  • 例如:多模态情感分析中,文本、语音和面部表情特征可以在输入阶段融合,以更全面地分析情感。

2. 中期融合(Intermediate Fusion)

定义与原理

中期融合是在特征提取后,利用独立的模型分别处理各模态的特征,然后将这些特征在中间层进行融合。在中期融合中,每种模态的数据首先独立处理,然后通过特定的融合策略将处理后的特征结合在一起,最终形成统一的表示。

中期融合的典型流程包括:

  • 对每个模态的原始数据或特征进行独立处理(如通过卷积神经网络(CNN)处理图像特征,或通过循环神经网络(RNN)处理文本特征)。
  • 对处理后的特征进行融合,通常使用注意力机制、拼接或加权求和等方法。
  • 将融合后的特征输入到后续模型进行决策或预测。
优点
  1. 灵活性较高:可以为每个模态使用不同的模型和算法,以便最大限度地发挥每个模态的优势。
  2. 鲁棒性好:每个模态的独立处理能够减少噪声对模型的影响,提高鲁棒性。
缺点
  1. 设计复杂:需要精心设计融合模块,选择合适的融合时机和方式。
  2. 计算资源需求高:每个模态的特征处理需要独立的计算资源,可能导致计算负担加重。
适用场景
  • 当不同模态的特征需要通过独立的模型处理,并且它们之间有复杂关系时,可以采用中期融合。
  • 例如:视频问答(Video QA)任务中,图像和文本特征需要通过不同的网络处理,然后在中间层进行融合。

3. 后期融合(Late Fusion)

定义与原理

后期融合是指在各个模态的特征或模型输出阶段进行融合。每个模态的数据经过独立处理后,生成自己的预测结果,最后将这些预测结果进行合并或加权,得到最终的分类或回归结果。

后期融合的典型流程包括:

  • 对每个模态的数据进行独立处理,得到每个模态的预测结果。
  • 将各模态的预测结果(如类别标签、概率分布等)进行融合,通常采用加权平均、投票法、最大值法等策略。
  • 输出最终的预测结果。
优点
  1. 简化设计:每个模态的处理相互独立,模型的设计较为简单。
  2. 模块化:不同模态的处理可以使用不同的模型,具有较好的扩展性。
  3. 鲁棒性高:如果某一模态的表现不好,其他模态的输出仍然可以有效弥补。
缺点
  1. 模态间交互少:后期融合仅依赖每个模态的输出结果,可能无法深入捕捉模态之间的复杂关系。
  2. 信息损失:由于模态输出后的融合,可能会丢失一些细节信息和潜在的深层次关系。
适用场景
  • 当模态之间的依赖关系较弱,或者每个模态的预测结果可以独立对待时,适合使用后期融合。
  • 例如:在多模态情感分析中,文本、语音和面部表情的预测结果可以通过投票法或加权平均法融合,得出最终的情感判断。

4. 早期融合、中期融合与后期融合的对比

特性早期融合中期融合后期融合
融合阶段数据输入阶段特征提取阶段输出阶段
模态交互深度
计算复杂度
鲁棒性较低较高最高
灵活性最高
信息完整性最高中等较低
适用场景强关联模态的数据融合复杂关系的多模态特征处理模态间独立的任务或对信息丢失不敏感的任务

5. 总结

早期融合、中期融合和后期融合是数据融合的三种经典策略,每种方法都有其独特的优势和适用场景。在选择融合方法时,需要根据任务的需求、数据的特点以及计算资源的限制做出合理选择:

  • 早期融合适用于需要强关联模态的数据融合,能充分利用所有模态的信息。
  • 中期融合在处理复杂模态间关系时具有较高的灵活性,能够通过独立建模更好地发挥每种模态的优势。
  • 后期融合适用于模态间关联性较弱的任务,具有较高的鲁棒性和简便性。

随着技术的发展,融合方法也在不断演化,如何平衡计算效率与模型性能,仍是当前多模态学习研究的一个重要方向。

💡 讨论互动:你在实际应用中使用了哪种数据融合方法?有哪些效果或经验可以分享?欢迎留言讨论!

相关文章:

数据融合的经典模型:早期融合、中期融合与后期融合的对比

数据融合是处理多源数据时非常重要的技术,尤其是在多模态学习、传感器网络和智能系统中。它的目标是将来自不同来源、不同模态的数据进行有效结合,从而获得更准确、更全面的信息。在数据融合的过程中,不同的融合策略能够在性能、效率和应用场…...

Linux环境Docker使用代理推拉镜像

闲扯几句 不知不觉已经2月中了,1个半月忙得没写博客,这篇其实很早就想写了(可追溯到Docker刚刚无法拉镜像的时候),由于工作和生活上的事比较多又在备考软考架构,拖了好久…… 简单记录下怎么做的&#xf…...

LabVIEW用CANopen的设备属性配置与心跳消息和PDO读取

本示例展示了如何通过SDO(服务数据对象)配置设备属性,以及如何读取从设备周期性发送的心跳消息和PDO(进程数据对象)消息。通过该示例,可以有效地进行设备配置并实现数据监控,适用于CANopen网络中…...

DeepSeek01-本地部署大模型

一、ollama简介: 什么是 Ollama? Ollama 是一个用于本地部署和管理大模型的工具。它提供了一个简单的命令行界面, 使得用户可以轻松地下载、运行和管理各种大模型。Ollama 支持多种模型格式, 并且可以与现有的深度学习框架&#x…...

python学opencv|读取图像(七十五)人脸识别:Fisherfaces算法和LBPH算法

【1】引言 前序学习进程中,已经掌握了使用Eigenfaces算法进行的人脸识别。相关文章链接为: python学opencv|读取图像(七十四)人脸识别:EigenFaces算法-CSDN博客 在此基础上,学习剩余两种人脸识别算法&am…...

UMLS数据下载及访问

UMLS数据申请 这个直接在官网上申请即可,记得把地址填全,基本都会拿到lisence。 UMLS数据访问 UMLS的数据访问分为网页访问,API访问以及数据下载后的本地访问,网页访问,API访问按照官网的指示即可,这里主…...

UE_C++ —— Container TArray

目录 一,TArray 二,Creating and Filling an Array 三,Iteration 四,Sorting 五,Queries 六,Removal 七,Operators 八,Heap 九,Slack 十,Raw Memor…...

第435场周赛:奇偶频次间的最大差值 Ⅰ、K 次修改后的最大曼哈顿距离、使数组包含目标值倍数的最少增量、奇偶频次间的最大差值 Ⅱ

Q1、奇偶频次间的最大差值 Ⅰ 1、题目描述 给你一个由小写英文字母组成的字符串 s 。请你找出字符串中两个字符的出现频次之间的 最大 差值,这两个字符需要满足: 一个字符在字符串中出现 偶数次 。另一个字符在字符串中出现 奇数次 。 返回 最大 差值…...

模拟解决哈希表冲突

目录 解决哈希表冲突原理: 模拟解决哈希表冲突代码: 负载因子: 动态扩容: 总结: HashMap和HashSet的总结: 解决哈希表冲突原理: 黑色代表一个数组,当 出现哈希冲突时&#xff0…...

UIView 与 CALayer 的联系和区别

今天说一下UIView 与 CALayer 一、UIView 和 CALayer 的关系 在 iOS 开发中,UIView 是用户界面的基础,它负责处理用户交互和绘制内容,而 CALayer 是 UIView 内部用于显示内容的核心图层(Layer)。每个 UIView 内部都有…...

Android 10.0 移除wifi功能及相关菜单

介绍 客户的机器没有wifi功能,所以需要删除wifi相关的菜单,主要有设置-网络和互联网-WLAN,长按桌面设置弹出的WALN快捷方式,长按桌面-微件-设置-WLAN。 修改 Android10 上直接将config_show_wifi_settings改为false,这样wifi菜单的入口就隐…...

电力与能源杂志电力与能源杂志社电力与能源编辑部2024年第6期目录

研究与探索 含电动汽车虚拟电厂的优化调度策略综述 黄灿;曹晓满;邬楠; 643-645663 含换电站的虚拟电厂优化调度策略综述 张杰;曹晓满;邬楠;杨小龙; 646-649667 考虑虚拟负荷研判的V2G储能充电桩设计研究 徐颖;张伟阳;陈豪; 650-654 基于状态估计的电能质量监测…...

简站主题:简洁、实用、SEO友好、安全性高和后期易于维护的wordpress主题

简站主题以其简洁的设计风格、实用的功能、优化的SEO性能和高安全性而受到广泛好评。 简洁:简站主题采用扁平化设计风格,界面简洁明了,提供多种布局和颜色方案,适合各种类型的网站,如个人博客和企业网站。 实用&…...

Redis(高阶篇)03章——缓存双写一致性之更新策略探讨

一、反馈回来的面试题 一图你只要用缓存,就可能会涉及到redis缓存与数据库双存储双写,你只要是双写,就一定会有数据一致性的问题,那么你如何解决一致性的问题双写一致性,你先动缓存redis还是数据库mysql哪一个&#x…...

【Git】说说Git中开发测试的使用Git分支Git标签的使用场景

一、环境介绍 dev环境:开发环境,外部用户无法访问,开发人员使用,版本变动很大。test环境:测试环境,外部用户无法访问,专门给测试人员使用的,版本相对稳定。pre环境:灰度环…...

Spring Boot中使用Server-Sent Events (SSE) 实现实时数据推送教程

一、简介 Server-Sent Events (SSE) 是HTML5引入的一种轻量级的服务器向浏览器客户端单向推送实时数据的技术。在Spring Boot框架中,我们可以很容易地集成并利用SSE来实现实时通信。 二、依赖添加 在Spring Boot项目中,无需额外引入特定的依赖&#x…...

【Golang学习之旅】Go 语言微服务架构实践(gRPC、Kafka、Docker、K8s)

文章目录 1. 前言:为什么选择Go语言构建微服务架构1.1 微服务架构的兴趣与挑战1.2 为什么选择Go语言构建微服务架构 2. Go语言简介2.1 Go 语言的特点与应用2.2 Go 语言的生态系统 3. 微服务架构中的 gRPC 实践3.1 什么是 gRPC?3.2 gRPC 在 Go 语言中的实…...

数据结构:栈(Stack)及其实现

栈(Stack)是计算机科学中常用的一种数据结构,它遵循先进后出(Last In, First Out,LIFO)的原则。也就是说,栈中的元素只能从栈顶进行访问,最后放入栈中的元素最先被取出。栈在很多应用…...

DeepSeek在linux下的安装部署与应用测试

结合上一篇文章,本篇文章主要讲述在Redhat linux环境下如何部署和使用DeepSeek大模型,主要包括ollama的安装配置、大模型的加载和应用测试。关于Open WebUI在docker的安装部署,Open WebUI官网也提供了完整的docker部署说明,大家可…...

Next.js【详解】获取数据(访问接口)

Next.js 中分为 服务端组件 和 客户端组件&#xff0c;内置的获取数据各不相同 服务端组件 方式1 – 使用 fetch export default async function Page() {const data await fetch(https://api.vercel.app/blog)const posts await data.json()return (<ul>{posts.map((…...

pnpm, eslint, vue-router4, element-plus, pinia

利用 pnpm 创建 vue3 项目 pnpm 包管理器 - 创建项目 Eslint 配置代码风格(Eslint用于规范纠错&#xff0c;prettier用于美观&#xff09; 在 设置 中配置保存时自动修复 提交前做代码检查 husky是一个 git hooks工具&#xff08;git的钩子工具&#xff0c;可以在特定实际执行特…...

将jar安装到Maven本地仓库中

将jar安装到Maven本地仓库中 1. 使用 mvn install:install-file 命令模版示例 2.项目中添加依赖 将一个 .jar 文件安装到 Maven 本地仓库中是一个常见的操作&#xff0c;尤其是在你想要在本地测试一个尚未发布到中央仓库的库时。以下是如何将 .jar 文件安装到 Maven 本地仓库的…...

Spring 和 Spring MVC 的关系是什么?

Spring和Spring MVC的关系就像是“大家庭和家里的小书房”一样。 Spring是一个大家庭&#xff0c;提供了各种各样的功能和服务&#xff0c;比如管理Bean的生命周期、事务管理、安全性等&#xff0c;它是企业级应用开发的全方位解决方案。这个大家庭里有很多房间&#xff0c;每个…...

Ollama ModelFile(模型文件)

1. 什么是 Modelfile&#xff1f; Modelfile 是 Ollama 的配置文件&#xff0c;用于定义和自定义模型的行为。通过它&#xff0c;你可以&#xff1a; 基于现有模型&#xff08;如 llama2、mistral&#xff09;创建自定义版本 调整生成参数&#xff08;如温度、重复惩罚&#…...

基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用

我国高分辨率对地观测系统重大专项已全面启动&#xff0c;高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成&#xff0c;将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB&#xff0c;遥感大数据时…...

(蓝桥杯——10. 小郑做志愿者)洛斯里克城志愿者问题详解

题目背景 小郑是一名大学生,她决定通过做志愿者来增加自己的综合分。她的任务是帮助游客解决交通困难的问题。洛斯里克城是一个六朝古都,拥有 N 个区域和古老的地铁系统。地铁线路覆盖了树形结构上的某些路径,游客会询问两个区域是否可以通过某条地铁线路直达,以及有多少条…...

基于 Ollama 工具的 LLM 大语言模型如何部署,以 DeepSeek 14B 本地部署为例

简简单单 Online zuozuo :本心、输入输出、结果 文章目录 基于 Ollama 工具的 LLM 大语言模型如何部署,以 DeepSeek 14B 本地部署为例前言下载 Ollama实际部署所需的硬件要求设置 LLM 使用 GPU ,发挥 100% GPU 性能Ollama 大模型管理命令大模型的实际运行资源消耗基于 Ollam…...

大模型工具大比拼:SGLang、Ollama、VLLM、LLaMA.cpp 如何选择?

简介&#xff1a;在人工智能飞速发展的今天&#xff0c;大模型已经成为推动技术革新的核心力量。无论是智能客服、内容创作&#xff0c;还是科研辅助、代码生成&#xff0c;大模型的身影无处不在。然而&#xff0c;面对市场上琳琅满目的工具&#xff0c;如何挑选最适合自己的那…...

【05】密码学与隐私保护

5-1 零知识证明 零知识证明介绍 零知识证明的概念 设P&#xff08;Prover&#xff09;表示掌握某些信息&#xff0c;并希望证实这一事实的实体&#xff0c;V(Verifier&#xff09;是验证这一事实的实体。 零知识证明是指P试图使V相信某一个论断是正确的&#xff0c;但却不向…...

Flink SQL与Doris实时数仓Join实战教程(理论+实例保姆级教程)

目录 第一章:Regular Joins 深度解析 1.1 核心原理与适用场景 1.2 电商订单 - 商品实时关联案例 1.2.1 数据流设计 1.2.2 Doris 表设计优化 1.2.3 性能调优要点 第二章:Interval Joins 实战应用 2.1 时间区间关联原理 2.2 优惠券使用有效性验证 2.2.1 业务场景说明 …...

DeepSeek 助力 Vue 开发:打造丝滑的范围选择器(Range Picker)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…...

68页PDF | 数据安全总体解决方案:从数据管理方法论到落地实践的全方位指南(附下载)

一、前言 这份报告旨在应对数字化转型过程中数据安全面临的挑战&#xff0c;并提供全面的管理与技术体系建设框架。报告首先分析了数字化社会的发展背景&#xff0c;强调了数据安全在国家安全层面的重要性&#xff0c;并指出数据安全风险的来源和防护措施。接着&#xff0c;报…...

【Github每日推荐】-- 2024 年项目汇总

1、AI 技术 项目简述OmniParser一款基于纯视觉的 GUI 智能体&#xff0c;能够准确识别界面上可交互图标以及理解截图中各元素语义&#xff0c;实现自动化界面交互场景&#xff0c;如自动化测试、自动化操作等。ChatTTS一款专门为对话场景设计的语音生成模型&#xff0c;主要用…...

【Spring详解一】Spring整体架构和环境搭建

一、Spring整体架构和环境搭建 1.1 Spring的整体架构 Spring框架是一个分层架构&#xff0c;包含一系列功能要素&#xff0c;被分为大约20个模块 Spring核心容器&#xff1a;包含Core、Bean、Context、Expression Language模块 Core &#xff1a;其他组件的基本核心&#xff…...

Spring Boot(8)深入理解 @Autowired 注解:使用场景与实战示例

搞个引言 在 Spring 框架的开发中&#xff0c;依赖注入&#xff08;Dependency Injection&#xff0c;简称 DI&#xff09;是它的一个核心特性&#xff0c;它能够让代码更加模块化、可测试&#xff0c;并且易于维护。而 Autowired 注解作为 Spring 实现依赖注入的关键工具&…...

Machine Learning:Optimization

文章目录 局部最小值与鞍点 (Local Minimum & Saddle Point)临界点及其种类判断临界值种类 批量与动量(Batch & Momentum)批量大小对梯度下降的影响动量法 自适应学习率AdaGradRMSPropAdam 学习率调度优化总结 局部最小值与鞍点 (Local Minimum & Saddle Point) 我…...

wordpress get_footer();与wp_footer();的区别的关系

在WordPress中&#xff0c;get_footer() 和 wp_footer() 是两个不同的函数&#xff0c;它们在主题开发中扮演着不同的角色&#xff0c;但都与页面的“页脚”部分有关。以下是它们的区别和关系&#xff1a; 1. get_footer() get_footer() 是一个用于加载页脚模板的函数。它的主…...

Windows Docker运行Implicit-SVSDF-Planner

Windows Docker运行GitHub - ZJU-FAST-Lab/Implicit-SVSDF-Planner: [SIGGRAPH 2024 & TOG] 1. 设置环境 我将项目git clone在D:/Github目录中。 下载ubuntu20.04 noetic镜像 docker pull osrf/ros:noetic-desktop-full-focal 启动容器&#xff0c;挂载主机的D:/Github文…...

设计模式14:职责链模式

系列总链接&#xff1a;《大话设计模式》学习记录_net 大话设计-CSDN博客 1.概述 职责链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为设计模式&#xff0c;它允许将请求沿着处理者链传递&#xff0c;直到有一个处理者能够处理该请求。这种模式通过…...

Golang GORM系列:GORM并发与连接池

GORM 是一个流行的 Go 语言 ORM&#xff08;对象关系映射&#xff09;库&#xff0c;用于简化数据库操作。它支持连接池和并发访问功能&#xff0c;这些功能对于高性能、高并发的应用场景非常重要。本文结合示例详细介绍gorm的并发处理能力&#xff0c;以及如何是哟个连接池提升…...

linux笔记:shell中的while、if、for语句

在Udig软件的启动脚本中使用了while循环、if语句、for循环&#xff0c;其他内容基本都是变量的定义&#xff0c;所以尝试弄懂脚本中这三部分内容&#xff0c;了解脚本执行过程。 &#xff08;1&#xff09;while循环 while do循环内容如下所示&#xff0c;在循环中还用了expr…...

【Java】逻辑运算符详解:、|| 与、 | 的区别及应用

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: Java 文章目录 &#x1f4af;前言&#x1f4af;一、基本概念与运算符介绍&#x1f4af;二、短路与与非短路与&#xff1a;&& 与 & 的区别1. &&&#xff1a;短路与&#xff08;AND&#xff09;2. …...

Java 设计模式之解释器模式

文章目录 Java 设计模式之解释器模式概述UML代码实现 Java 设计模式之解释器模式 概述 解释器模式(interpreter)&#xff1a;给定一个语言&#xff0c;定义它的文法的一种表示&#xff0c;并定义一个解释器&#xff0c;这个解释器使用该表示来解释语言中的句子。如果一种特定…...

关于前后端分离跨域问题——使用DeepSeek分析查错

我前端使用ant design vue pro框架&#xff0c;后端使用kratos框架开发。因为之前也解决过跨域问题&#xff0c;正常是在后端的http请求中加入中间件&#xff0c;设置跨域需要通过的字段即可&#xff0c;代码如下所示&#xff1a; func NewHTTPServer(c *conf.Server, s *conf…...

Linux下ioctl的应用

文章目录 1、ioctl简介2、示例程序编写2.1、应用程序编写2.2、驱动程序编写 3、ioctl命令的构成4、测试 1、ioctl简介 ioctl&#xff08;input/output control&#xff09;是Linux中的一个系统调用&#xff0c;主要用于设备驱动程序与用户空间应用程序之间进行设备特定的输入/…...

Windows 环境下 Grafana 安装指南

目录 下载 Grafana 安装 Grafana 方法 1&#xff1a;使用 .msi 安装程序&#xff08;推荐&#xff09; 方法 2&#xff1a;使用 .zip 压缩包 启动 Grafana 访问 Grafana 配置 Grafana&#xff08;可选&#xff09; 卸载 Grafana&#xff08;如果需要&#xff09; 下载 G…...

【操作系统】操作系统概述

操作系统概述 1.1 操作系统的概念1.1.1 操作系统定义——什么是OS&#xff1f;1.1.2 操作系统作用——OS有什么用&#xff1f;1.1.3 操作系统地位——计算机系统中&#xff0c;OS处于什么地位&#xff1f;1.1.4 为什么学操作系统&#xff1f; 1.2 操作系统的历史1.2.1 操作系统…...

基于SSM+uniapp的鲜花销售小程序+LW示例参考

1.项目介绍 系统角色&#xff1a;管理员、商户功能模块&#xff1a;用户管理、商户管理、鲜花分类管理、鲜花管理、订单管理、收藏管理、购物车、充值、下单等技术选型&#xff1a;SSM&#xff0c;Vue&#xff08;后端管理web&#xff09;&#xff0c;uniapp等测试环境&#x…...

第3章 .NETCore核心基础组件:3.1 .NET Core依赖注入

3.1.1 什么是控制反转、依赖注入 杨老师在书中进行了一系列的文字阐述&#xff0c;总结一下就是&#xff1a;软件设计模式中有一种叫做【控制反转】的设计模式&#xff0c;而依赖注入是实现这种设计模式的一个很重要的方式。也就是说学习依赖注入&#xff0c;是学习怎样实现控…...

排序与算法:插入排序

执行效果 插入排序的执行效果是这样的&#xff1a; 呃……看不懂吗&#xff1f;没关系&#xff0c;接着往下看介绍 算法介绍 插入排序&#xff08;Insertion Sort&#xff09;是一种简单直观的排序算法。它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c…...