当前位置: 首页 > news >正文

大模型工具大比拼:SGLang、Ollama、VLLM、LLaMA.cpp 如何选择?

简介:在人工智能飞速发展的今天,大模型已经成为推动技术革新的核心力量。无论是智能客服、内容创作,还是科研辅助、代码生成,大模型的身影无处不在。然而,面对市场上琳琅满目的工具,如何挑选最适合自己的那一款?本文将深入对比 SGLangOllamaVLLMLLaMA.cpp 四款热门大模型工具,帮助您找到最契合需求的解决方案!💡


🔍 工具概览

在这里插入图片描述

在开始之前,先简单了解一下这四款工具的特点:

  • SGLang:性能卓越的推理引擎,专为高并发场景设计。
  • Ollama:基于 llama.cpp 的便捷本地运行框架,适合个人开发者和新手。
  • VLLM:专注高效推理的多 GPU 引擎,适用于大规模在线服务。
  • LLaMA.cpp:轻量级推理框架,支持多种硬件优化,适合边缘设备。

💡 各工具深度解析

1. SGLang:性能卓越的新兴之秀

亮点

  • 零开销批处理调度器:通过 CPU 调度与 GPU 计算重叠,提升吞吐量 1.1 倍。
  • 缓存感知负载均衡器:智能路由机制,吞吐量提升 1.9 倍,缓存命中率提高 3.8 倍。
  • DeepSeek 模型优化:针对特定模型优化,解码吞吐量提升 1.9 倍。
  • 快速结构化输出:JSON 解码任务比其他方案快达 10 倍。

适用场景

  • 高并发企业级推理服务。
  • 需要高性能结构化输出的应用(如 JSON 数据处理)。

优势

  • 性能强劲,尤其适合需要处理大规模并发请求的场景。
  • 支持多 GPU 部署,灵活性强。

局限

  • 配置复杂,需要一定的技术基础。
  • 目前仅支持 Linux 系统。

2. Ollama:小白友好的本地运行神器

亮点

  • 跨平台支持:Windows、macOS、Linux 均可轻松安装。
  • 丰富的模型库:涵盖 1700+ 款大语言模型,包括 Llama、Qwen 等。
  • 简单易用:只需一条命令即可运行模型(ollama run <模型名称>)。
  • 高度自定义:支持通过 Modelfile 自定义模型参数。

适用场景

  • 个人开发者验证创意项目。
  • 学生党用于学习、问答和写作。
  • 日常轻量级应用场景。

优势

  • 安装简单,操作直观,对新手友好。
  • 支持 REST API,便于集成到现有系统中。

局限

  • 性能依赖底层 llama.cpp,在高并发场景下可能表现一般。
  • 功能相对基础,缺乏高级优化。

3. VLLM:专注高效推理的强大引擎

亮点

  • PagedAttention 技术:精细化管理 KV 缓存,内存浪费小于 4%。
  • Continuous Batching:动态批处理新请求,避免资源闲置。
  • 多 GPU 优化:相比原生 HF Transformers,吞吐量提升高达 24 倍。
  • 量化支持:兼容 GPTQ、AWQ 等多种量化技术,降低显存占用。

适用场景

  • 实时聊天机器人等高并发在线服务。
  • 资源受限环境下的高效推理。

优势

  • 推理效率极高,适合大规模在线服务。
  • 支持多种部署方式(Python 包、OpenAI 兼容 API、Docker)。

局限

  • 仅支持 Linux 系统,跨平台兼容性有限。
  • 配置相对复杂,需要一定的技术背景。

4. LLaMA.cpp:轻量级推理框架

亮点

  • 多级量化支持:2-bit 到 8-bit 多种精度,大幅降低内存占用。
  • 硬件优化:针对 Apple Silicon、ARM、x86 架构全面优化。
  • 高效推理:支持 Metal GPU 后端,Mac 用户性能更优。
  • 灵活调用:支持 Python、Node.js、Golang 等多语言绑定。

适用场景

  • 边缘设备部署(如树莓派)。
  • 移动端应用或本地服务。

优势

  • 轻量高效,适合资源受限的设备。
  • 支持全平台,灵活性极强。

局限

  • 对于超大规模模型的支持有限。
  • 配置较为复杂,需要手动调整参数。

📊 综合对比一览表

工具名称性能表现易用性适用场景硬件需求模型支持部署方式系统支持
SGLang零开销批处理提升 1.1 倍吞吐量,缓存感知负载均衡提升 1.9 倍,结构化输出提速 10 倍需一定技术基础企业级推理服务、高并发场景、结构化输出应用A100/H100,支持多 GPU主流大模型,特别优化 DeepSeekDocker、Python 包仅支持 Linux
Ollama继承 llama.cpp 高效推理能力,提供便捷模型管理和运行机制小白友好个人开发者创意验证、学生辅助学习、日常问答llama.cpp 相同1700+ 款模型,一键下载安装独立应用程序、Docker、REST APIWindows/macOS/Linux
VLLMPagedAttention 和 Continuous Batching 提升性能,吞吐量最高提升 24 倍需一定技术基础大规模在线推理服务、高并发场景NVIDIA GPU,推荐 A100/H100主流 Hugging Face 模型Python 包、OpenAI 兼容 API、Docker仅支持 Linux
LLaMA.cpp多级量化支持,跨平台优化,高效推理命令行界面直观边缘设备部署、移动端应用、本地服务CPU/GPU 均可GGUF 格式模型,广泛兼容性命令行工具、API 服务器、多语言绑定全平台支持

🌟 总结与建议

根据您的需求和使用场景,以下是推荐选择:

  • 科研团队/企业用户:如果您拥有强大的计算资源,并追求极致的推理速度,SGLang 是首选。它能像一台超级引擎,助力前沿科研探索。🚀
  • 个人开发者/新手:如果您是普通开发者或刚踏入 AI 领域的新手,渴望在本地轻松玩转大模型,Ollama 就如同贴心伙伴,随时响应您的创意需求。💡
  • 大规模在线服务开发者:如果需要搭建高并发在线服务,面对海量用户请求,VLLM 是坚实后盾,以高效推理确保服务的流畅稳定。🌐
  • 硬件有限用户:如果您手头硬件有限,只是想在小型设备上浅尝大模型的魅力,或者快速验证一些简单想法,LLaMA.cpp 就是那把开启便捷之门的钥匙,让 AI 触手可及。📱

希望这篇文章能帮助您更好地理解这些工具的特点,并找到最适合自己的解决方案!如果您有任何疑问或见解,欢迎在评论区留言交流!💬

相关文章:

大模型工具大比拼:SGLang、Ollama、VLLM、LLaMA.cpp 如何选择?

简介&#xff1a;在人工智能飞速发展的今天&#xff0c;大模型已经成为推动技术革新的核心力量。无论是智能客服、内容创作&#xff0c;还是科研辅助、代码生成&#xff0c;大模型的身影无处不在。然而&#xff0c;面对市场上琳琅满目的工具&#xff0c;如何挑选最适合自己的那…...

【05】密码学与隐私保护

5-1 零知识证明 零知识证明介绍 零知识证明的概念 设P&#xff08;Prover&#xff09;表示掌握某些信息&#xff0c;并希望证实这一事实的实体&#xff0c;V(Verifier&#xff09;是验证这一事实的实体。 零知识证明是指P试图使V相信某一个论断是正确的&#xff0c;但却不向…...

Flink SQL与Doris实时数仓Join实战教程(理论+实例保姆级教程)

目录 第一章:Regular Joins 深度解析 1.1 核心原理与适用场景 1.2 电商订单 - 商品实时关联案例 1.2.1 数据流设计 1.2.2 Doris 表设计优化 1.2.3 性能调优要点 第二章:Interval Joins 实战应用 2.1 时间区间关联原理 2.2 优惠券使用有效性验证 2.2.1 业务场景说明 …...

DeepSeek 助力 Vue 开发:打造丝滑的范围选择器(Range Picker)

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 Deep…...

68页PDF | 数据安全总体解决方案:从数据管理方法论到落地实践的全方位指南(附下载)

一、前言 这份报告旨在应对数字化转型过程中数据安全面临的挑战&#xff0c;并提供全面的管理与技术体系建设框架。报告首先分析了数字化社会的发展背景&#xff0c;强调了数据安全在国家安全层面的重要性&#xff0c;并指出数据安全风险的来源和防护措施。接着&#xff0c;报…...

【Github每日推荐】-- 2024 年项目汇总

1、AI 技术 项目简述OmniParser一款基于纯视觉的 GUI 智能体&#xff0c;能够准确识别界面上可交互图标以及理解截图中各元素语义&#xff0c;实现自动化界面交互场景&#xff0c;如自动化测试、自动化操作等。ChatTTS一款专门为对话场景设计的语音生成模型&#xff0c;主要用…...

【Spring详解一】Spring整体架构和环境搭建

一、Spring整体架构和环境搭建 1.1 Spring的整体架构 Spring框架是一个分层架构&#xff0c;包含一系列功能要素&#xff0c;被分为大约20个模块 Spring核心容器&#xff1a;包含Core、Bean、Context、Expression Language模块 Core &#xff1a;其他组件的基本核心&#xff…...

Spring Boot(8)深入理解 @Autowired 注解:使用场景与实战示例

搞个引言 在 Spring 框架的开发中&#xff0c;依赖注入&#xff08;Dependency Injection&#xff0c;简称 DI&#xff09;是它的一个核心特性&#xff0c;它能够让代码更加模块化、可测试&#xff0c;并且易于维护。而 Autowired 注解作为 Spring 实现依赖注入的关键工具&…...

Machine Learning:Optimization

文章目录 局部最小值与鞍点 (Local Minimum & Saddle Point)临界点及其种类判断临界值种类 批量与动量(Batch & Momentum)批量大小对梯度下降的影响动量法 自适应学习率AdaGradRMSPropAdam 学习率调度优化总结 局部最小值与鞍点 (Local Minimum & Saddle Point) 我…...

wordpress get_footer();与wp_footer();的区别的关系

在WordPress中&#xff0c;get_footer() 和 wp_footer() 是两个不同的函数&#xff0c;它们在主题开发中扮演着不同的角色&#xff0c;但都与页面的“页脚”部分有关。以下是它们的区别和关系&#xff1a; 1. get_footer() get_footer() 是一个用于加载页脚模板的函数。它的主…...

Windows Docker运行Implicit-SVSDF-Planner

Windows Docker运行GitHub - ZJU-FAST-Lab/Implicit-SVSDF-Planner: [SIGGRAPH 2024 & TOG] 1. 设置环境 我将项目git clone在D:/Github目录中。 下载ubuntu20.04 noetic镜像 docker pull osrf/ros:noetic-desktop-full-focal 启动容器&#xff0c;挂载主机的D:/Github文…...

设计模式14:职责链模式

系列总链接&#xff1a;《大话设计模式》学习记录_net 大话设计-CSDN博客 1.概述 职责链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为设计模式&#xff0c;它允许将请求沿着处理者链传递&#xff0c;直到有一个处理者能够处理该请求。这种模式通过…...

Golang GORM系列:GORM并发与连接池

GORM 是一个流行的 Go 语言 ORM&#xff08;对象关系映射&#xff09;库&#xff0c;用于简化数据库操作。它支持连接池和并发访问功能&#xff0c;这些功能对于高性能、高并发的应用场景非常重要。本文结合示例详细介绍gorm的并发处理能力&#xff0c;以及如何是哟个连接池提升…...

linux笔记:shell中的while、if、for语句

在Udig软件的启动脚本中使用了while循环、if语句、for循环&#xff0c;其他内容基本都是变量的定义&#xff0c;所以尝试弄懂脚本中这三部分内容&#xff0c;了解脚本执行过程。 &#xff08;1&#xff09;while循环 while do循环内容如下所示&#xff0c;在循环中还用了expr…...

【Java】逻辑运算符详解:、|| 与、 | 的区别及应用

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: Java 文章目录 &#x1f4af;前言&#x1f4af;一、基本概念与运算符介绍&#x1f4af;二、短路与与非短路与&#xff1a;&& 与 & 的区别1. &&&#xff1a;短路与&#xff08;AND&#xff09;2. …...

Java 设计模式之解释器模式

文章目录 Java 设计模式之解释器模式概述UML代码实现 Java 设计模式之解释器模式 概述 解释器模式(interpreter)&#xff1a;给定一个语言&#xff0c;定义它的文法的一种表示&#xff0c;并定义一个解释器&#xff0c;这个解释器使用该表示来解释语言中的句子。如果一种特定…...

关于前后端分离跨域问题——使用DeepSeek分析查错

我前端使用ant design vue pro框架&#xff0c;后端使用kratos框架开发。因为之前也解决过跨域问题&#xff0c;正常是在后端的http请求中加入中间件&#xff0c;设置跨域需要通过的字段即可&#xff0c;代码如下所示&#xff1a; func NewHTTPServer(c *conf.Server, s *conf…...

Linux下ioctl的应用

文章目录 1、ioctl简介2、示例程序编写2.1、应用程序编写2.2、驱动程序编写 3、ioctl命令的构成4、测试 1、ioctl简介 ioctl&#xff08;input/output control&#xff09;是Linux中的一个系统调用&#xff0c;主要用于设备驱动程序与用户空间应用程序之间进行设备特定的输入/…...

Windows 环境下 Grafana 安装指南

目录 下载 Grafana 安装 Grafana 方法 1&#xff1a;使用 .msi 安装程序&#xff08;推荐&#xff09; 方法 2&#xff1a;使用 .zip 压缩包 启动 Grafana 访问 Grafana 配置 Grafana&#xff08;可选&#xff09; 卸载 Grafana&#xff08;如果需要&#xff09; 下载 G…...

【操作系统】操作系统概述

操作系统概述 1.1 操作系统的概念1.1.1 操作系统定义——什么是OS&#xff1f;1.1.2 操作系统作用——OS有什么用&#xff1f;1.1.3 操作系统地位——计算机系统中&#xff0c;OS处于什么地位&#xff1f;1.1.4 为什么学操作系统&#xff1f; 1.2 操作系统的历史1.2.1 操作系统…...

基于SSM+uniapp的鲜花销售小程序+LW示例参考

1.项目介绍 系统角色&#xff1a;管理员、商户功能模块&#xff1a;用户管理、商户管理、鲜花分类管理、鲜花管理、订单管理、收藏管理、购物车、充值、下单等技术选型&#xff1a;SSM&#xff0c;Vue&#xff08;后端管理web&#xff09;&#xff0c;uniapp等测试环境&#x…...

第3章 .NETCore核心基础组件:3.1 .NET Core依赖注入

3.1.1 什么是控制反转、依赖注入 杨老师在书中进行了一系列的文字阐述&#xff0c;总结一下就是&#xff1a;软件设计模式中有一种叫做【控制反转】的设计模式&#xff0c;而依赖注入是实现这种设计模式的一个很重要的方式。也就是说学习依赖注入&#xff0c;是学习怎样实现控…...

排序与算法:插入排序

执行效果 插入排序的执行效果是这样的&#xff1a; 呃……看不懂吗&#xff1f;没关系&#xff0c;接着往下看介绍 算法介绍 插入排序&#xff08;Insertion Sort&#xff09;是一种简单直观的排序算法。它的工作原理是通过构建有序序列&#xff0c;对于未排序数据&#xff0c…...

uniapp 打包安卓 集成高德地图

接入高德地图 let vm this;uni.chooseLocation({success: function (res) {// console.log(位置名称&#xff1a; res.name);// console.log(详细地址&#xff1a; res.address);// console.log(纬度&#xff1a; res.latitude);// console.log(经度&#xff1a; res.long…...

python爬虫系列课程2:如何下载Xpath Helper

python爬虫系列课程2:如何下载Xpath Helper 一、访问极简插件官网二、点击搜索按钮三、输入xpath并点击搜索四、点击推荐下载五、将下载下来的文件解压缩六、打开扩展程序界面七、将xpath.crx文件拖入扩展程序界面一、访问极简插件官网 极简插件官网地址:https://chrome.zzz…...

win10系统上的虚拟机安装麒麟V10系统提示找不到操作系统

目录预览 一、问题描述二、原因分析三、解决方案四、参考链接 一、问题描述 win10系统上的虚拟机安装麒麟V10系统提示找不到操作系统&#xff0c;报错&#xff1a;Operating System not found 二、原因分析 国产系统&#xff0c;需要注意的点&#xff1a; 需要看你的系统类…...

基于微信小程序的宿舍报修管理系统设计与实现,SpringBoot(15500字)+Vue+毕业论文+指导搭建视频

运行环境 jdkmysqlIntelliJ IDEAmaven3微信开发者工具 项目技术SpringBoothtmlcssjsjqueryvue2uni-app 宿舍报修小程序是一个集中管理宿舍维修请求的在线平台&#xff0c;为学生、维修人员和管理员提供了一个便捷、高效的交互界面。以下是关于这些功能的简单介绍&#xff1a; …...

分布式同步锁:原理、实现与应用

分布式同步锁&#xff1a;原理、实现与应用 引言1. 分布式同步锁的基本概念1.1 什么是分布式同步锁&#xff1f;1.2 分布式锁的特性 2. 分布式锁的实现方式2.1 基于数据库的分布式锁实现原理优缺点示例 2.2 基于 Redis 的分布式锁实现原理优缺点示例Redlock 算法 2.3 基于 ZooK…...

Chrome多开终极形态解锁!「窗口管理工具+IP隔离插件

Web3项目多开&#xff0c;继ads指纹浏览器钱包被盗后&#xff0c;更多人采用原生chrome浏览器&#xff0c;当然对于新手&#xff0c;指纹浏览器每月成本也是一笔不小开支&#xff0c;今天逛Github发现了这样一个解决方案&#xff0c;作者开发了窗口管理工具IP隔离插件&#xff…...

FreeSwitch的应用类模块

FreeSWITCH 应用类模块&#xff08;Applications&#xff09;完整表格 模块名称功能描述mod_callcenter提供呼叫中心功能&#xff0c;支持队列、座席管理、监控等。mod_conference提供多方会议功能&#xff0c;支持音频、视频会议。mod_blacklist提供黑名单功能&#xff0c;阻…...

【蓝桥杯集训·每日一题2025】 AcWing 6123. 哞叫时间 python

6123. 哞叫时间 Week 1 2月18日 农夫约翰正在试图向埃尔茜描述他最喜欢的 USACO 竞赛&#xff0c;但她很难理解为什么他这么喜欢它。 他说「竞赛中我最喜欢的部分是贝茜说 『现在是哞哞时间』并在整个竞赛中一直哞哞叫」。 埃尔茜仍然不理解&#xff0c;所以农夫约翰将竞赛以…...

Unity 淡入淡出

淡入&#xff08;Fade in&#xff09;&#xff1a;类似打开幕布 淡出&#xff08;Fade out&#xff09;&#xff1a;类似关上幕布 方案一 使用Dotween&#xff08;推荐&#xff09; using DG.Tweening; using UnityEngine; using UnityEngine.UI;public class Test : MonoB…...

PBR光照模型相关知识

PBR是基于物理的光照模型&#xff0c;与lambert光照模型以及Blinn-Phong光照模型有所不同 一、三种光照模型的区别 原理基础 Lambert 光照模型&#xff1a;基于朗伯余弦定律&#xff0c;该定律表明&#xff0c;漫反射光的强度与入射光的方向和物体表面法线的夹角的余弦值成正比…...

【Go | 从0实现简单分布式缓存】-2:HTTP服务端与一致性哈希

本文目录 一、回顾1.1 复习接口 二、http标准库三、实现HTTP服务端四、一致性哈希 本文为极客兔兔“动手写分布式缓存GeeCache”学习笔记。 一、回顾 昨天已经开发了一部分项目&#xff0c;我们先来看看项目结构。 分布式缓存需要实现节点间通信&#xff0c;建立基于 HTTP 的…...

STM32 低功耗模式

目录 背景 低功耗模式 睡眠模式 进入睡眠模式 退出睡眠模式 停止模式 进入停止模式 退出停止模式 待机模式 进入待机模式 退出待机模式 程序 睡眠模式 休眠模式配置 进入休眠模式 退出睡眠模式 停止模式 停止模式配置 进入停止模式 退出停止模式 待机模式…...

AI 百炼成神:逻辑回归, 垃圾邮件分类

第二个项目:逻辑回归垃圾邮件分类 项目代码下载地址:https://download.csdn.net/download/m0_56366541/90398247 项目目标 学习逻辑回归的基本概念。使用逻辑回归算法来实现垃圾邮件的分类。理解如何处理文本数据以及如何评估分类模型的性能。项目步骤 准备数据集 我们将使…...

#渗透测试#批量漏洞挖掘#Apache Log4j反序列化命令执行漏洞

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停止本文章读。 目录 Apache Log4j反序列化命令执行漏洞 一、…...

Docker__持续更新......

Docker 1. 基本知识1.1 为什么有Docker?1.2 Docker架构与容器化 画图解释 画图解释2. 项目实战 1. 基本知识 1.1 为什么有Docker? 用一行命令跨平台安装项目&#xff0c;在不同平台上运行项目。把项目打包分享运行应用。 1.2 Docker架构与容器化 准备机器&#xff0c;在机…...

什么是语料清洗、预训练、指令微调、强化学习、内容安全; 什么是megatron,deepspeed,vllm推理加速框架

什么是语料清洗、预训练、指令微调、强化学习、内容安全 目录 什么是语料清洗、预训练、指令微调、强化学习、内容安全语料清洗预训练指令微调强化学习内容安全什么是megatron,deepspeed,vllm推理加速框架语料清洗 语料清洗是对原始文本数据进行处理的过程,旨在去除数据中的…...

Ubuntu虚拟机NDK编译ffmpeg

目录 一、ffmpeg源码下载1、安装git(用于下载ffmpeg源码)2、创建源码目录&#xff0c;下载ffmpeg源码 二、下载ubuntu对应的NDK&#xff0c;并解压到opt下1、下载并解压2、配置 ~/.bashrc 三、源码编译、1、创建编译脚本2、脚本文件内容3、设置可执行权限并运行4、编译的结果在…...

SQLAlchemyError: A transaction is already begun on this Session.

资料 sqlalchemy 事务 - 简书 在 SQLAlchemy 中&#xff0c;事务是通过会话来管理的。当你开始一个事务&#xff08;例如使用 async with db.begin()&#xff09;&#xff0c;它会开启一个新的事务&#xff0c;并在事务块结束时自动提交或回滚。如果在同一个会话中&#xff0c…...

STM32 HAL库USART串口DMA IDLE中断编程:避坑指南

HAL_UART_Receive接收最容易丢数据了,STM32 HAL库UART查询方式实例 可以考虑用中断来实现,但是HAL_UART_Receive_IT还不能直接用,容易数据丢失,实际工作中不会这样用,STM32 HAL库USART串口中断编程&#xff1a;演示数据丢失, 需要在此基础优化一下. STM32F103 HAL库USART串口…...

打造一个有点好看的 uniapp 网络测速软件

大家好&#xff0c;我是一名前端小白。今天想和分享一个有点好看的网络测速 uniapp 组件的实现过程。这个组件不仅外观精美&#xff0c;而且具有完整的功能性&#xff0c;是一个非常适合学习和实践的案例。 设计理念 在开始coding之前&#xff0c;先聊聊设计理念。一个好的测…...

DeepSeek AI 视频创作完整指南:从注册到制作

DeepSeek AI 视频创作完整指南&#xff1a;从注册到制作 前言 DeepSeek作为国产AI的新星&#xff0c;不仅在代码能力上表现出色&#xff0c;在创意内容生成方面同样令人惊艳。本教程将带您从注册到实操&#xff0c;完整体验DeepSeek的强大功能。 第一步&#xff1a;获取Deep…...

DeepSeek学术指南:DeepSeek在学术翻译改写能力应用操作案例!

DeepSeek&#xff1a;助力学术研究的智能工具 DeepSeek作为一种先进的智能工具&#xff0c;为学术研究提供了强大的支持。它不仅能够处理复杂的学术文本&#xff0c;还能在翻译和润色方面表现出色&#xff0c;极大地提高了学术写作的效率和质量。通过其强大的语言处理能力&…...

栈回溯基础

指令集区分 thumb指令集 长度&#xff1a;thumb指令通常是 16 位。特点&#xff1a;thumb 指令集是为了压缩指令集长度减少程序占用空间。对齐方式&#xff1a;2字节对齐&#xff0c;存放 thumb 指令的地址一般会被1&#xff0c;设置为奇数&#xff0c;用于表示地址上存放的是…...

JavaScript系列(76)--浏览器API深入

JavaScript浏览器API深入 &#x1f310; 浏览器提供了丰富的API&#xff0c;使JavaScript能够与浏览器环境进行交互。本文将深入探讨常用的浏览器API、最佳实践和性能优化技巧。 核心浏览器API &#x1f31f; &#x1f4a1; 小知识&#xff1a;浏览器API是连接JavaScript与浏…...

计算机网络(3)TCP格式/连接

1、TCP三大特点&#xff1a;面向连接、可靠、基于字节流 2、如何唯一确定一个TCP连接&#xff1f;TCP四元组&#xff1a;源地址、源端口、目的地址、目的端口 源地址和目标地址的字段(32 位)是在 IP 头部中&#xff0c;作用是通过 IP 协议发送报文给对方主机源端口和目标端口…...

下载安装运行测试开源vision-language-action(VLA)模型OpenVLA

1. 安装 项目官网OpenVLA 首先按照官网提示的以下代码&#xff0c;执行创建环境->安装最小依赖->git克隆项目等 # Create and activate conda environment conda create -n openvla python3.10 -y conda activate openvla# Install PyTorch. Below is a sample comma…...

3D与2D机器视觉机械臂引导的区别

3D与2D机器视觉在机械臂引导中的主要区别如下&#xff1a; 数据维度 2D视觉&#xff1a;仅处理平面图像&#xff0c;提供X、Y坐标信息&#xff0c;无法获取深度&#xff08;Z轴&#xff09;数据。 3D视觉&#xff1a;处理三维空间数据&#xff0c;提供X、Y、Z坐标及物体的姿态…...