当前位置: 首页 > news >正文

【人工智能】使用Python和Hugging Face构建情感分析应用:从模型训练到Web部署

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界

情感分析是自然语言处理(NLP)中的重要任务,它通过分析文本来判断情绪或观点的倾向性。近年来,预训练语言模型如BERT、GPT等在情感分析任务中展现出了卓越的性能。本文将详细介绍如何使用Python和Hugging Face的transformers库来构建一个情感分析应用。我们将从使用预训练模型进行情感分析开始,逐步介绍如何进行模型微调、评估模型效果,最终将模型封装成Web应用进行部署。通过本教程,读者将掌握如何利用Hugging Face的强大工具,在实际项目中高效地进行情感分析,并将其部署为Web服务,以便应用于各种实际场景。


1. 引言

情感分析(Sentiment Analysis),也被称为情绪分析,是自然语言处理(NLP)中的一种经典任务,旨在通过对文本的分析,自动判断文本中表达的情感倾向。它通常用于社交媒体评论、产品评价、用户反馈等领域,帮助企业、学者或开发者理解用户情感、分析市场趋势。

近年来,深度学习技术,尤其是基于Transformer的预训练语言模型,如BERT(Bidirectional Encoder Representations from Transformers)、RoBERTa、GPT(Generative Pre-trained Transformer)等,已成为解决情感分析问题的主流方法。这些模型通过大量无监督的预训练,在多个下游任务上表现出色。

本教程将指导你如何使用Python的Hugging Face transformers库,构建一个情感分析应用。我们将使用预训练模型来完成情感分析,并介绍如何微调模型以提高其准确度。最后,我们将把模型部署为Web应用,供用户实时调用。

2. 环境准备

在开始构建情感分析应用之前,首先需要安装所需的Python库。我们需要以下几个库:

  • transformers:Hugging Face的核心库,提供了各种预训练模型及其接口。
  • torch:深度学习框架,支持GPU加速。
  • flask:Python的Web框架,用于构建Web应用。
  • requests:用于处理HTTP请求,进行API调用。

安装这些库的命令如下:

pip install transformers torch flask requests

3. 使用预训练模型进行情感分析

3.1 加载预训练模型

Hugging Face的transformers库提供了许多预训练模型,支持各种自然语言处理任务,包括情感分析。我们将加载一个BERT预训练模型(bert-base-uncased)并将其用于情感分析。

以下是加载模型和分词器的代码:

from transformers import pipeline# 使用预训练的情感分析模型
sentiment_analyzer = pipeline("sentiment-analysis")# 测试情感分析
result = sentiment_analyzer("I love programming!")
print(result)

在这个例子中,我们使用了Hugging Face的pipeline接口,它简化了情感分析的过程。pipeline("sentiment-analysis")会自动加载一个适合情感分析任务的预训练模型,并返回文本的情感分类。输出将是一个包含情感类别及其对应分数的字典。

3.2 处理输入数据

为了进行情感分析,我们需要一个输入文本。在实际应用中,输入文本通常来自于用户的输入,或者是从数据库、文件等其他来源获取。在此,我们通过一个简单的文本输入来进行分析。

# 示例文本
input_text = "I absolutely love the new movie, it's fantastic!"# 使用预训练模型进行情感分析
result = sentiment_analyzer(input_text)
print(f"情感分析结果:{result}")

输出的结果将会是类似于:

情感分析结果:[{'label': 'POSITIVE', 'score': 0.9998}]

label表示情感的类别,通常有“POSIT

相关文章:

【人工智能】使用Python和Hugging Face构建情感分析应用:从模型训练到Web部署

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 情感分析是自然语言处理(NLP)中的重要任务,它通过分析文本来判断情绪或观点的倾向性。近年来,预训练语言模型如BERT、GPT等在情感分析任…...

【R语言】函数

一、函数格式 如下所示: hello:函数名;function:定义的R对象是函数而不是其它变量;():函数的输入参数,可以为空,也可以包含参数;{}:函数体,如果…...

python leetcode 笔记

只为记录一些python相关的特殊写法 无穷大,无穷小,NAN float(inf), float(-inf), float(nan) 判断字符的类型 isdigit(x) isspace(x) 字符串拼接 /.join([a,b,c]) # a/b/c 格式转换,字符转整形 ord(a) # 97 chr(97) # a 进制转…...

基于SpringBoot的青年公寓服务平台的设计与实现(源码+SQL脚本+LW+部署讲解等)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...

深入剖析 HTML5 新特性:语义化标签和表单控件完全指南

系列文章目录 01-从零开始学 HTML:构建网页的基本框架与技巧 02-HTML常见文本标签解析:从基础到进阶的全面指南 03-HTML从入门到精通:链接与图像标签全解析 04-HTML 列表标签全解析:无序与有序列表的深度应用 05-HTML表格标签全面…...

kamailio的kamctl的使用

kamctl 是 Kamailio SIP 服务器的管理工具,用于执行各种管理任务,如启动、停止、重启 Kamailio 进程,管理用户、ACL、路由、信任的 IP 地址等。以下是对 kamctl 命令的解释及举例说明: 1. 启动、停止、重启 Kamailio start: 启动…...

[创业之路-270]:《向流程设计要效率》-2-企业流程架构模式 POS架构(规划、业务运营、支撑)、OES架构(业务运营、使能、支撑)

目录 一、POS架构 二、OES架构 三、POS架构与OES架构的差异 四、各自的典型示例 POS架构典型示例 OES架构典型示例 示例分析 五、各自的典型企业 POS架构典型企业 OES架构典型企业 分析 六、各自典型的流程 POS架构的典型流程 OES架构的典型流程 企业流程架构模式…...

【leetcode100】路径总和Ⅲ

1、题目描述 给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。 路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节点…...

用结构加法3ax+1预测第4点的分布

有1个点在19*19的平面上在某种力的作用下运动,轨迹为 共移动了90步,按照(0,1,2,3),(1,2,3,4),…,&…...

CTF-web: Python YAML反序列化利用

PyYAML存在以下几个特殊标签,如果这些标签被不安全的解析,会造成解析漏洞 从 PyYaml 版本 6.0 开始,load 的默认加载器已切换到 SafeLoader,以降低远程代码执行的风险。更新后易受攻击的是 yaml.unsafe_load 和 yaml.load(input, Loaderyaml.UnsafeLoade…...

JDK-1.8.0_432安装(CentOS7)

目录 1、卸载系统自带JDK 2、下载安装包并解压 3、赋予可执行权限 4、设置环境变量 5、刷新环境变量 6、查看JDK版本 1、卸载系统自带JDK # 查询出自带的jdk rpm -qa | grep jdk rpm -qa | grep java # 将上述命令列出的包依次删除 rpm -e --nodeps xxxxxxx 2、下载…...

OpenGL学习笔记(五):Textures 纹理

文章目录 纹理坐标纹理环绕方式纹理过滤——处理纹理分辨率低的情况多级渐远纹理Mipmap——处理纹理分辨率高的情况加载与创建纹理 &#xff08; <stb_image.h> &#xff09;生成纹理应用纹理纹理单元练习1练习2练习3练习4 通过上一篇着色部分的学习&#xff0c;我们可以…...

【Pytorch和Keras】使用transformer库进行图像分类

目录 一、环境准备二、基于Pytorch的预训练模型1、准备数据集2、加载预训练模型3、 使用pytorch进行模型构建 三、基于keras的预训练模型四、模型测试五、参考 现在大多数的模型都会上传到huggface平台进行统一的管理&#xff0c;transformer库能关联到huggface中对应的模型&am…...

2025年Android开发趋势全景解读

文章目录 一、界面开发&#xff1a;从"手写代码"到"智能拼装"1.1 Jetpack Compose实战进化1.2 淘汰XML布局的三大信号 二、AI融合开发&#xff1a;无需炼丹的普惠智能2.1 设备端AI三大杀手级应用2.2 成本对比&#xff1a;设备端VS云端AI 三、跨平台演进&am…...

Python NumPy(12):NumPy 字节交换、NumPy 副本和视图、NumPy 矩阵库(Matrix)

1 NumPy 字节交换 在几乎所有的机器上&#xff0c;多字节对象都被存储为连续的字节序列。字节顺序&#xff0c;是跨越多字节的程序对象的存储规则。 大端模式&#xff1a;指数据的高字节保存在内存的低地址中&#xff0c;而数据的低字节保存在内存的高地址中&#xff0c;这样的…...

【Vaadin flow 实战】第5讲-使用常用UI组件绘制页面元素

vaadin flow官方提供的UI组件文档地址是 https://vaadin.com/docs/latest/components这里&#xff0c;我简单实战了官方提供的一些免费的UI组件&#xff0c;使用案例如下&#xff1a; Accordion 手风琴 Accordion 手风琴效果组件 Accordion 手风琴-测试案例代码 Slf4j PageT…...

第三篇:模型压缩与量化技术——DeepSeek如何在边缘侧突破“小而强”的算力困局

——从算法到芯片的全栈式优化实践 随着AI应用向移动终端与物联网设备渗透&#xff0c;模型轻量化成为行业核心挑战。DeepSeek通过自研的“算法-编译-硬件”协同优化体系&#xff0c;在保持模型性能的前提下&#xff0c;实现参数量与能耗的指数级压缩。本文从技术原理、工程实…...

搜索与图论复习2最短路

单源最短路---所有边权是正数(Dijkstra算法O(n^2)--稠密图(邻接矩阵)和堆优化的Dijkstra算法O(mlogn)--稀疏图(邻接表)) 或存在负边权(Bellman-ford贝尔曼福特算法O(nm)和SPFA一般O(m) 最坏O(nm) ) 多源最短路---Floyd算法O(n^3) 一、迪杰斯特拉算法(Dijkstra)&#xff1a;1…...

redis集群理论详解

一. Redis集群发展历程 本片文章只介绍集群理论知识&#xff0c;不包含Redis集群搭建教程 教程文章请点击docker搭建redis集群&#xff08;三主三从&#xff09; 阶段一&#xff1a;单机版Redis 优点&#xff1a; 简单&#xff1a;易于部署和使用&#xff0c;适合小型项目或初期…...

本地缓存~

前言 Caffeine是使用Java8对Guava缓存的重写版本&#xff0c;在Spring Boot 2.0中取而代之&#xff0c;基于LRU算法实现&#xff0c;支持多种缓存过期策略。 以下摘抄于https://github.com/ben-manes/caffeine/wiki/Benchmarks-zh-CN 基准测试通过使用Java microbenchmark ha…...

SpringBoot 整合 SpringMVC:SpringMVC的注解管理

分类&#xff1a; 中央转发器(DispatcherServlet)控制器视图解析器静态资源访问消息转化器格式化静态资源管理 中央转发器&#xff1a; 中央转发器被 SpringBoot 自动接管&#xff0c;不需要我们在 web.xml 中配置&#xff1a; <servlet><servlet-name>chapter2&l…...

YOLO11/ultralytics:环境搭建

前言 人工智能物体识别行业应该已经饱和了吧&#xff1f;或许现在并不是一个好的入行时候。 最近看到了各种各样相关的扩展应用&#xff0c;为了理解它&#xff0c;我不得不去尝试了解一下。 我选择了git里非常受欢迎的yolo系列&#xff0c;并尝试了最新版本YOLO11或者叫它ultr…...

扩散模型(三)

相关阅读&#xff1a; 扩散模型&#xff08;一&#xff09; 扩散模型&#xff08;二&#xff09; Latent Variable Space 潜在扩散模型&#xff08;LDM&#xff1b;龙巴赫、布拉特曼等人&#xff0c;2022 年&#xff09;在潜在空间而非像素空间中运行扩散过程&#xff0c;这…...

探索数学:从起源到未来的无尽旅程

数学的定义与本质 数学&#xff0c;这门古老而又充满魅力的学科&#xff0c;自人类文明诞生之初便如影随形。然而&#xff0c;要精准地定义数学并非易事&#xff0c;不同的学者从各自的视角出发&#xff0c;给出了多样的阐释。 亚里士多德将数学定义为 “数量科学”&#xff…...

OpenAI发布o3-mini:免费推理模型,DeepSeek引发的反思

引言 在人工智能领域&#xff0c;OpenAI再次引领潮流&#xff0c;推出了全新的推理模型系列——o3-mini。这一系列包括low、medium和high三个版本&#xff0c;旨在进一步推动低成本推理的发展。与此同时&#xff0c;OpenAI的CEO奥特曼也在Reddit的“有问必答”活动中罕见地公开…...

React中使用箭头函数定义事件处理程序

React中使用箭头函数定义事件处理程序 为什么使用箭头函数&#xff1f;1. 传递动态参数2. 避免闭包问题3. 确保每个方块的事件处理程序是独立的4. 代码可读性和维护性 示例代码总结 在React开发中&#xff0c;处理事件是一个常见的任务。特别是当我们需要传递动态参数时&#x…...

自制虚拟机(C/C++)(三、做成标准GUI Windows软件,扩展指令集,直接支持img软盘)

开源地址:VMwork 要使终端不弹出&#xff0c; #pragma comment(linker, "/subsystem:windows /ENTRY:mainCRTStartup") 还要实现jmp near 0x01类似的 本次的main.cpp #include <graphics.h> #include <conio.h> #include <windows.h> #includ…...

C# 语言基础全面解析

.NET学习资料 .NET学习资料 .NET学习资料 一、引言 C# 是一种功能强大、面向对象且类型安全的编程语言&#xff0c;由微软开发&#xff0c;广泛应用于各种类型的软件开发&#xff0c;从桌面应用、Web 应用到游戏开发等领域。本文将全面介绍 C# 语言的基础知识&#xff0c;帮…...

MySQL的覆盖索引

MySQL的覆盖索引 前言 当一个索引包含了查询所需的全部字段时&#xff0c;就可以提高查询效率&#xff0c;这样的索引又被称之为覆盖索引。 以MySQL常见的三种存储引擎为例&#xff1a;InnoDB、MyISAM、Memory&#xff0c;对于覆盖索引提高查询效率的方式均不同&#xff0c;…...

Hutool工具类

Hutool 是一个非常流行的 Java 工具类库&#xff0c;它提供了丰富的功能来简化开发中的常见任务&#xff0c;比如文件操作、加密、日期处理、字符串操作、数据库工具等。它是一个轻量级的工具库&#xff0c;可以减少开发者编写常用代码的工作量&#xff0c;提高开发效率。 主要…...

C++模板编程——可变参函数模板之折叠表达式

目录 1. 什么是折叠表达式 2. 一元左折 3. 一元右折 4. 二元左折 5. 二元右折 6. 后记 上一节主要讲解了可变参函数模板和参数包展开&#xff0c;这一节主要讲一下折叠表达式。 1. 什么是折叠表达式 折叠表达式是C17中引入的概念&#xff0c;引入折叠表达式的目的是为了…...

使用MATLAB进行雷达数据采集可视化

本文使用轮趣科技N10雷达&#xff0c;需要源码可在后台私信或者资源自取 1. 项目概述 本项目旨在通过 MATLAB 读取 N10 激光雷达 的数据&#xff0c;并进行 实时 3D 点云可视化。数据通过 串口 传输&#xff0c;并经过解析后转换为 三维坐标点&#xff0c;最终使用 pcplayer 进…...

【Linux系统】信号:信号保存 / 信号处理、内核态 / 用户态、操作系统运行原理(中断)

理解Linux系统内进程信号的整个流程可分为&#xff1a; 信号产生 信号保存 信号处理 上篇文章重点讲解了 信号的产生&#xff0c;本文会讲解信号的保存和信号处理相关的概念和操作&#xff1a; 两种信号默认处理 1、信号处理之忽略 ::signal(2, SIG_IGN); // ignore: 忽略#…...

在C语言多线程环境中使用互斥量

如果有十个银行账号通过不同的十条线程同时向同一个账号转账时&#xff0c;如果没有很好的机制保证十个账号依次存入&#xff0c;那么这些转账可能出问题。我们可以通过互斥量来解决。 C标准库提供了这个互斥量&#xff0c;只需要引入threads.头文件。 互斥量就像是一把锁&am…...

PHP代码审计学习02

目录 代码审计一般思路 Beescms代码审计&#xff08;upload&#xff09; Finecms基于前台MVC任意文件上传挖掘思路 CLTPHP基于thinkphp5框架的文件上传挖掘思路 今天来看PHP有框架MVC类&#xff0c;文件上传&#xff0c;断点调试挖掘。 同样还是有关键字搜索和功能点抓包两…...

基于微信小程序的医院预约挂号系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导&#xff0c;欢迎高校老师/同行前辈交流合作✌。 技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;…...

大厂面试题备份20250201

20250201 面试策略 如果三面往后遇到传说中让人忍受不了的业余面试官&#xff0c;就舔着苟过去&#xff0c;入职大概率见不着他&#xff0c;但一二面遇到&#xff0c;反问环节就主动说不够match&#xff0c;让释放流程。 机器/深度学习 百面机器学习 5.4 通用CS 计算机网…...

Spring Boot 实例解析:HelloWorld 探究

POM 文件剖析&#xff1a; 父项目&#xff1a; <parent><groupId>org.springframework.boot</groupId><artifactId>spring‐boot‐starter‐parent</artifactId><version>1.5.9.RELEASE</version> </parent> 他的父项目是 <…...

【课题推荐】基于t分布的非高斯滤波框架在水下自主导航中的应用研究

水下自主导航系统在海洋探测、环境监测及水下作业等领域具有广泛的应用。然而&#xff0c;复杂的水下环境常常导致传感器输出出现野值噪声&#xff0c;这些噪声会严重影响导航信息融合算法的精度&#xff0c;甚至导致系统发散。传统的卡尔曼滤波算法基于高斯噪声假设&#xff0…...

【C++语言】卡码网语言基础课系列----12. 位置互换

文章目录 练习题目位置互换具体代码实现 小白寄语诗词共勉 练习题目 位置互换 题目描述&#xff1a; 给定一个长度为偶数位的字符串&#xff0c;请编程实现字符串的奇偶位互换。 输入描述&#xff1a; 输入包含多组测试数据。 输入的第一行是一个整数n&#xff0c;表示有测试…...

洛谷的更多功能(不会像其他文章那样复杂且仅支持Edge浏览器)

第一步&#xff1a;下载《洛谷美化 (1).zip》文件夹。 会出现这样的文件夹&#xff1a; 注意&#xff1a;Edge.txt和洛谷前提1.txt是一样的哟&#xff01; 第二步&#xff1a;篡改猴 先打开Edge.txt或者是洛谷前提1.txt文件&#xff0c;打开后复制粘贴到你的Edge浏览器并打开…...

C++编程语言:抽象机制:模板(Bjarne Stroustrup)

目录 23.1 引言和概观(Introduction and Overview) 23.2 一个简单的字符串模板(A Simple String Template) 23.2.1 模板的定义(Defining a Template) 23.2.2 模板实例化(Template Instantiation) 23.3 类型检查(Type Checking) 23.3.1 类型等价(Type Equivalence) …...

女生年薪12万,算不算属于高收入人群

在繁华喧嚣的都市中&#xff0c;我们时常会听到关于收入、高薪与生活质量等话题的讨论。尤其是对于年轻女性而言&#xff0c;薪资水平不仅关乎个人价值的体现&#xff0c;更直接影响到生活质量与未来的规划。那么&#xff0c;女生年薪12万&#xff0c;是否可以被划入高收入人群…...

2181、合并零之间的节点

2181、[中等] 合并零之间的节点 1、问题描述&#xff1a; 给你一个链表的头节点 head &#xff0c;该链表包含由 0 分隔开的一连串整数。链表的 开端 和 末尾 的节点都满足 Node.val 0 。 对于每两个相邻的 0 &#xff0c;请你将它们之间的所有节点合并成一个节点&#xff…...

Immutable设计 SimpleDateFormat DateTimeFormatter

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 理解不可变设计模式&#xff0c;时间format有线程安全要求的注意使用DateTimeFormatter 目录 ImmutableSimpleDateFormat 非线程安全可以synchronized解决&a…...

【网络】传输层协议TCP(重点)

文章目录 1. TCP协议段格式2. 详解TCP2.1 4位首部长度2.2 32位序号与32位确认序号&#xff08;确认应答机制&#xff09;2.3 超时重传机制2.4 连接管理机制(3次握手、4次挥手 3个标志位)2.5 16位窗口大小&#xff08;流量控制&#xff09;2.6 滑动窗口2.7 3个标志位 16位紧急…...

17.[前端开发]Day17-形变-动画-vertical-align

1 transform CSS属性 - transform transform的用法 表示一个或者多个 不用记住全部的函数&#xff0c;只用掌握这四个常用的函数即可 位移 - translate <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta ht…...

LeetCode435周赛T2贪心

题目描述 给你一个由字符 N、S、E 和 W 组成的字符串 s&#xff0c;其中 s[i] 表示在无限网格中的移动操作&#xff1a; N&#xff1a;向北移动 1 个单位。S&#xff1a;向南移动 1 个单位。E&#xff1a;向东移动 1 个单位。W&#xff1a;向西移动 1 个单位。 初始时&#…...

陆游的《诗人苦学说》:从藻绘到“功夫在诗外”(中英双语)mastery lies beyond poetry

陆游的《诗人苦学说》&#xff1a;从藻绘到“功夫在诗外” 今天看万维钢的《万万没想到》一书&#xff0c;看到陆游的功夫在诗外的句子&#xff0c;特意去查找这首诗的原文。故而有此文。 我国学人还往往过分强调“功夫在诗外”这句陆游的名言&#xff0c;认为提升综合素质是一…...

AI模型平台之——ModelScope(魔搭)

ModelScope 是什么&#xff1f; ModelScope 是一个由阿里巴巴达摩院推出的开源模型库和工具集&#xff0c;旨在为开发者提供高效、便捷的机器学习模型和工具。ModelScope 提供了丰富的预训练模型、数据集和工具&#xff0c;支持多种任务和应用场景&#xff0c;如自然语言处理、…...