论文阅读:Realistic Noise Synthesis with Diffusion Models
这篇文章是 2025 AAAI 的一篇工作,主要介绍的是用扩散模型实现对真实噪声的仿真模拟
Abstract
深度去噪模型需要大量来自现实世界的训练数据,而获取这些数据颇具挑战性。当前的噪声合成技术难以准确模拟复杂的噪声分布。我们提出一种新颖的逼真噪声合成扩散器(Realistic Noise Synthesis Diffusor,RNSD)方法,利用扩散模型来应对这些挑战。通过将相机设置编码到一种时间感知的相机条件仿射调制(time - aware camera - conditioned affine modulation,TCCAM)中,RNSD 能够在各种相机条件下生成更逼真的噪声分布。此外,RNSD 集成了一个多尺度内容感知模块(multi - scale content - aware module,MCAM),使得能够生成在多个频率上具有空间相关性的结构化噪声。我们还引入了深度图像先验采样(Deep Image Prior Sampling,DIPS),这是一种基于深度图像先验的可学习采样序列,它在显著加速采样过程的同时,还能保持合成噪声的高质量。大量实验表明,我们的 RNSD 方法在多个指标下合成逼真噪声以及提升图像去噪性能方面,显著优于现有技术。
Introduction
在深度学习中,图像去噪是一个不适定问题,通常需要使用大量的数据对进行有监督训练。在 RGB 色彩空间中,一幅含噪图像 y \mathbf{y} y 可以通过以下公式建模为其无噪版本 s \mathbf{s} s 加上经过图像信号处理(ISP)后的噪声 n \mathbf{n} n:
y = I S P ( s + n ) (1) \mathbf{y} = \mathbf{ISP}(\mathbf{s} + \mathbf{n}) \tag{1} y=ISP(s+n)(1)
与 RAW 格式图像中可线性建模且空间独立的噪声不同,RGB 色彩空间中的噪声呈现出以下特点:
不规则且多样的噪声分布:图像信号处理(ISP)的后处理参数,如自动白平衡(AWB)、色彩校正矩阵(CCM)和伽马校正(GAMMA),由于其依赖于传感器、感光度(ISO)、场景和曝光设置,会导致噪声在不同场景、通道、ISO 等级以及像素间呈现出非均匀的变化。
噪声的结构与空间相关性:与空间相关的 ISP 操作,包括去马赛克、降噪和锐化等,会给噪声引入局部结构模式,从而增强了噪声与信噪比之间的相关性。
大多数数据集依赖多帧平均法,这不仅获取难度大,而且无法提供多样的噪声类型,也不能解决结构性噪声问题。一些方法将噪声建模为高斯白噪声,忽略了真实噪声中存在的空间相关性。基于生成对抗网络(GAN)的方法试图对真实噪声分布进行建模,但由于缺乏严格的似然函数,常常面临不稳定性和模式崩溃问题,导致生成的噪声分布与真实噪声分布不匹配。相比之下,扩散模型因其严格的似然推导,在图像生成方面表现得更为稳定且多样。然而,它们尚未成功应用于合成噪声生成,这可能是由于针对具有空间相关性的复杂噪声分布,其条件设计不够完善。
在本文中,我们引入了逼真噪声合成扩散器(Realistic Noise Synthesize Diffusor, RNSD),这是一种基于扩散模型来合成逼真 RGB 噪声数据的新方法。RNSD 能够借助来自各种公开数据集的干净图像,生成大量与真实世界噪声分布极为相似的噪声图像。RNSD 生成的增强数据,在降噪和图像保真度方面,都显著提升了现有去噪模型的性能。
具体而言,RNSD 使用真实的含噪图像 y \mathbf{y} y 作为初始状态 x 0 \mathbf{x}_0 x0 来构建用于噪声生成的扩散模型。为了有效适应多样的噪声分布,我们提出了一种时间感知相机条件仿射调制(time - aware camera - conditioned affine modulation),称为 TCCAM。该模块对不同的相机设置进行编码,并在采样过程中采用时间自适应条件仿射变换,使得 RNSD 能够合成多样化且逼真的噪声。
此外,我们构建了一个多尺度内容感知模块(multi - scale content - aware module,简称 MCAM),它将干净图像的多尺度引导信息整合到扩散网络中。该模块能有效地引导生成与信号相关且具有空间相关性的噪声。
基于深度图像先验理论,即网络先学习低频成分,然后学习高频成分,我们开发了深度图像先验采样(Deep Image Prior Sampling,DIPS)方法。与去噪扩散隐式模型(DDIM)不同,DIPS 采用基于蒸馏的单步模型和衰减采样,将原本 1000 步的模型缩减至仅 5 步,而准确率仅损失 4%,显著提高了采样效率。
综上所述,我们的主要贡献如下:
- 我们首次提出了一种基于扩散模型的真实噪声数据合成方法 RNSD。
- 我们设计了时间感知相机条件仿射调制(TCCAM),它能够更好地控制生成噪声的分布和强度。
- 通过构建多尺度内容感知模块(MCAM),引入了多频信息的耦合,使得能够生成更逼真的、具有空间相关性的噪声。
- 深度图像先验采样(DIPS):利用网络先学习低频成分再学习高频成分的深度图像先验特性,与 DDIM 相比,DIPS 将 1000 步的模型缩减至仅 5 步,而准确率仅损失 4%,从而提高了采样效率。
- 我们的方法在多个基准测试和指标上取得了领先的成果,显著提升了去噪模型的性能。
Methodology
-
图 2:(a) 通过扩散产生噪声的流程。(b) 我们的时空交叉注意力记忆模块(TCCAM)的流程。
© 我们设计的带有多尺度交叉注意力模块(MCAM)的 UNet 架构 -
我们提出了一种新颖的基于扩散的方法来合成逼真的噪声数据,称为 “基于扩散的真实噪声合成”(RNSD,见图 2(a))。
-
我们的方法以真实含噪图像作为初始条件,并融入了时间感知相机条件仿射调制(TCCAM,见图 2(b))来控制结果。
-
此外,我们引入了一个多尺度内容感知模块(MCAM,见图 2(c)),以引导生成与信号相关的噪声。
-
最后,我们基于深度图像先验(DIPS,Ulyanov、Vedaldi 和 Lempitsky,2018 年)设计了一种可学习的加速采样方法,如算法 2 所示。
Noise Generation via Diffusion
传统的扩散模型通常在无噪声的风格数据上进行训练,这种模型能够从任意高斯噪声分布中采样出目标域图像。相比之下,我们将具有真实噪声分布的图像视为目标域图像。如图 2(a)所示,通过用具有真实噪声分布的数据 y \mathbf{y} y 替换 x 0 \mathbf{x}_0 x0,并经过简单设置,扩散模型就能从任意高斯噪声分布中采样出真实噪声。
具体而言,我们采用去噪扩散概率模型(DDPM,Ho、Jain 和 Abbeel,2020)的概率模型。在正向过程中,使用一个 T T T 步的马尔可夫链来最小化先验概率 q ( x T ∣ x 0 ) q(\mathbf{x}_T|\mathbf{x}_0) q(xT∣x0),也就是将 x 0 \mathbf{x}_0 x0 扩散为具有方差噪声强度 β t \beta_t βt 的纯高斯分布 x T \mathbf{x}_T xT
q ( x T ∣ x 0 ) = ∏ t = 1 T q ( x t ∣ x t − 1 ) q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) (2) \begin{aligned} q(\mathbf{x}_T|\mathbf{x}_0)&=\prod_{t = 1}^{T}q(\mathbf{x}_t|\mathbf{x}_{t - 1})\\ q(\mathbf{x}_t|\mathbf{x}_{t - 1})&=\mathcal{N}(\mathbf{x}_t;\sqrt{1-\beta_t}\mathbf{x}_{t - 1},\beta_t\mathbf{I}) \end{aligned} \tag{2} q(xT∣x0)q(xt∣xt−1)=t=1∏Tq(xt∣xt−1)=N(xt;1−βtxt−1,βtI)(2)
其中, I \mathbf{I} I 是单位协方差矩阵,对于相邻的两个步骤,借助重参数化, x t \mathbf{x}_t xt 可以看作是从先验分布 $q(\mathbf{x}t | \mathbf{x}{t-1}) $ 中采样得到的,该分布被视为由 x t − 1 \mathbf{x}_{t-1} xt−1 和 β t \beta_t βt 形成的高斯分布。
一般的采样过程是通过反向求解高斯马尔可夫链过程得到的,将其视为联合概率分布 p θ ( x 0 : T ) p_{\theta}(\mathbf{x}_{0:T}) pθ(x0:T) ,这可以理解为从上述高斯分布 x T \mathbf{x}_T xT 逐步去噪以获得采样结果 x 0 \mathbf{x}_0 x0。
p θ ( x 0 : T ) = p ( x T ) ∏ t = 1 T p θ ( x t − 1 ∣ x t ) p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t ) , Σ t ) (3) \begin{aligned} p_{\theta}(\mathbf{x}_{0:T})&=p(\mathbf{x}_T)\prod_{t = 1}^{T}p_{\theta}(\mathbf{x}_{t - 1}|\mathbf{x}_t)\\ p_{\theta}(\mathbf{x}_{t - 1}|\mathbf{x}_t)&=\mathcal{N}(\mathbf{x}_{t - 1};\mu_{\theta}(\mathbf{x}_t,t),\Sigma_t) \end{aligned} \tag{3} pθ(x0:T)pθ(xt−1∣xt)=p(xT)t=1∏Tpθ(xt−1∣xt)=N(xt−1;μθ(xt,t),Σt)(3)
其中 μ θ \mu_{\theta} μθ 是由网络估计的后验分布的均值, Σ t \Sigma_{t} Σt 是通过 β t \beta_t βt 正向计算得到的方差。我们引入了额外的信息,即干净图像 s \mathbf{s} s 和相机设置信息 c s \mathbf{cs} cs,以使整个过程更具可控性。从数学角度来看,该过程为:
p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ t , Σ t ) μ t = μ θ ( x t , s , c s , t ) (4) \begin{aligned} p_{\theta}(\mathbf{x}_{t - 1}|\mathbf{x}_t)&=\mathcal{N}(\mathbf{x}_{t - 1};\mu_{\mathbf{t}},\Sigma_t)\\ \mu_{\mathbf{t}}&=\mu_{\theta}(\mathbf{x}_t, s, \mathbf{cs}, t) \end{aligned} \tag{4} pθ(xt−1∣xt)μt=N(xt−1;μt,Σt)=μθ(xt,s,cs,t)(4)
考虑到相机设置( c s \mathbf{cs} cs)信息在不同采样步骤中的影响变化以及 RGB 域中噪声的空间相关性,我们制定了增强的条件机制 —— 时间感知相机条件仿射调制(TCCAM)和多尺度内容感知模块(MCAM),以实现噪声生成模块与基于扩散的图像采样框架之间更紧密的耦合。
TCCAM: Time-aware Camera Conditioned Affine Modulation
- 算法 1:
如算法 1 所示,常规的扩散模型学习网络参数 ϵ θ \epsilon_{\theta} ϵθ,以便在正向过程中从 x 0 \mathbf{x}_0 x0 到 x t \mathbf{x}_t xt 预测添加的噪声分量 ϵ t \epsilon_{t} ϵt。然而,真实的噪声分布由多种因素决定,包括 ISO 增益、快门速度、色温、亮度等。在不区分不同条件下的噪声分布的情况下,基于空间光度变化、ISO 变化和传感器变化,从复杂噪声中学习一种通用分布是具有挑战性的。
根本问题在于,噪声分布在不同条件下差异很大。例如,不同传感器的噪声可能呈现出完全不同的分布。在学习过程中,网络倾向于收敛到数据集的总体期望,从而导致固定模式的噪声模式,这使得生成的噪声与目标噪声之间存在差异。为了解决这个问题,我们引入了算法 1 中所示的五个因素。
c s = ϕ ( i s o , s s , s t , c t , b m ) (5) \mathbf{cs} = \phi (iso, ss, st, ct, bm) \tag{5} cs=ϕ(iso,ss,st,ct,bm)(5)
其中,iso 是感光度(ISO),ss 是快门速度,st 是传感器类型,ct 是色温,bm 是亮度模式。这些因素通过一种编码方法( ϕ \phi ϕ)被嵌入,作为相机设置 c s \mathbf{cs} cs 的特征向量,以控制噪声生成。这种显式先验缩小了网络的学习范围,使其能够逼近更复杂多变的噪声分布。相机设置的影响应该随采样步骤而变化。例如,与图像信号处理器(ISP)高度相关的传感器类型(st)决定了噪声的基本形式,其影响通常与图像内容中的高频信息相关联。当 t t t 从 T T T 到 0 0 0 进行采样,从低频到高频恢复图像内容时,相机设置的影响逐渐增大。为了解决这个问题,我们提出了一种具有动态设置机制的时间感知相机条件仿射调制(TCCAM),其中不同因素的权重随采样步骤而变化。如图 2(b)所示,该过程如下:
γ , β = M L P 3 ( M L P 1 ( s i n u _ p o s ( t ) ) + M L P 2 ( c s ) ) F o u t p u t = γ ∗ F i n p u t + β (6) \begin{aligned} \gamma, \beta&=MLP_3(MLP_1(sinu\_pos(t)) + MLP_2(\mathbf{c}_s))\\ \mathbf{F}_{output}&=\gamma * \mathbf{F}_{input}+\beta \end{aligned} \tag{6} γ,βFoutput=MLP3(MLP1(sinu_pos(t))+MLP2(cs))=γ∗Finput+β(6)
其中,使用多层感知器(MLP)将相机设置与采用正弦位置编码(sinu_pos)的采样步骤一起进行编码,以便在 UNet 的每一层生成仿射参数 β \beta β 和 γ \gamma γ。这种方法通过对 UNet 中每一层的特征 F i n p u t \mathbf{F}_{input} Finput 应用仿射变换,实现了一种动态设置影响机制。
MCAM: Multi-scale Content-aware Module
真实的噪声分布与图像内容有着内在的联系,由于光子捕获和图像信号处理器(ISP)的处理,它在不同亮度区域会有所不同。受周等人(Zhou 等人,2020 年)关于噪声空间频率特性见解的启发,我们提出了一个多尺度内容感知模块(MCAM,见图 2(c)),用于对不同频率下噪声 - 图像的耦合进行建模。从数学角度来看,我们的方法如下:
F x t i = e n c o d e r i ( x t ) F s i = e n c o d e r i ( s ) , i = 1 , 2 , 3 F o i = d e c o d e r i ( C o n c a t ( F i , F s i , F x t i ) ) (7) \begin{aligned} \mathbf{F}_{\mathbf{x}_{t_i}}&=encoder_i(\mathbf{x}_t)\\ \mathbf{F}_{\mathbf{s}_i}&=encoder_i(\mathbf{s}),i = 1,2,3\\ \mathbf{F}_{\mathbf{o}_i}&=decoder_i(Concat(\mathbf{F}_i,\mathbf{F}_{\mathbf{s}_i},\mathbf{F}_{\mathbf{x}_{t_i}})) \end{aligned} \tag{7} FxtiFsiFoi=encoderi(xt)=encoderi(s),i=1,2,3=decoderi(Concat(Fi,Fsi,Fxti))(7)
其中,在编码器的三个下采样阶段,使用对称但不共享权重的编码器从 x t \mathbf{x}_t xt 和干净图像 s \mathbf{s} s 中提取特征。除了在 F i \mathbf{F}_i Fi 和 F x t i \mathbf{F}_{\mathbf{x}_{t_i}} Fxti 之间的标准跳跃连接外,我们在三个上采样阶段融入了 F s i \mathbf{F}_{\mathbf{s}_i} Fsi 的多尺度特征。
Deep Image Prior Sampling(DIPS)
基于深度图像先验论文中的观察,即网络在学习高频噪声之前首先学习干净的低频成分,我们在去噪扩散概率模型(DDPM)采样过程中注意到了类似的模式。反向库尔贝克 - 莱布尼茨散度(AKLD)的下降随着采样从 1000 步推进而显示出越来越大的梯度,这表明基于扩散的真实噪声合成(RNSD)从低频内容过渡到高频噪声,如图 3 所示。由于去噪扩散隐式模型(DDIM)使用均匀的采样步骤,它与我们的噪声估计任务不太契合。因此,正如我们的实验所示,减少采样步骤的数量会导致性能大幅下降。
为了解决这个问题,我们提出了一种新的采样方式:
t = t l a s t + ( T − t l a s t ) e r ( i − 1 S − 1 ) − 1 e r − 1 , i = S : 1 (8) t = t_{last}+(T - t_{last})\frac{e^{r(\frac{i - 1}{S - 1})}-1}{e^{r}-1}, \quad i = S:1 \tag{8} t=tlast+(T−tlast)er−1er(S−1i−1)−1,i=S:1(8)
其中, T T T 是去噪扩散概率模型(DDPM)的采样步骤数, S S S 是基于深度图像先验(DIPS)的采样步骤数。 t l a s t t_{last} tlast 是第 0 步之前的最后一个采样步骤。由于边界效应,最后几步的生成效果较弱,所以当总采样步骤数减少时,将其置于重要步骤中。 r r r 控制采样密度的梯度。对于 T = 1000 T=1000 T=1000 和 S = 10 S=10 S=10,得到采样序列 [ 1000 , 572 , 327 , 186 , 106 , 59 , 33 , 18 , 9 , 4 , 0 ] [1000, 572, 327, 186, 106, 59, 33, 18, 9, 4, 0] [1000,572,327,186,106,59,33,18,9,4,0]。
我们的基础版本,即基本的基于深度图像先验(DIPS - Basic),在保持质量的同时将采样步骤数减少到。此外,我们发现从步到步的低频学习可以有效地由一个单步模型替代,从而能够从更接近的截断步骤而不是进行采样。
我们的基础版本,即基本的基于深度图像先验(DIPS - Basic),在保持质量的同时将采样步骤数 S S S 减少到 30。此外,我们发现从 1000 步到 200 步的低频学习可以有效地由一个单步模型替代,从而能够从更接近的截断步骤 N = 200 N=200 N=200 而不是 T = 1000 T=1000 T=1000 进行采样。其具体公式如下:
∇ θ ∥ ψ θ ( x T , t N ) − ϵ θ ( x N , t N ) ∥ (9) \nabla_{\theta} \left\lVert \psi_{\theta}(x_T, t_N) - \epsilon_{\theta}(x_N, t_N) \right\rVert \tag{9} ∇θ∥ψθ(xT,tN)−ϵθ(xN,tN)∥(9)
其中,单步模型 ψ θ \psi_{\theta} ψθ 是从预训练模型 ϵ θ \epsilon_{\theta} ϵθ 中提炼出来的,这使我们能够降低初始采样位置,并构建确定性映射,从而在保持质量的同时实现 5 步采样。如算法 2 所示,这种方法被称为高级版基于深度图像先验(DIPS - Advanced)。
- 算法 2
相关文章:
论文阅读:Realistic Noise Synthesis with Diffusion Models
这篇文章是 2025 AAAI 的一篇工作,主要介绍的是用扩散模型实现对真实噪声的仿真模拟 Abstract 深度去噪模型需要大量来自现实世界的训练数据,而获取这些数据颇具挑战性。当前的噪声合成技术难以准确模拟复杂的噪声分布。我们提出一种新颖的逼真噪声合成…...
【Linux系统】计算机世界的基石:冯诺依曼架构与操作系统设计
文章目录 一.冯诺依曼体系结构1.1 为什么体系结构中要存在内存?1.2 冯诺依曼瓶颈 二.操作系统2.1 设计目的2.2 系统调用与库函数 一.冯诺依曼体系结构 冯诺依曼体系结构(Von Neumann Architecture)是计算机的基本设计理念之一,由…...
p1044 栈
两种递推细节不同 1,将1和n在序列末尾的情况单独放出来处理,因为dp[0]0; 2,将所有情况统一处理,这种情况就要要求dp[1]1; 这里的n在解题中可以看做是元素数量 思路是,根据出栈最后一个元素,统计它前面的元素数量的输出序列数和…...
x86-64数据传输指令
关于汇编语言一些基础概念的更详细的介绍,可移步MIPS指令集(一)基本操作_mips指令 sw-CSDN博客 该指令集中一个字2字节。 该架构有16个64位寄存器,名字都以%r开头,每个寄存器的最低位字节,低1~2位字节&…...
C++11新特性之lambda表达式
1.介绍 C11引入了lambda表达式。lambda表达式提供一种简洁的方式来定义匿名函数对象,使得在需要临时定义一个函数时非常方便。 2.lambda表达式用法 lambda表达式的基本用法为: [捕获列表](参数列表)->返回类型 { 函数体 …...
51单片机密码锁代码
基于液晶屏外设写的. main.c #include <REGX52.H> #include "LCD1602.h" #include "MatrixKey.h" #include "Sleep.h" long password1234; long resNum0; int status0,res0,k1500; long birth2005; void main(){LCD_Init();LCD_ShowStr…...
如何使用C#的using语句释放资源?什么是IDisposable接口?与垃圾回收有什么关系?
在 C# 中,using语句用于自动释放实现了IDisposable接口的对象所占用的非托管资源,如文件句柄、数据库连接、图形句柄等。其使用方式如下: 基础用法 声明并初始化资源对象:在using关键字后的括号内声明并初始化一个实现了IDisposable接口的对象。使用资源:在using语句块内…...
【Unity3D】实现横版2D游戏——单向平台(简易版)
目录 问题 项目Demo直接使用免费资源:Hero Knight - Pixel Art (Asset Store搜索) 打开Demo场景,进行如下修改,注意Tag是自定义标签SingleDirCollider using System.Collections; using System.Collections.Generic;…...
BW AO/工作簿权限配置
场景: 按事业部配置工作簿权限; 1、创建用户 事务码:SU01,用户主数据的维护,可以创建、修改、删除、锁定、解锁、修改密码等 用户设置详情页 2、创建权限角色 用户的权限菜单是通过权限角色分配来实现的 2.1、自定…...
TensorFlow 示例摄氏度到华氏度的转换(一)
TensorFlow 实现神经网络模型来进行摄氏度到华氏度的转换,可以将其作为一个回归问题来处理。我们可以通过神经网络来拟合这个简单的转换公式。 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 …...
一文讲解JVM中的G1垃圾收集器
接上一篇博文,这篇博文讲下JVM中的G1垃圾收集器 G1在JDK1.7时引入,在JDK9时取代了CMS成为默认的垃圾收集器; G1把Java堆划分为多个大小相等的独立区域Region,每个区域都可以扮演新生代(Eden和Survivor)或老…...
图书管理系统 Axios 源码__获取图书列表
目录 核心功能 源码介绍 1. 获取图书列表 技术要点 适用人群 本项目是一个基于 HTML Bootstrap JavaScript Axios 开发的图书管理系统,可用于 添加、编辑、删除和管理图书信息,适合前端开发者学习 前端交互设计、Axios 数据请求 以及 Bootstrap 样…...
mac和linux传输文件
1、使用scp命令传输 # 上传 wenqiangwq ~ % scp -pr -P 22 nginx.yaml root192.168.1.15:/tmp/ root192.168.1.15s password: nginx.yaml 100% 1736 332.4KB/s 00:00# 下载 wenqiangwq ~ % scp -pr -P 22 root192.168.1.15:/tmp/ngin…...
[CVPR 2024] AnyDoor: Zero-shot Object-level Image Customization
github.com/ali-vilab/AnyDoor.写在前面: 【论文速读】按照#论文十问#提炼出论文核心知识点,方便相关科研工作者快速掌握论文内容。过程中并不对论文相关内容进行翻译。博主认为翻译难免会损坏论文的原本含义,也鼓励诸位入门级科研人员阅读文…...
(动态规划路径基础 最小路径和)leetcode 64
视频教程 1.初始化dp数组,初始化边界 2、从[1行到n-1行][1列到m-1列]依次赋值 #include<vector> #include<algorithm> #include <iostream>using namespace std; int main() {vector<vector<int>> grid { {1,3,1},{1,5,1},{4,2,1}…...
跨组织环境下 MQTT 桥接架构的评估
论文标题 中文标题: 跨组织环境下 MQTT 桥接架构的评估 英文标题: Evaluation of MQTT Bridge Architectures in a Cross-Organizational Context 作者信息 Keila Lima, Tosin Daniel Oyetoyan, Rogardt Heldal, Wilhelm Hasselbring Western Norway …...
2025年1月22日(网络编程 udp)
系统信息: ubuntu 16.04LTS Raspberry Pi Zero 2W 系统版本: 2024-10-22-raspios-bullseye-armhf Python 版本:Python 3.9.2 已安装 pip3 支持拍摄 1080p 30 (1092*1080), 720p 60 (1280*720), 60/90 (640*480) 已安装 vim 已安装 git 学习…...
基于 STM32 的智能电梯控制系统
1. 引言 随着城市化进程的加速,高层建筑日益增多,电梯作为垂直交通工具的重要性愈发凸显。传统电梯控制系统在运行效率、安全性和智能化程度上已难以满足现代需求。智能电梯控制系统能够实时监测电梯的运行状态、乘客需求,并根据这些信息优化…...
使用 Docker(Podman) 部署 MongoDB 数据库及使用详解
在现代开发环境中,容器化技术(如 Docker 和 Podman)已成为部署和管理应用程序的标准方式。本文将详细介绍如何使用 Podman/Docker 部署 MongoDB 数据库,并确保其他应用程序容器能够通过 Docker 网络成功连接到 MongoDB。我们将逐步…...
npm 和 pip 安装中常见问题总结
安装路径的疑惑:NPM 和 PIP 的安装机制 NPM 安装路径规则: 依赖安装在项目目录下: 当你运行 npm install --save-dev jest,它会在当前目录(例如 F:\)下创建一个 node_modules 文件夹,把 jest 安…...
golang面试题
目录 go版本新增功能 Go 1.11 Go 1.18 Go 1.5 go关键字 : 1. 用于声明的关键字 2. 控制流关键字 3. 包相关关键字 4. 并发相关关键字 5. 异常处理关键字 6. 接口和类型断言关键字 go数据类型: 复合数据类型 引用数据类型 接口类型 GC垃…...
基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 .…...
Install Python
目录 1.Install Python 1.安装Python 3 2.在Windows上安装Python 3.在Mac上安装Python 4.在Linux上安装Python 5.运行Python 2.Python解释器 1.CPython 2.IPython 3.PyPy 4.Jython 5.IronPython 6.小结 1.Install Python 因为Python是跨平台的,它可以…...
云计算部署模式全面解析
目录 引言公有云私有云混合云三种部署模式的对比选择建议未来趋势结语 1. 引言 随着云计算技术的快速发展,企业在选择云部署模式时面临着多种选择。本文将深入探讨云计算的三种主要部署模式:公有云、私有云和混合云,帮助读者全面了解它们的特点、优势及适用场景。 © iv…...
tomcat核心组件及原理概述
目录 1. tomcat概述 1.1 概念 1.2 官网地址 2. 基本使用 2.1下载 3. 整体架构 3.1 核心组件 3.2 从web.xml配置和模块对应角度 3.3 如何处理请求 4. 配置JVM参数 5. 附录 1. tomcat概述 1.1 概念 什么是tomcat Tomcat是一个开源、免费、轻量级的Web服务器。 Tomca…...
GIS教程:全国数码商城系统
文章目录 注册高德地图API普通网页中测试地图加载地图添加标记地图配置点标记 Marker添加弹框创建vue项目并添加高德地图创建项目加载高德地图项目首页布局封装axios和配置代理服务器获取城市热门信息获取城市区县信息获取区县商城信息获取指定城市区县的经纬度坐标将地图缩放到…...
Level DB --- table.format
table.format是Level DB中table序列化、反序列化重要的辅助类。它用来定义序列化、反序列化的核心结构体和操作实现。 BlockHandle table.format中的BlockHandle类主要用来记录当前block在总的序列化中的offset位置,以及当前block的size,这里面的Block…...
《编写可读代码的艺术》读书笔记
1. 写在前面 借着春节放假的几天, 读了下《编写可读代码的艺术》这本书, 这本书不是很长,主要关注代码的一些编写细节,比如方法命名,函数命名,语句组织,任务分解等, 旨在让写的代码…...
(9)下:学习与验证 linux 里的 epoll 对象里的 EPOLLIN、 EPOLLHUP 与 EPOLLRDHUP 的不同。小例子的实验
(4)本实验代码的蓝本,是伊圣雨老师里的课本里的代码,略加改动而来的。 以下是 服务器端的代码: 每当收到客户端的报文时,就测试一下对应的 epoll 事件里的事件标志,不读取报文内容,…...
MySQL基础-多表查询
多表查询-多表关系 多表查询-概述 例如执行下行sql语句就会出现笛卡尔积: select *from emp,dept; --消除笛卡尔积 select * from emp,dept where emp.dept_id dept.id; 多表查询-查询分类 多表查询-连接查询-内连接 --内连接演示 --1.查询每一个员工的姓名,及关…...
RK3568 opencv播放视频
文章目录 一、opencv相关视频播放类1. `cv::VideoCapture` 类主要构造方法:主要方法:2. 视频播放基本流程代码示例:3. 获取和设置视频属性4. 结合 FFmpeg 使用5. OpenCV 视频播放的局限性6. 结合 Qt 实现更高级的视频播放总结二、QT中的代码实现一、opencv相关视频播放类 在…...
C++中的类型转换
文章目录 一、概述二、隐式类型转换(Implicit Conversion)三、显式类型转换(Explicit Conversion)四、C 风格类型转换 一、概述 C 提供了多种类型转换(Type Conversion)方式,以便在不同类型的数…...
day7手机拍照装备
对焦对不上:1、光太暗;2、离太近;3、颜色太单一没有区分点 滤镜可以后期P 渐变灰滤镜:均衡色彩,暗的地方亮一些,亮的地方暗一些 中灰滤镜:减少光差 手机支架:最基本70cm即可 手…...
Joplin 插件在Vscode中无法显示图片
1.问题 在vscode里面装好joplin插件之后,无法显示图片内容。 粘贴的图片可以再vscode中显示,无法再joplin客户端显示 2.解决方法 这种情况是因为和vscode自带的MD编辑器的预览模式有冲突,或者没用通过专用方式上传图片。 方法一ÿ…...
ReentrantReadWriteLock源码分析
文章目录 概述一、状态位设计二、读锁三、锁降级机制四、写锁总结 概述 ReentrantReadWriteLock(读写锁)是对于ReentranLock(可重入锁)的一种改进,在可重入锁的基础上,进行了读写分离。适用于读多写少的场景…...
ChatGPT-4o和ChatGPT-4o mini的差异点
在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4o Mini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式࿰…...
小程序设计和开发:什么是竞品分析,如何进行竞品分析
一、竞品分析的定义 竞品分析是指对竞争对手的产品进行深入研究和比较,以了解市场动态、发现自身产品的优势和不足,并为产品的设计、开发和营销策略提供参考依据。在小程序设计和开发中,竞品分析可以帮助开发者了解同类型小程序的功能、用户体…...
计算机网络之计算机网络的分类
计算机网络可以根据不同的角度进行分类,以下是几种常见的分类方式: 1. 按照规模和范围: 局域网(LAN,Local Area Network):覆盖较小范围(例如一个建筑物或校园)…...
什么是门控循环单元?
一、概念 门控循环单元(Gated Recurrent Unit,GRU)是一种改进的循环神经网络(RNN),由Cho等人在2014年提出。GRU是LSTM的简化版本,通过减少门的数量和简化结构,保留了LSTM的长时间依赖…...
ESP32-c3实现获取土壤湿度(ADC模拟量)
1硬件实物图 2引脚定义 3使用说明 4实例代码 // 定义土壤湿度传感器连接的模拟输入引脚 const int soilMoisturePin 2; // 假设连接到GPIO2void setup() {// 初始化串口通信Serial.begin(115200); }void loop() {// 读取土壤湿度传感器的模拟值int sensorValue analogRead…...
获取snmp oid的小方法1(随手记)
snmpwalk遍历设备的mib # snmpwalk -v <SNMP version> -c <community-id> <IP> . snmpwalk -v 2c -c test 192.168.100.201 .根据获取的值,找到某一个想要的值的oid # SNMPv2-MIB::sysName.0 STRING: test1 [rootzabbix01 fonts]# snmpwalk -v…...
【C++篇】哈希表
目录 一,哈希概念 1.1,直接定址法 1.2,哈希冲突 1.3,负载因子 二,哈希函数 2.1,除法散列法 /除留余数法 2.2,乘法散列法 2.3,全域散列法 三,处理哈希冲突 3.1&…...
Nginx开发01:基础配置
一、下载和启动 1.下载、使用命令行启动:Web开发:web服务器-Nginx的基础介绍(含AI文稿)_nginx作为web服务器,可以承担哪些基本任务-CSDN博客 注意:我配置的端口是81 2.测试连接是否正常 访问Welcome to nginx! 如果…...
mysqldump+-binlog增量备份
注意:二进制文件删除必须使用help purge 不可用rm -f 会崩 一、概念 增量备份:仅备份上次备份以后变化的数据 差异备份:仅备份上次完全备份以后变化的数据 完全备份:顾名思义,将数据完全备份 其中,…...
hive:数据导入,数据导出,加载数据到Hive,复制表结构
hive不建议用insert,因为Hive是建立在Hadoop之上的数据仓库工具,主要用于批处理和大数据分析,而不是为OLTP(在线事务处理)操作设计的。INSERT操作会非常慢 数据导入 命令行界面:建一个文件 查询数据>>复制>>粘贴到新…...
【工欲善其事】利用 DeepSeek 实现复杂 Git 操作:从原项目剥离出子版本树并同步到新的代码库中
文章目录 利用 DeepSeek 实现复杂 Git 操作1 背景介绍2 需求描述3 思路分析4 实现过程4.1 第一次需求确认4.2 第二次需求确认4.3 第三次需求确认4.4 V3 模型:中间结果的处理4.5 方案验证,首战告捷 5 总结复盘 利用 DeepSeek 实现复杂 Git 操作 1 背景介绍…...
mac 手工安装OpenSSL 3.4.0
如果你希望继续安装 openssl-3.4.0 而不是降级到 3.1.1,可以尝试以下解决方案。根据你提供的错误信息,问题可能出在测试阶段(make test),我们可以尝试跳过测试或修复测试失败的原因。 --- ### **解决方案:…...
构建一个数据分析Agent:提升分析效率的实践
在上一篇文章中,我们讨论了如何构建一个智能客服Agent。今天,我想分享另一个实际项目:如何构建一个数据分析Agent。这个项目源于我们一个金融客户的真实需求 - 提升数据分析效率,加快决策速度。 从分析师的痛点说起 记得和分析师团队交流时的场景: 小张ÿ…...
【SRC排名】安全应急响应中心SRC上榜记录
2023年 新氧第三 https://security.soyoung.com/top 合合第四 https://security.intsig.com/index.php?m&chall&aindex 2024年 好未来第一 https://src.100tal.com/index.php?m&chall&aindex(官网是总榜,年榜只有海报)…...
截止到2025年2月1日,Linux的Wayland还有哪些问题是需要解决的?
截至2025年2月1日,Wayland需要解决的核心问题可按权重从高到低排序如下: 1. 屏幕共享与远程桌面的完整支持(权重:★★★★★) 问题:企业场景(如 腾讯会议)、开发者远程调试依赖稳定的屏幕共享功能。当前Wayland依赖PipeWire和XWayland,存在权限管理复杂、多显示器选择…...