当前位置: 首页 > news >正文

什么是门控循环单元?

一、概念

        门控循环单元(Gated Recurrent Unit,GRU)是一种改进的循环神经网络(RNN),由Cho等人在2014年提出。GRU是LSTM的简化版本,通过减少门的数量和简化结构,保留了LSTM的长时间依赖捕捉能力,同时提高了计算效率。GRU通过引入两个门(重置门和更新门)来控制信息的流动。与LSTM不同,GRU没有单独的细胞状态,而是将隐藏状态直接作为信息传递的载体,因此结构更简单,计算效率更高。

二、核心算法

        令x_{t}为时间步 t 的输入向量,h_{t-1}为前一个时间步的隐藏状态向量,h_{t}为当前时间步的隐藏状态向量,r_{t}为当前时间步的重置门向量,z_{t}为当前时间步的更新门向量,\bar{h_{t}}为当前时间步的候选隐藏状态向量,W_{r},W_{z},W_{h}分别为各门的权重矩阵,b_{r},b_{z},b_{h}为偏置向量,\sigma为sigmoid激活函数,tanh为tanh激活函数,*为元素级乘法。

1、重置门

        重置门控制前一个时间步的隐藏状态对当前时间步的影响。通过sigmoid激活函数,重置门的输出在0到1之间,表示前一个隐藏状态元素被保留的比例。

r_{t} = \sigma(W_{r} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{r})

2、更新门

        更新门控制前一个时间步的隐藏状态和当前时间步的候选隐藏状态的混合比例。通过sigmoid激活函数,更新门的输出在0到1之间,表示前一个隐藏状态元素被保留的比例。

z_{t} = \sigma(W_{z} \cdot \left [ h_{t-1}, x_{t} \right ] + b_{z})

3、候选隐藏状态

        候选隐藏状态结合当前输入和前一个时间步的隐藏状态生成。重置门的输出与前一个隐藏状态相乘,表示保留的旧信息。然后与当前输入一起通过tanh激活函数生成候选隐藏状态。

\bar{h_{t}} = tanh(W_{h} \cdot \left [ r_{t} \ast h_{t-1}, x_{t} \right ] + b_{h})

4、隐藏状态更新

        隐藏状态结合更新门的结果进行更新。更新门的输出与前一个隐藏状态相乘,表示保留的旧信息。更新门的补数与候选隐藏状态相乘,表示写入的新信息。两者相加得到当前时间步的隐藏状态。

h_{t} = (1-z_{t}) \ast h_{t-1} + z_{t} \ast \bar{h_{t}}

三、python实现

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt# 设置随机种子
torch.manual_seed(0)
np.random.seed(0)# 生成正弦波数据
timesteps = 1000
sin_wave = np.array([np.sin(2 * np.pi * i / timesteps) for i in range(timesteps)])# 创建数据集
def create_dataset(data, time_step=1):dataX, dataY = [], []for i in range(len(data) - time_step - 1):a = data[i:(i + time_step)]dataX.append(a)dataY.append(data[i + time_step])return np.array(dataX), np.array(dataY)time_step = 10
X, y = create_dataset(sin_wave, time_step)# 数据预处理
X = X.reshape(X.shape[0], time_step, 1)
y = y.reshape(-1, 1)# 转换为Tensor
X = torch.tensor(X, dtype=torch.float32)
y = torch.tensor(y, dtype=torch.float32)# 划分训练集和测试集
train_size = int(len(X) * 0.7)
test_size = len(X) - train_size
trainX, testX = X[:train_size], X[train_size:]
trainY, testY = y[:train_size], y[train_size:]# 定义RNN模型
class GRUModel(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(GRUModel, self).__init__()self.hidden_size = hidden_sizeself.gru = nn.GRU(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):h0 = torch.zeros(1, x.size(0), self.hidden_size)out, _ = self.gru(x, h0)out = self.fc(out[:, -1, :])return outinput_size = 1
hidden_size = 50
output_size = 1
model = GRUModel(input_size, hidden_size, output_size)# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)# 训练模型
num_epochs = 50
for epoch in range(num_epochs):model.train()optimizer.zero_grad()outputs = model(trainX)loss = criterion(outputs, trainY)loss.backward()optimizer.step()if (epoch + 1) % 10 == 0:print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')# 预测
model.eval()
train_predict = model(trainX)
test_predict = model(testX)
train_predict = train_predict.detach().numpy()
test_predict = test_predict.detach().numpy()# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(sin_wave, label='Original Data')
plt.plot(np.arange(time_step, time_step + len(train_predict)), train_predict, label='Training Predict')
plt.plot(np.arange(time_step + len(train_predict), time_step + len(train_predict) + len(test_predict)), test_predict, label='Test Predict')
plt.legend()
plt.show()

四、总结

        GRU的结构比LSTM更简单,只有两个门(重置门和更新门),没有单独的细胞状态。这使得GRU的计算复杂度较低,训练和推理速度更快。通过引入重置门和更新门,GRU也有效地解决了标准RNN在处理长序列时的梯度消失和梯度爆炸问题。然而,在需要更精细的门控制和信息流动的任务中,LSTM的性能可能优于GRU。因此在我们实际的建模过程中,可以根据数据特点选择合适的RNN系列模型,并没有哪个模型能在所有任务中都具有优势。

相关文章:

什么是门控循环单元?

一、概念 门控循环单元(Gated Recurrent Unit,GRU)是一种改进的循环神经网络(RNN),由Cho等人在2014年提出。GRU是LSTM的简化版本,通过减少门的数量和简化结构,保留了LSTM的长时间依赖…...

ESP32-c3实现获取土壤湿度(ADC模拟量)

1硬件实物图 2引脚定义 3使用说明 4实例代码 // 定义土壤湿度传感器连接的模拟输入引脚 const int soilMoisturePin 2; // 假设连接到GPIO2void setup() {// 初始化串口通信Serial.begin(115200); }void loop() {// 读取土壤湿度传感器的模拟值int sensorValue analogRead…...

获取snmp oid的小方法1(随手记)

snmpwalk遍历设备的mib # snmpwalk -v <SNMP version> -c <community-id> <IP> . snmpwalk -v 2c -c test 192.168.100.201 .根据获取的值&#xff0c;找到某一个想要的值的oid # SNMPv2-MIB::sysName.0 STRING: test1 [rootzabbix01 fonts]# snmpwalk -v…...

【C++篇】哈希表

目录 一&#xff0c;哈希概念 1.1&#xff0c;直接定址法 1.2&#xff0c;哈希冲突 1.3&#xff0c;负载因子 二&#xff0c;哈希函数 2.1&#xff0c;除法散列法 /除留余数法 2.2&#xff0c;乘法散列法 2.3&#xff0c;全域散列法 三&#xff0c;处理哈希冲突 3.1&…...

Nginx开发01:基础配置

一、下载和启动 1.下载、使用命令行启动&#xff1a;Web开发&#xff1a;web服务器-Nginx的基础介绍&#xff08;含AI文稿&#xff09;_nginx作为web服务器,可以承担哪些基本任务-CSDN博客 注意&#xff1a;我配置的端口是81 2.测试连接是否正常 访问Welcome to nginx! 如果…...

mysqldump+-binlog增量备份

注意&#xff1a;二进制文件删除必须使用help purge 不可用rm -f 会崩 一、概念 增量备份&#xff1a;仅备份上次备份以后变化的数据 差异备份&#xff1a;仅备份上次完全备份以后变化的数据 完全备份&#xff1a;顾名思义&#xff0c;将数据完全备份 其中&#xff0c;…...

hive:数据导入,数据导出,加载数据到Hive,复制表结构

hive不建议用insert,因为Hive是建立在Hadoop之上的数据仓库工具&#xff0c;主要用于批处理和大数据分析&#xff0c;而不是为OLTP&#xff08;在线事务处理&#xff09;操作设计的。INSERT操作会非常慢 数据导入 命令行界面:建一个文件 查询数据>>复制>>粘贴到新…...

【工欲善其事】利用 DeepSeek 实现复杂 Git 操作:从原项目剥离出子版本树并同步到新的代码库中

文章目录 利用 DeepSeek 实现复杂 Git 操作1 背景介绍2 需求描述3 思路分析4 实现过程4.1 第一次需求确认4.2 第二次需求确认4.3 第三次需求确认4.4 V3 模型&#xff1a;中间结果的处理4.5 方案验证&#xff0c;首战告捷 5 总结复盘 利用 DeepSeek 实现复杂 Git 操作 1 背景介绍…...

mac 手工安装OpenSSL 3.4.0

如果你希望继续安装 openssl-3.4.0 而不是降级到 3.1.1&#xff0c;可以尝试以下解决方案。根据你提供的错误信息&#xff0c;问题可能出在测试阶段&#xff08;make test&#xff09;&#xff0c;我们可以尝试跳过测试或修复测试失败的原因。 --- ### **解决方案&#xff1a…...

构建一个数据分析Agent:提升分析效率的实践

在上一篇文章中,我们讨论了如何构建一个智能客服Agent。今天,我想分享另一个实际项目:如何构建一个数据分析Agent。这个项目源于我们一个金融客户的真实需求 - 提升数据分析效率,加快决策速度。 从分析师的痛点说起 记得和分析师团队交流时的场景&#xff1a; 小张&#xff…...

【SRC排名】安全应急响应中心SRC上榜记录

2023年 新氧第三 https://security.soyoung.com/top 合合第四 https://security.intsig.com/index.php?m&chall&aindex 2024年 好未来第一 https://src.100tal.com/index.php?m&chall&aindex&#xff08;官网是总榜&#xff0c;年榜只有海报&#xff09;…...

截止到2025年2月1日,Linux的Wayland还有哪些问题是需要解决的?

截至2025年2月1日,Wayland需要解决的核心问题可按权重从高到低排序如下: 1. 屏幕共享与远程桌面的完整支持(权重:★★★★★) 问题:企业场景(如 腾讯会议)、开发者远程调试依赖稳定的屏幕共享功能。当前Wayland依赖PipeWire和XWayland,存在权限管理复杂、多显示器选择…...

TCP编程

1.socket函数 int socket(int domain, int type, int protocol); 头文件&#xff1a;include<sys/types.h>&#xff0c;include<sys/socket.h> 参数 int domain AF_INET: IPv4 Internet protocols AF_INET6: IPv6 Internet protocols AF_UNIX, AF_LOCAL : Local…...

Java泛型深度解析(JDK23)

第一章 泛型革命 1.1 类型安全的进化史 前泛型时代的类型转换隐患 代码的血泪史&#xff08;Java 1.4版示例&#xff09;&#xff1a; List rawList new ArrayList(); rawList.add("Java"); rawList.add(Integer.valueOf(42)); // 编译通过// 灾难在运行时爆发…...

【JavaEE进阶】图书管理系统 - 壹

目录 &#x1f332;序言 &#x1f334;前端代码的引入 &#x1f38b;约定前后端交互接口 &#x1f6a9;接口定义 &#x1f343;后端服务器代码实现 &#x1f6a9;登录接口 &#x1f6a9;图书列表接口 &#x1f384;前端代码实现 &#x1f6a9;登录页面 &#x1f6a9;…...

搜索旋转排序数组(二分查找)

测试链接&#xff1a;https://leetcode.cn/problems/search-in-rotated-sorted-array/https://leetcode.cn/problems/search-in-rotated-sorted-array/https://leetcode.cn/problems/search-in-rotated-sorted-array/ 问题描述 假设我们有一个旋转排序的数组&#xff0c;这个…...

STM32 TIM定时器配置

TIM简介 TIM&#xff08;Timer&#xff09;定时器 定时器可以对输入的时钟进行计数&#xff0c;并在计数值达到设定值时触发中断 16位计数器、预分频器、自动重装寄存器的时基单元&#xff0c;在72MHz计数时钟下可以实现最大59.65s的定时 不仅具备基本的定时中断功能&#xff…...

AI开发之 ——Anaconda 介绍

Anaconda 是什么&#xff1f; 在这里插入图片描述 一句话&#xff1a;Anaconda 是Python 库和环境便捷管理的平台。 Anaconda 是数据科学和 AI 领域的工具&#xff0c;通过集成常用库和工具&#xff0c;简化了环境管理和包安装&#xff0c;特别适合初学者和需要快速上手的开…...

Uber损失(Huber Loss):从均方误差到绝对误差的完美过渡

前言 在机器学习的世界里,损失函数就像是你在迷宫中的导航系统,它决定了你到底能否顺利找到出口,而出口的大小就代表着模型的表现。而在这么多的“导航系统”中,Huber损失(你可以叫它“Uber损失”,我觉得这名字挺有意思的,能不能打车到一个更好的模型呢?)凭借其独特的…...

【Arxiv 大模型最新进展】TOOLGEN:探索Agent工具调用新范式

【Arxiv 大模型最新进展】TOOLGEN&#xff1a;探索Agent工具调用新范式 文章目录 【Arxiv 大模型最新进展】TOOLGEN&#xff1a;探索Agent工具调用新范式研究框图方法详解 作者&#xff1a;Renxi Wang, Xudong Han 等 单位&#xff1a;LibrAI, Mohamed bin Zayed University o…...

41【文件名的编码规则】

我们在学习的过程中&#xff0c;写出数据或读取数据时需要考虑编码类型 火山采用&#xff1a;UTF-16 易语言采用&#xff1a;GBK php采用&#xff1a;UTF-8 那么我们写出的文件名应该是何种编码的&#xff1f;比如火山程序向本地写出一个“测试.txt”&#xff0c;理论上这个“测…...

Linux命令入门

Linux命令入门 ls命令 ls命令的作用是列出目录下的内容&#xff0c;语法细节如下: 1s[-a -l -h] [Linux路径] -a -l -h是可选的选项 Linux路径是此命令可选的参数 当不使用选项和参数,直接使用ls命令本体,表示:以平铺形式,列出当前工作目录下的内容 ls命令的选项 -a -a选项&a…...

如何用函数去计算x年x月x日是(C#)

如何用函数去计算x年x月x日是? 由于现在人工智能的普及,我们往往会用计算机去算,或者去记录事情 1.计算某一年某一个月有多少天 2.计算某年某月某日是周几 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threadin…...

29.Word:公司本财年的年度报告【13】

目录 NO1.2.3.4 NO5.6.7​ NO8.9.10​ NO1.2.3.4 另存为F12&#xff1a;考生文件夹&#xff1a;Word.docx选中绿色标记的标题文本→样式对话框→单击右键→点击样式对话框→单击右键→修改→所有脚本→颜色/字体/名称→边框&#xff1a;0.5磅、黑色、单线条&#xff1a;点…...

Flutter常用Widget小部件

小部件Widget是一个类&#xff0c;按照继承方式&#xff0c;分为无状态的StatelessWidget和有状态的StatefulWidget。 这里先创建一个简单的无状态的Text小部件。 Text文本Widget 文件&#xff1a;lib/app/app.dart。 import package:flutter/material.dart;class App exte…...

高可用 Keepalived 服务部署流程

一、配置文件 vim /etc/keepalived/keepalived.confGLOBAL CONFIGURATION --- 全局配置部分VRRPD CONFIGURATION --- VRRP协议配置部分LVS CONFIGURATION --- LVS服务管理配置部分[rootlb01 ~]# cat /etc/keepalived/keepalived.…...

网站结构优化:加速搜索引擎收录的关键

本文来自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/9.html 网站结构优化对于加速搜索引擎收录至关重要。以下是一些关键策略&#xff0c;旨在通过优化网站结构来提高搜索引擎的抓取效率和收录速度&#xff1a; 一、合理规划网站架构 采用扁…...

【深度学习】softmax回归的从零开始实现

softmax回归的从零开始实现 (就像我们从零开始实现线性回归一样&#xff0c;)我们认为softmax回归也是重要的基础&#xff0c;因此(应该知道实现softmax回归的细节)。 本节我们将使用Fashion-MNIST数据集&#xff0c;并设置数据迭代器的批量大小为256。 import torch from IP…...

AMS仿真方法

1. 准备好verilog文件。并且准备一份.vc文件&#xff0c;将所有的verilog file的路径全部写在里面。 2. 将verilog顶层导入到virtuoso中&#xff1a; 注意.v只要引入顶层即可。不需要全部引入。实际上顶层里面只要包含端口即可&#xff0c;即便是空的也没事。 引入时会报warni…...

多模态论文笔记——ViViT

大家好&#xff0c;这里是好评笔记&#xff0c;公主号&#xff1a;Goodnote&#xff0c;专栏文章私信限时Free。本文详细解读多模态论文《ViViT: A Video Vision Transformer》&#xff0c;2021由google 提出用于视频处理的视觉 Transformer 模型&#xff0c;在视频多模态领域有…...

Flink2支持提交StreamGraph到Flink集群

最近研究Flink源码的时候&#xff0c;发现Flink已经支持提交StreamGraph到集群了&#xff0c;替换掉了原来的提交JobGraph。 新增ExecutionPlan接口&#xff0c;将JobGraph和StreamGraph作为实现。 Flink集群Dispatcher也进行了修改&#xff0c;从JobGraph改成了接口Executio…...

机器学习优化算法:从梯度下降到Adam及其变种

机器学习优化算法&#xff1a;从梯度下降到Adam及其变种 引言 最近deepseek的爆火已然说明&#xff0c;在机器学习领域&#xff0c;优化算法是模型训练的核心驱动力。无论是简单的线性回归还是复杂的深度神经网络&#xff0c;优化算法的选择直接影响模型的收敛速度、泛化性能…...

2024具身智能模型汇总:从训练数据、动作预测、训练方法到Robotics VLM、VLA

前言 本文一开始是属于此文《GRAPE——RLAIF微调VLA模型&#xff1a;通过偏好对齐提升机器人策略的泛化能力》的前言内容之一(该文发布于23年12月底)&#xff0c;但考虑到其重要性&#xff0c;加之那么大一张表格 看下来 阅读体验较差&#xff0c;故抽出取来独立成文且拆分之 …...

基于Spring Security 6的OAuth2 系列之七 - 授权服务器--自定义数据库客户端信息

之所以想写这一系列&#xff0c;是因为之前工作过程中使用Spring Security OAuth2搭建了网关和授权服务器&#xff0c;但当时基于spring-boot 2.3.x&#xff0c;其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0&#xff0c;结果一看Spring Security也升级…...

当WebGIS遇到智慧文旅-以长沙市不绕路旅游攻略为例

目录 前言 一、旅游数据组织 1、旅游景点信息 2、路线时间推荐 二、WebGIS可视化实现 1、态势标绘实现 2、相关位置展示 三、成果展示 1、第一天旅游路线 2、第二天旅游路线 3、第三天旅游路线 4、交通、订票、住宿指南 四、总结 前言 随着信息技术的飞速发展&…...

浅析CDN安全策略防范

CDN&#xff08;内容分发网络&#xff09;信息安全策略是保障内容分发网络在提供高效服务的同时&#xff0c;确保数据传输安全、防止恶意攻击和保护用户隐私的重要手段。以下从多个方面详细介绍CDN的信息安全策略&#xff1a; 1. 数据加密 数据加密是CDN信息安全策略的核心之…...

Python安居客二手小区数据爬取(2025年)

目录 2025年安居客二手小区数据爬取观察目标网页观察详情页数据准备工作&#xff1a;安装装备就像打游戏代码详解&#xff1a;每行代码都是你的小兵完整代码大放送爬取结果 2025年安居客二手小区数据爬取 这段时间需要爬取安居客二手小区数据&#xff0c;看了一下相关教程基本…...

Python爬虫获取custom-1688自定义API操作接口

一、引言 在电子商务领域&#xff0c;1688作为国内领先的B2B平台&#xff0c;提供了丰富的API接口&#xff0c;允许开发者获取商品信息、店铺信息等。其中&#xff0c;custom接口允许开发者进行自定义操作&#xff0c;获取特定的数据。本文将详细介绍如何使用Python调用1688的…...

CAPL与外部接口

CAPL与外部接口 目录 CAPL与外部接口1. 引言2. CAPL与C/C++交互2.1 CAPL与C/C++交互简介2.2 CAPL与C/C++交互实现3. CAPL与Python交互3.1 CAPL与Python交互简介3.2 CAPL与Python交互实现4. CAPL与MATLAB交互4.1 CAPL与MATLAB交互简介4.2 CAPL与MATLAB交互实现5. 案例说明5.1 案…...

解析与使用 Apache HttpClient 进行网络请求和数据抓取

目录 1. 什么是 HttpClient&#xff1f; 2. 基本使用 3. 使用 HttpClient 爬取腾讯天气的数据 4. 爬取拉勾招聘网站的职位信息 5. 总结 前言 Apache HttpClient 是 Apache 提供的一个用于处理 HTTP 请求和响应的工具类库。它提供了一种便捷、功能强大的方式来发送 HTTP 请…...

【go语言】结构体

一、type 关键字的用法 在 go 语言中&#xff0c;type 关键字用于定义新的类型&#xff0c;他可以用来定义基础类型、结构体类型、接口类型、函数类型等。通过 type 关键字&#xff0c;我们可以为现有类型创建新的类型别名或者自定义新的类型。 1.1 类型别名 使用 type 可以为…...

Kotlin 委托详解

Kotlin 委托详解 引言 Kotlin 作为一种现代化的编程语言&#xff0c;在 Android 开发等领域得到了广泛的应用。在 Kotlin 中&#xff0c;委托&#xff08;Delegation&#xff09;是一种强大的特性&#xff0c;它可以让我们以更简洁的方式实现代码的复用和扩展。本文将详细解析…...

用QT做一个网络调试助手

文章目录 前言一、TCP网络调试助手介绍1. 项目概述2. 开发流程3. TCP服务器的关键流程4. TCP客户端的关键流程 二、实现UI界面1. 服务器界面2. 客户端界面 三、实现代码框架1. 服务器代码1.1 初始化服务器地址1.2 开始监听1.3 与客户端连接1.4 接收客户端信息1.5 判断客户端状态…...

Qt 5.14.2 学习记录 —— 이십이 QSS

文章目录 1、概念2、基本语法3、给控件应用QSS设置4、选择器1、子控件选择器2、伪类选择器 5、样式属性box model 6、实例7、登录界面 1、概念 参考了CSS&#xff0c;都是对界面的样式进行设置&#xff0c;不过功能不如CSS强大。 可通过QSS设置样式&#xff0c;也可通过C代码…...

HTML 符号详解

HTML 符号详解 引言 HTML(超文本标记语言)符号是HTML文档中用来表示特殊字符的标记。这些符号在日常网页设计和开发中扮演着重要角色,特别是在需要显示版权、商标、货币符号等特殊字符时。本文将详细介绍HTML符号的用法、类型以及如何在HTML文档中插入这些符号。 HTML符号…...

第十二章 I 开头的术语

文章目录 第十二章 I 开头的术语以 I 开头的术语被识别 (identified by)识别关系 (identifying relationship)身份 (identity)idkey隐式全局引用 (implicit global reference)隐含命名空间 (implied namespace)包含文件 (include file)传入锁 (incoming lock) 索引 (index)索引…...

用XAMPP安装PHP环境(Window系统)

视频教程 BV1jA411v791 进入XAMPP官网 Download XAMPP 找到最新版本&#xff0c;64位的下载&#xff0c;一路安装&#xff0c;语言只有英语德语两个&#xff08;不会德语&#xff09; 安装好以后启动软件&#xff0c;点Apache&#xff0c;MySql&#xff0c;start 在C:\xampp\…...

02.01 生产者消费者

请使用条件变量实现2生产者2消费者模型&#xff0c;注意1个生产者在生产的时候&#xff0c;另外一个生产者不能生产。 1>程序代码 #include <stdio.h> #include <string.h> #include <unistd.h> #include <stdlib.h> #include <sys/types.h>…...

区块链项目孵化与包装设计:从概念到市场的全流程指南

区块链技术的快速发展催生了大量创新项目&#xff0c;但如何将一个区块链项目从概念孵化成市场认可的产品&#xff0c;是许多团队面临的挑战。本文将从孵化策略、包装设计和市场落地三个维度&#xff0c;为你解析区块链项目成功的关键步骤。 一、区块链项目孵化的核心要素 明确…...

Redis|前言

文章目录 什么是 Redis&#xff1f;Redis 主流功能与应用 什么是 Redis&#xff1f; Redis&#xff0c;Remote Dictionary Server&#xff08;远程字典服务器&#xff09;。Redis 是完全开源的&#xff0c;使用 ANSIC 语言编写&#xff0c;遵守 BSD 协议&#xff0c;是一个高性…...