TensorFlow 示例摄氏度到华氏度的转换(一)
TensorFlow 实现神经网络模型来进行摄氏度到华氏度的转换,可以将其作为一个回归问题来处理。我们可以通过神经网络来拟合这个简单的转换公式。
1. 数据准备与预处理
2. 构建模型
3. 编译模型
4. 训练模型
5. 评估模型
6. 模型应用与预测
7. 保存与加载模型
8. 完整代码
1. 数据准备与预处理
你提供了摄氏度和华氏度的数据,并进行了标准化。标准化是为了使数据适应神经网络的训练,因为标准化可以加快训练过程并提高模型性能。
import numpy as np
import tensorflow as tf# 温度数据:摄氏度到华氏度的转换
celsius = np.array([-50,-40, -10, 0, 8, 22, 35, 45, 55, 65, 75, 95], dtype=float)
fahrenheit = np.array([-58.0,-40.0,14.0,32.0,46.4,71.6,95.0,113.0,131.0,149.0,167.0,203.0], dtype=float)# 数据标准化:计算均值和标准差
celsius_mean = np.mean(celsius)
celsius_std = np.std(celsius)fahrenheit_mean = np.mean(fahrenheit)
fahrenheit_std = np.std(fahrenheit)# 标准化输入和输出数据
celsius_normalized = (celsius - celsius_mean) / celsius_std
fahrenheit_normalized = (fahrenheit - fahrenheit_mean) / fahrenheit_std
2. 构建模型
在构建模型时,使用了一个简单的神经网络结构。神经网络包含了一个隐藏层和一个输出层。隐藏层使用了ReLU激活函数,输出层使用了线性激活函数,适合回归任务。
# 创建模型
model = tf.keras.Sequential([# 隐藏层,增加神经元数量,激活函数使用 ReLUtf.keras.layers.Dense(16, input_dim=1, activation='relu'),# 输出层,线性激活函数用于回归任务tf.keras.layers.Dense(1, activation='linear')
])
3. 编译模型
选择了Adam优化器,它在处理回归任务时表现较好,损失函数使用均方误差(MSE),这是回归问题中常用的损失函数。
# 编译模型,使用 Adam 优化器和均方误差损失函数
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mean_squared_error')
4. 训练模型
模型通过 fit()
方法进行训练,设置训练轮数(epochs)为5000轮。根据数据的复杂性和模型的表现,增加训练轮数可以帮助模型更好地收敛。
# 训练模型,设置训练轮数(epochs)增加到5000
model.fit(celsius_normalized, fahrenheit_normalized, epochs=5000)
5. 评估模型
训练完成后,你可以对模型进行评估。这里使用了一个测试集(test_celsius
),并通过预测得到标准化的结果,然后将其恢复为原始的华氏度值。
# 测试模型
test_celsius = np.array([0, 20, 100], dtype=float)
test_celsius_normalized = (test_celsius - celsius_mean) / celsius_std
predictions_normalized = model.predict(test_celsius_normalized)# 将预测结果从标准化值恢复到原始华氏度范围
predictions = predictions_normalized * fahrenheit_std + fahrenheit_mean
6. 模型应用与预测
最后,你可以输出预测的华氏度值。模型会对每个输入的摄氏度值返回预测的华氏度
# 输出预测结果
print("预测华氏度:")
for c, f in zip(test_celsius, predictions):print(f"{c} 摄氏度 => {f[0]} 华氏度")
7. 保存与加载模型
保存模型可以让你在之后加载并进行预测而不需要重新训练。在TensorFlow中,你可以使用 model.save()
来保存模型,使用 tf.keras.models.load_model()
来加载模型。
# 保存模型
model.save('temperature_conversion_model.h5')# 加载模型
loaded_model = tf.keras.models.load_model('temperature_conversion_model.h5')
8. 完整代码
最终的完整代码如下:
import numpy as np
import tensorflow as tf# 温度数据:摄氏度到华氏度的转换
celsius = np.array([-50,-40, -10, 0, 8, 22, 35, 45, 55, 65, 75, 95], dtype=float)
fahrenheit = np.array([-58.0,-40.0,14.0,32.0,46.4,71.6,95.0,113.0,131.0,149.0,167.0,203.0], dtype=float)# 数据标准化:计算均值和标准差
celsius_mean = np.mean(celsius)
celsius_std = np.std(celsius)fahrenheit_mean = np.mean(fahrenheit)
fahrenheit_std = np.std(fahrenheit)# 标准化输入和输出数据
celsius_normalized = (celsius - celsius_mean) / celsius_std
fahrenheit_normalized = (fahrenheit - fahrenheit_mean) / fahrenheit_std# 创建模型
model = tf.keras.Sequential([# 隐藏层,增加神经元数量,激活函数使用 ReLUtf.keras.layers.Dense(16, input_dim=1, activation='relu'),# 输出层,线性激活函数用于回归任务tf.keras.layers.Dense(1, activation='linear')
])# 编译模型,使用 Adam 优化器和均方误差损失函数
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.001), loss='mean_squared_error')# 训练模型,设置训练轮数(epochs)增加到5000
model.fit(celsius_normalized, fahrenheit_normalized, epochs=5000)# 测试模型
test_celsius = np.array([0, 20, 100], dtype=float)
test_celsius_normalized = (test_celsius - celsius_mean) / celsius_std
predictions_normalized = model.predict(test_celsius_normalized)# 将预测结果从标准化值恢复到原始华氏度范围
predictions = predictions_normalized * fahrenheit_std + fahrenheit_mean# 输出预测结果
print("预测华氏度:")
for c, f in zip(test_celsius, predictions):print(f"{c} 摄氏度 => {f[0]} 华氏度")# 保存模型
model.save('temperature_conversion_model.h5')# 加载模型
loaded_model = tf.keras.models.load_model('temperature_conversion_model.h5')
相关文章:
TensorFlow 示例摄氏度到华氏度的转换(一)
TensorFlow 实现神经网络模型来进行摄氏度到华氏度的转换,可以将其作为一个回归问题来处理。我们可以通过神经网络来拟合这个简单的转换公式。 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 …...
一文讲解JVM中的G1垃圾收集器
接上一篇博文,这篇博文讲下JVM中的G1垃圾收集器 G1在JDK1.7时引入,在JDK9时取代了CMS成为默认的垃圾收集器; G1把Java堆划分为多个大小相等的独立区域Region,每个区域都可以扮演新生代(Eden和Survivor)或老…...
图书管理系统 Axios 源码__获取图书列表
目录 核心功能 源码介绍 1. 获取图书列表 技术要点 适用人群 本项目是一个基于 HTML Bootstrap JavaScript Axios 开发的图书管理系统,可用于 添加、编辑、删除和管理图书信息,适合前端开发者学习 前端交互设计、Axios 数据请求 以及 Bootstrap 样…...
mac和linux传输文件
1、使用scp命令传输 # 上传 wenqiangwq ~ % scp -pr -P 22 nginx.yaml root192.168.1.15:/tmp/ root192.168.1.15s password: nginx.yaml 100% 1736 332.4KB/s 00:00# 下载 wenqiangwq ~ % scp -pr -P 22 root192.168.1.15:/tmp/ngin…...
[CVPR 2024] AnyDoor: Zero-shot Object-level Image Customization
github.com/ali-vilab/AnyDoor.写在前面: 【论文速读】按照#论文十问#提炼出论文核心知识点,方便相关科研工作者快速掌握论文内容。过程中并不对论文相关内容进行翻译。博主认为翻译难免会损坏论文的原本含义,也鼓励诸位入门级科研人员阅读文…...
(动态规划路径基础 最小路径和)leetcode 64
视频教程 1.初始化dp数组,初始化边界 2、从[1行到n-1行][1列到m-1列]依次赋值 #include<vector> #include<algorithm> #include <iostream>using namespace std; int main() {vector<vector<int>> grid { {1,3,1},{1,5,1},{4,2,1}…...
跨组织环境下 MQTT 桥接架构的评估
论文标题 中文标题: 跨组织环境下 MQTT 桥接架构的评估 英文标题: Evaluation of MQTT Bridge Architectures in a Cross-Organizational Context 作者信息 Keila Lima, Tosin Daniel Oyetoyan, Rogardt Heldal, Wilhelm Hasselbring Western Norway …...
2025年1月22日(网络编程 udp)
系统信息: ubuntu 16.04LTS Raspberry Pi Zero 2W 系统版本: 2024-10-22-raspios-bullseye-armhf Python 版本:Python 3.9.2 已安装 pip3 支持拍摄 1080p 30 (1092*1080), 720p 60 (1280*720), 60/90 (640*480) 已安装 vim 已安装 git 学习…...
基于 STM32 的智能电梯控制系统
1. 引言 随着城市化进程的加速,高层建筑日益增多,电梯作为垂直交通工具的重要性愈发凸显。传统电梯控制系统在运行效率、安全性和智能化程度上已难以满足现代需求。智能电梯控制系统能够实时监测电梯的运行状态、乘客需求,并根据这些信息优化…...
使用 Docker(Podman) 部署 MongoDB 数据库及使用详解
在现代开发环境中,容器化技术(如 Docker 和 Podman)已成为部署和管理应用程序的标准方式。本文将详细介绍如何使用 Podman/Docker 部署 MongoDB 数据库,并确保其他应用程序容器能够通过 Docker 网络成功连接到 MongoDB。我们将逐步…...
npm 和 pip 安装中常见问题总结
安装路径的疑惑:NPM 和 PIP 的安装机制 NPM 安装路径规则: 依赖安装在项目目录下: 当你运行 npm install --save-dev jest,它会在当前目录(例如 F:\)下创建一个 node_modules 文件夹,把 jest 安…...
golang面试题
目录 go版本新增功能 Go 1.11 Go 1.18 Go 1.5 go关键字 : 1. 用于声明的关键字 2. 控制流关键字 3. 包相关关键字 4. 并发相关关键字 5. 异常处理关键字 6. 接口和类型断言关键字 go数据类型: 复合数据类型 引用数据类型 接口类型 GC垃…...
基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 .…...
Install Python
目录 1.Install Python 1.安装Python 3 2.在Windows上安装Python 3.在Mac上安装Python 4.在Linux上安装Python 5.运行Python 2.Python解释器 1.CPython 2.IPython 3.PyPy 4.Jython 5.IronPython 6.小结 1.Install Python 因为Python是跨平台的,它可以…...
云计算部署模式全面解析
目录 引言公有云私有云混合云三种部署模式的对比选择建议未来趋势结语 1. 引言 随着云计算技术的快速发展,企业在选择云部署模式时面临着多种选择。本文将深入探讨云计算的三种主要部署模式:公有云、私有云和混合云,帮助读者全面了解它们的特点、优势及适用场景。 © iv…...
tomcat核心组件及原理概述
目录 1. tomcat概述 1.1 概念 1.2 官网地址 2. 基本使用 2.1下载 3. 整体架构 3.1 核心组件 3.2 从web.xml配置和模块对应角度 3.3 如何处理请求 4. 配置JVM参数 5. 附录 1. tomcat概述 1.1 概念 什么是tomcat Tomcat是一个开源、免费、轻量级的Web服务器。 Tomca…...
GIS教程:全国数码商城系统
文章目录 注册高德地图API普通网页中测试地图加载地图添加标记地图配置点标记 Marker添加弹框创建vue项目并添加高德地图创建项目加载高德地图项目首页布局封装axios和配置代理服务器获取城市热门信息获取城市区县信息获取区县商城信息获取指定城市区县的经纬度坐标将地图缩放到…...
Level DB --- table.format
table.format是Level DB中table序列化、反序列化重要的辅助类。它用来定义序列化、反序列化的核心结构体和操作实现。 BlockHandle table.format中的BlockHandle类主要用来记录当前block在总的序列化中的offset位置,以及当前block的size,这里面的Block…...
《编写可读代码的艺术》读书笔记
1. 写在前面 借着春节放假的几天, 读了下《编写可读代码的艺术》这本书, 这本书不是很长,主要关注代码的一些编写细节,比如方法命名,函数命名,语句组织,任务分解等, 旨在让写的代码…...
(9)下:学习与验证 linux 里的 epoll 对象里的 EPOLLIN、 EPOLLHUP 与 EPOLLRDHUP 的不同。小例子的实验
(4)本实验代码的蓝本,是伊圣雨老师里的课本里的代码,略加改动而来的。 以下是 服务器端的代码: 每当收到客户端的报文时,就测试一下对应的 epoll 事件里的事件标志,不读取报文内容,…...
MySQL基础-多表查询
多表查询-多表关系 多表查询-概述 例如执行下行sql语句就会出现笛卡尔积: select *from emp,dept; --消除笛卡尔积 select * from emp,dept where emp.dept_id dept.id; 多表查询-查询分类 多表查询-连接查询-内连接 --内连接演示 --1.查询每一个员工的姓名,及关…...
RK3568 opencv播放视频
文章目录 一、opencv相关视频播放类1. `cv::VideoCapture` 类主要构造方法:主要方法:2. 视频播放基本流程代码示例:3. 获取和设置视频属性4. 结合 FFmpeg 使用5. OpenCV 视频播放的局限性6. 结合 Qt 实现更高级的视频播放总结二、QT中的代码实现一、opencv相关视频播放类 在…...
C++中的类型转换
文章目录 一、概述二、隐式类型转换(Implicit Conversion)三、显式类型转换(Explicit Conversion)四、C 风格类型转换 一、概述 C 提供了多种类型转换(Type Conversion)方式,以便在不同类型的数…...
day7手机拍照装备
对焦对不上:1、光太暗;2、离太近;3、颜色太单一没有区分点 滤镜可以后期P 渐变灰滤镜:均衡色彩,暗的地方亮一些,亮的地方暗一些 中灰滤镜:减少光差 手机支架:最基本70cm即可 手…...
Joplin 插件在Vscode中无法显示图片
1.问题 在vscode里面装好joplin插件之后,无法显示图片内容。 粘贴的图片可以再vscode中显示,无法再joplin客户端显示 2.解决方法 这种情况是因为和vscode自带的MD编辑器的预览模式有冲突,或者没用通过专用方式上传图片。 方法一ÿ…...
ReentrantReadWriteLock源码分析
文章目录 概述一、状态位设计二、读锁三、锁降级机制四、写锁总结 概述 ReentrantReadWriteLock(读写锁)是对于ReentranLock(可重入锁)的一种改进,在可重入锁的基础上,进行了读写分离。适用于读多写少的场景…...
ChatGPT-4o和ChatGPT-4o mini的差异点
在人工智能领域,OpenAI再次引领创新潮流,近日正式发布了其最新模型——ChatGPT-4o及其经济实惠的小型版本ChatGPT-4o Mini。这两款模型虽同属于ChatGPT系列,但在性能、应用场景及成本上展现出显著的差异。本文将通过图文并茂的方式࿰…...
小程序设计和开发:什么是竞品分析,如何进行竞品分析
一、竞品分析的定义 竞品分析是指对竞争对手的产品进行深入研究和比较,以了解市场动态、发现自身产品的优势和不足,并为产品的设计、开发和营销策略提供参考依据。在小程序设计和开发中,竞品分析可以帮助开发者了解同类型小程序的功能、用户体…...
计算机网络之计算机网络的分类
计算机网络可以根据不同的角度进行分类,以下是几种常见的分类方式: 1. 按照规模和范围: 局域网(LAN,Local Area Network):覆盖较小范围(例如一个建筑物或校园)…...
什么是门控循环单元?
一、概念 门控循环单元(Gated Recurrent Unit,GRU)是一种改进的循环神经网络(RNN),由Cho等人在2014年提出。GRU是LSTM的简化版本,通过减少门的数量和简化结构,保留了LSTM的长时间依赖…...
ESP32-c3实现获取土壤湿度(ADC模拟量)
1硬件实物图 2引脚定义 3使用说明 4实例代码 // 定义土壤湿度传感器连接的模拟输入引脚 const int soilMoisturePin 2; // 假设连接到GPIO2void setup() {// 初始化串口通信Serial.begin(115200); }void loop() {// 读取土壤湿度传感器的模拟值int sensorValue analogRead…...
获取snmp oid的小方法1(随手记)
snmpwalk遍历设备的mib # snmpwalk -v <SNMP version> -c <community-id> <IP> . snmpwalk -v 2c -c test 192.168.100.201 .根据获取的值,找到某一个想要的值的oid # SNMPv2-MIB::sysName.0 STRING: test1 [rootzabbix01 fonts]# snmpwalk -v…...
【C++篇】哈希表
目录 一,哈希概念 1.1,直接定址法 1.2,哈希冲突 1.3,负载因子 二,哈希函数 2.1,除法散列法 /除留余数法 2.2,乘法散列法 2.3,全域散列法 三,处理哈希冲突 3.1&…...
Nginx开发01:基础配置
一、下载和启动 1.下载、使用命令行启动:Web开发:web服务器-Nginx的基础介绍(含AI文稿)_nginx作为web服务器,可以承担哪些基本任务-CSDN博客 注意:我配置的端口是81 2.测试连接是否正常 访问Welcome to nginx! 如果…...
mysqldump+-binlog增量备份
注意:二进制文件删除必须使用help purge 不可用rm -f 会崩 一、概念 增量备份:仅备份上次备份以后变化的数据 差异备份:仅备份上次完全备份以后变化的数据 完全备份:顾名思义,将数据完全备份 其中,…...
hive:数据导入,数据导出,加载数据到Hive,复制表结构
hive不建议用insert,因为Hive是建立在Hadoop之上的数据仓库工具,主要用于批处理和大数据分析,而不是为OLTP(在线事务处理)操作设计的。INSERT操作会非常慢 数据导入 命令行界面:建一个文件 查询数据>>复制>>粘贴到新…...
【工欲善其事】利用 DeepSeek 实现复杂 Git 操作:从原项目剥离出子版本树并同步到新的代码库中
文章目录 利用 DeepSeek 实现复杂 Git 操作1 背景介绍2 需求描述3 思路分析4 实现过程4.1 第一次需求确认4.2 第二次需求确认4.3 第三次需求确认4.4 V3 模型:中间结果的处理4.5 方案验证,首战告捷 5 总结复盘 利用 DeepSeek 实现复杂 Git 操作 1 背景介绍…...
mac 手工安装OpenSSL 3.4.0
如果你希望继续安装 openssl-3.4.0 而不是降级到 3.1.1,可以尝试以下解决方案。根据你提供的错误信息,问题可能出在测试阶段(make test),我们可以尝试跳过测试或修复测试失败的原因。 --- ### **解决方案:…...
构建一个数据分析Agent:提升分析效率的实践
在上一篇文章中,我们讨论了如何构建一个智能客服Agent。今天,我想分享另一个实际项目:如何构建一个数据分析Agent。这个项目源于我们一个金融客户的真实需求 - 提升数据分析效率,加快决策速度。 从分析师的痛点说起 记得和分析师团队交流时的场景: 小张ÿ…...
【SRC排名】安全应急响应中心SRC上榜记录
2023年 新氧第三 https://security.soyoung.com/top 合合第四 https://security.intsig.com/index.php?m&chall&aindex 2024年 好未来第一 https://src.100tal.com/index.php?m&chall&aindex(官网是总榜,年榜只有海报)…...
截止到2025年2月1日,Linux的Wayland还有哪些问题是需要解决的?
截至2025年2月1日,Wayland需要解决的核心问题可按权重从高到低排序如下: 1. 屏幕共享与远程桌面的完整支持(权重:★★★★★) 问题:企业场景(如 腾讯会议)、开发者远程调试依赖稳定的屏幕共享功能。当前Wayland依赖PipeWire和XWayland,存在权限管理复杂、多显示器选择…...
TCP编程
1.socket函数 int socket(int domain, int type, int protocol); 头文件:include<sys/types.h>,include<sys/socket.h> 参数 int domain AF_INET: IPv4 Internet protocols AF_INET6: IPv6 Internet protocols AF_UNIX, AF_LOCAL : Local…...
Java泛型深度解析(JDK23)
第一章 泛型革命 1.1 类型安全的进化史 前泛型时代的类型转换隐患 代码的血泪史(Java 1.4版示例): List rawList new ArrayList(); rawList.add("Java"); rawList.add(Integer.valueOf(42)); // 编译通过// 灾难在运行时爆发…...
【JavaEE进阶】图书管理系统 - 壹
目录 🌲序言 🌴前端代码的引入 🎋约定前后端交互接口 🚩接口定义 🍃后端服务器代码实现 🚩登录接口 🚩图书列表接口 🎄前端代码实现 🚩登录页面 🚩…...
搜索旋转排序数组(二分查找)
测试链接:https://leetcode.cn/problems/search-in-rotated-sorted-array/https://leetcode.cn/problems/search-in-rotated-sorted-array/https://leetcode.cn/problems/search-in-rotated-sorted-array/ 问题描述 假设我们有一个旋转排序的数组,这个…...
STM32 TIM定时器配置
TIM简介 TIM(Timer)定时器 定时器可以对输入的时钟进行计数,并在计数值达到设定值时触发中断 16位计数器、预分频器、自动重装寄存器的时基单元,在72MHz计数时钟下可以实现最大59.65s的定时 不仅具备基本的定时中断功能ÿ…...
AI开发之 ——Anaconda 介绍
Anaconda 是什么? 在这里插入图片描述 一句话:Anaconda 是Python 库和环境便捷管理的平台。 Anaconda 是数据科学和 AI 领域的工具,通过集成常用库和工具,简化了环境管理和包安装,特别适合初学者和需要快速上手的开…...
Uber损失(Huber Loss):从均方误差到绝对误差的完美过渡
前言 在机器学习的世界里,损失函数就像是你在迷宫中的导航系统,它决定了你到底能否顺利找到出口,而出口的大小就代表着模型的表现。而在这么多的“导航系统”中,Huber损失(你可以叫它“Uber损失”,我觉得这名字挺有意思的,能不能打车到一个更好的模型呢?)凭借其独特的…...
【Arxiv 大模型最新进展】TOOLGEN:探索Agent工具调用新范式
【Arxiv 大模型最新进展】TOOLGEN:探索Agent工具调用新范式 文章目录 【Arxiv 大模型最新进展】TOOLGEN:探索Agent工具调用新范式研究框图方法详解 作者:Renxi Wang, Xudong Han 等 单位:LibrAI, Mohamed bin Zayed University o…...
41【文件名的编码规则】
我们在学习的过程中,写出数据或读取数据时需要考虑编码类型 火山采用:UTF-16 易语言采用:GBK php采用:UTF-8 那么我们写出的文件名应该是何种编码的?比如火山程序向本地写出一个“测试.txt”,理论上这个“测…...