当前位置: 首页 > news >正文

DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来,人工智能(AI)领域发展迅猛,大语言模型(LLMs)为通用人工智能(AGI)的发展开辟了道路。OpenAI 的 o1 模型表现非凡,它引入的创新性推理时缩放技术显著提升了推理能力,不过该模型是闭源的。

DeepSeek-R1 paper title
今天,我们深入探讨由 DeepSeek 发布的突破性研究论文,该论文介绍了 DeepSeek-R1。这篇题为《DeepSeek-R1:通过强化学习激发大语言模型的推理能力》的论文,展示了一种前沿的开源推理模型,以及使用大规模强化学习技术训练此类模型的详细方法。

回顾:大语言模型训练过程

在这里插入图片描述

在深入探讨这篇论文之前,让我们简要回顾一下大语言模型的训练过程。通常,大语言模型要经过三个主要训练阶段:

  • 预训练:在这个阶段,大语言模型在大量文本和代码上进行预训练,以学习通用知识。这一步有助于模型熟练预测序列中的下一个标记。例如,给定 “write a bedtime _” 这样的输入,模型可以用 “story” 等合理的词补全。然而,预训练后,模型在遵循人类指令方面仍存在困难,下一阶段将解决这个问题。
  • 监督微调:在这个阶段,模型在指令数据集上进行微调。数据集中的每个样本都有一个指令 - 响应配对组成,其中响应作为标签。经过这个阶段,模型在遵循指令方面会表现得更好。
  • 强化学习:大语言模型利用反馈进一步优化。一种有效的方法是人类反馈强化学习(RLHF),即根据人类反馈训练模型。但收集大规模、高质量的人类反馈,尤其是针对复杂任务,颇具挑战。因此,另一种常用方法是人工智能反馈强化学习(RLAIF),由人工智能模型提供反馈。要使 RLAIF 有效工作,需要一个能力强大的模型来提供准确反馈。

引入 DeepSeek-R1-Zero 模型

Training DeepSeek-R1-Zero using only RL in post-training, without SFT

本文所探讨的研究省略或部分省略了监督微调阶段。具体来说,为了训练论文中提出的首个模型 DeepSeek-R1-Zero,我们从一个名为 DeepSeek-V3-Base 的预训练模型开始,它有 6710 亿个参数。监督微调阶段被完全省略。为了大规模进行强化学习,研究采用了一种基于规则的强化学习方法,而非标准的依靠人类或人工智能反馈的强化学习方式。

基于规则的强化学习

在这里插入图片描述

所使用的强化学习方法称为组相对策略优化(GRPO),由 DeepSeek 内部开发。

给定一个待训练的模型和一个输入问题,将输入送入模型,会采样得到一组输出。每个输出都包含推理过程和答案。GRPO 方法观察这些采样输出,并通过使用预定义规则为每个输出计算奖励,来训练模型生成更优的选项:

  • 准确性:一组规则用于计算准确性奖励。例如,对于有确定答案的数学问题,我们可以确切检查模型给出的最终答案是否正确。对于有预定义测试用例的代码问题,编译器会根据测试用例生成反馈。
  • 格式:另一类规则用于创建格式奖励。在论文中的下图里,我们可以看到模型被要求如何响应,其推理过程在标签内,答案在标签内。格式奖励确保模型遵循这种格式。

在这里插入图片描述

这种基于规则的机制不使用神经模型生成奖励,简化并降低了训练过程的成本,使其大规模应用成为可能。此外,研究人员发现奖励模型可能会受到奖励作弊问题的影响,即模型找到一种漏洞或意外方式来最大化奖励,但这与预期目标并不相符。

DeepSeek-R1-Zero 性能洞察

现在,让我们来探究一下 DeepSeek-R1-Zero 模型的一些性能表现。
在这里插入图片描述
在论文中的上表里,我们看到了 DeepSeek-R1-Zero 与 OpenAI 的 o1 在推理相关基准测试中的比较。令人印象深刻的是,DeepSeek-R1-Zero 与 o1 相当,在某些情况下甚至超越了它。论文中下面这张有趣的图展示了在 AIME 数据集上训练期间的改进过程。值得注意的是,AIME 上的平均一次通过率大幅提升,从最初的 15.6% 跃升至令人惊叹的 71.0%,达到了与 OpenAI 的 o1 相当的水平!
在这里插入图片描述

DeepSeek-R1-Zero 的自我进化过程

在这里插入图片描述
论文的一个关键发现是模型的自我进化过程,如上图所示。x 轴表示训练步数,y 轴表明随着训练的进行,模型的响应长度增加。通过强化学习,模型在解决推理任务时自然学会分配更多思考时间。令人惊奇的是,这一过程无需任何外部调整。

“顿悟时刻” 现象—— Aha Moment

如果上述内容还不够令人称奇,论文中还提到了 DeepSeek-R1-Zero 的另一个有趣现象 ——“顿悟时刻”。论文中的以下示例展示了这一现象。给定一道数学题,模型开始推理过程。然而,在某个时刻,模型开始重新评估其解决方案。模型学会重新评估其初始方法,并在必要时进行自我纠正。这种非凡的能力在强化学习训练过程中自然显现。
在这里插入图片描述

DeepSeek-R1 模型的训练过程

现在,我们来讨论第二个模型 DeepSeek-R1 的训练过程。但首先,既然我们刚刚看到了 DeepSeek-R1-Zero 卓越的能力,为什么还需要第二个模型呢?

为什么需要 DeepSeek-R1?

主要有两个原因:
在这里插入图片描述

  • 可读性问题:DeepSeek-R1-Zero 的输出往往可读性较差。
  • 语言一致性问题:它经常在单个回答中混合多种语言。

上述问题使得 DeepSeek-R1-Zero 的用户体验欠佳。有趣的是,一项消融研究表明,引导模型使用单一语言会略微损害其性能。与通常使用单一语言的人类不同,该模型通过使用多种语言能更好地表达自己,这一点令人着迷。

DeepSeek-R1 的训练流程

为了解决这些问题,DeepSeek-R1 采用四阶段流程进行训练:

  • 冷启动(阶段 1):从预训练模型 DeepSeek-V3-Base 开始,模型在从 DeepSeek-R1-Zero 收集的少量结果数据集上进行监督微调。这些结果经过验证,质量高且可读性强。这个数据集包含数千个样本,规模相对较小。在这个小规模高质量数据集上进行监督微调,有助于 DeepSeek-R1 缓解初始模型中存在的可读性问题。
  • 推理强化学习(阶段 2):这个阶段应用与前一个模型相同的大规模强化学习方法,以提升模型的推理能力。具体来说,在编程、数学、科学和逻辑推理等任务中,这些任务有明确的解决方案,可为强化学习过程定义奖励规则。
  • 拒绝采样和监督微调(阶段 3):在这个阶段,使用阶段 2 的模型检查点生成大量样本。通过拒绝采样,只保留正确且可读的样本。此外,使用生成式奖励模型 DeepSeek-V3 来决定保留哪些样本。这个阶段还包含了部分 DeepSeek-V3 的训练数据。然后,模型在这个数据集上进行监督微调。这个数据集不仅包含推理相关的问题,还提升了模型在更多领域的能力。
  • 多样化强化学习阶段(阶段 4):这是最后一个阶段,包含多样化的任务。对于像数学这样适用的任务,使用基于规则的奖励。对于其他任务,由大语言模型提供反馈,使模型符合人类偏好。

此外,利用阶段 3 构建的数据集对各种较小的开源模型进行了提炼,提供了具有高推理能力的较小规模替代模型。

DeepSeek-R1 的显著成果

在这里插入图片描述

在本文结尾,我们着重介绍一下免费可用的 DeepSeek-R1 与 OpenAI 的 o1 模型相比取得的显著成果。论文中的上图显示,DeepSeek-R1 不仅与 o1 相当,在某些基准测试中还超越了它。

此外,经过提炼的 320 亿参数模型也展现出了令人瞩目的性能,使其成为具有高推理能力的可行较小规模替代模型。

参考文献和链接

  • 论文页面: [2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
  • GitHub 页面:GitHub - deepseek-ai/DeepSeek-R1

相关文章:

DeepSeek-R1 论文解读 —— 强化学习大语言模型新时代来临?

近年来,人工智能(AI)领域发展迅猛,大语言模型(LLMs)为通用人工智能(AGI)的发展开辟了道路。OpenAI 的 o1 模型表现非凡,它引入的创新性推理时缩放技术显著提升了推理能力…...

联想拯救者R720笔记本外接显示屏方法,显示屏是2K屏27英寸

晚上23点10分前下单,第二天上午显示屏送到,检查外包装没拆封过。这个屏幕左下方有几个按键,按一按就开屏幕、按一按就关闭屏幕,按一按方便节省时间,也支持阅读等模式。 显示屏是 :AOC 27英寸 2K高清 100Hz…...

编译安装PaddleClas@openKylin(失败,安装好后报错缺scikit-learn)

编译安装 前置需求: 手工安装swig和faiss-cpu pip install swig pip install faiss-cpu 小技巧,pip编译安装的时候,可以加上--jobs64来多核编译。 注意先升级pip版本:pip install pip -U pip3 install faiss-cpu --config-s…...

传输层协议TCP与UDP:深入解析与对比

传输层协议TCP与UDP:深入解析与对比 目录 传输层协议TCP与UDP:深入解析与对比引言1. 传输层协议概述2. TCP协议详解2.1 TCP的特点2.2 TCP的三次握手与四次挥手三次握手四次挥手 2.3 TCP的流量控制与拥塞控制2.4 TCP的可靠性机制 3. UDP协议详解3.1 UDP的…...

《解码AI大模型涌现能力:从量变到质变的智能跃迁》

在当今科技飞速发展的时代,人工智能大模型的涌现能力成为了众人瞩目的焦点。从ChatGPT与用户的流畅对话,到GPT-4在复杂任务中的出色表现,这些大模型仿佛一夜之间解锁了超乎想象的技能,那么,这种神奇的涌现能力究竟是如…...

【数据结构】_C语言实现带头双向循环链表

目录 1. 单链表与双链表 1.1 单链表的结构及结点属性 1.2 双链表的结构及结点属性 2. 单链表与双链表的区别 3. 双链表的实现 3.1 List.h 3.2 List.c 3.3 Test_List.c 注:部分方法的实现细节注释 1. 双链表结点前驱、后继指针域的初始化 2. 各种增、删结…...

优盘恢复原始容量工具

买到一个优盘,显示32mb,我见过扩容盘,但是这次见到的是缩容盘,把2g的容量缩成32MB了,首次见到。。用芯片查询工具显示如下 ChipsBank(芯邦) CBM2199E 使用以下工具,恢复原始容量。。 其他CMB工具可能不行…...

JVM的GC详解

获取GC日志方式大抵有两种 第一种就是设定JVM参数在程序启动时查看,具体的命令参数为: -XX:PrintGCDetails # 打印GC日志 -XX:PrintGCTimeStamps # 打印每一次触发GC时发生的时间第二种则是在服务器上监控:使用jstat查看,如下所示,命令格式为jstat -gc…...

反转单向链表以及单链表添加节点、遍历单链表

反转1个单向链表 /*** 节点类*/ class ListNode {public int val;public ListNode next;public ListNode(int val) {this.val val;}Overridepublic String toString() {return "ListNode{" "val" val ", next" next };} }借助一个pre来存储每…...

ZZNUOJ(C/C++)基础练习1021——1030(详解版)

目录 1021 : 三数求大值 C语言版 C版 代码逻辑解释 1022 : 三整数排序 C语言版 C版 代码逻辑解释 补充 (C语言版,三目运算)C类似 代码逻辑解释 1023 : 大小写转换 C语言版 C版 1024 : 计算字母序号 C语言版 C版 代码逻辑总结…...

Linux学习笔记——系统维护命令

一、进程管理 1、ps命令(查) 来自process缩写,显示当前的进程状态。包括:进程的号码,发起者,系统资源,使用占比,运行状态等等。 语法格式:ps 参数 实例&#x…...

Harbor 部署

harbor镜像仓库搭建 版本v2.10.3 文章目录 一. docker 安装 harbor1. harbor 配置http访问1.1 下载harbor二进制包1.2 修改配置文件1.3 运行1.4 访问 2.【可选】harbor 配置https访问2.1 自签证书2.1 修改配置文件2.3 修改hosts文件2.4 运行2.5 访问 二. k8s 安装harbor1 .安装…...

three.js+WebGL踩坑经验合集(6.1):负缩放,负定矩阵和行列式的关系(2D版本)

春节忙完一轮,总算可以继续来写博客了。希望在春节假期结束之前能多更新几篇。 这一篇会偏理论多一点。笔者本没打算在这一系列里面重点讲理论,所以像相机矩阵推导这种网上已经很多优质文章的内容,笔者就一笔带过。 然而关于负缩放&#xf…...

开源的瓷砖式图像板系统Pinry

简介 什么是 Pinry ? Pinry 是一个开源的瓷砖式图像板系统,旨在帮助用户轻松保存、标记和分享图像、视频和网页。它提供了一种便于快速浏览的格式,适合喜欢整理和分享多种媒体内容的人。 主要特点 图像抓取和在线预览:支持从网页…...

LabVIEW透镜多参数自动检测系统

在现代制造业中,提升产品质量检测的自动化水平是提高生产效率和准确性的关键。本文介绍了一个基于LabVIEW的透镜多参数自动检测系统,该系统能够在单一工位上完成透镜的多项质量参数检测,并实现透镜的自动搬运与分选,极大地提升了检…...

socket实现HTTP请求,参考HttpURLConnection源码解析

背景 有台服务器,网卡绑定有2个ip地址,分别为: A:192.168.111.201 B:192.168.111.202 在这台服务器请求目标地址 C:192.168.111.203 时必须使用B作为源地址才能访问目标地址C,在这台服务器默认…...

反向代理模块jmh

1 概念 1.1 反向代理概念 反向代理是指以代理服务器来接收客户端的请求,然后将请求转发给内部网络上的服务器,将从服务器上得到的结果返回给客户端,此时代理服务器对外表现为一个反向代理服务器。 对于客户端来说,反向代理就相当…...

安卓(android)实现注册界面【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的(如果代码有错漏,可查看源码) 1.掌握LinearLayout、RelativeLayout、FrameLayout等布局的综合使用。 2.掌握ImageView、TextView、EditText、CheckBox、Button、RadioGroup、RadioButton、ListView、RecyclerView等控件在项目中的…...

RubyFPV开源代码之系统简介

RubyFPV开源代码之系统简介 1. 源由2. 工程架构3. 特性介绍(软件)3.1 特性亮点3.2 数字优势3.3 使用功能 4. DEMO推荐(硬件)4.1 天空端4.2 地面端4.3 按键硬件Raspberry PiRadxa 3W/E/C 5. 软件设计6. 参考资料 1. 源由 RubyFPV以…...

解锁维特比算法:探寻复杂系统的最优解密码

引言 在复杂的技术世界中,维特比算法以其独特的魅力和广泛的应用,成为通信、自然语言处理、生物信息学等领域的关键技术。今天,让我们一同深入探索维特比算法的奥秘。 一、维特比算法的诞生背景 维特比算法由安德鲁・维特比在 1967 年提出…...

Unity游戏(Assault空对地打击)开发(2) 基础场景布置

目录 导入插件 文件夹整理 场景布置 山地场景 导入插件 打开【My Assets】(如果你刚进行上篇的操作,该窗口默认已经打开了)。 找到添加的几个插件,点击Download并Import x.x to...。 文件夹整理 我们的目录下多了两个文件夹&a…...

Office / WPS 公式、Mathtype 公式输入花体字、空心字

注:引文主要看注意事项。 1、Office / WPS 公式中字体转换 花体字 字体选择 “Eulid Math One” 空心字 字体选择 “Eulid Math Two” 使用空心字时,一般不用斜体,取消勾选 “斜体”。 2、Mathtype 公式输入花体字、空心字 2.1 直接输…...

代码随想录算法训练营第三十九天-动态规划-213. 打家劫舍 II

与上一题基本一样,只不过房间形成一个环,就需要在首尾考虑状况多一些这不是多一些状况的问题,是完全不知道如何选择的问题这种状况详细分析一下就是要分成三种情况 第一种:不考虑首元素,也不考虑尾元素,只考…...

自然语言处理-词嵌入 (Word Embeddings)

词嵌入(Word Embedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有相近的表示。 📌 常见词嵌入方法 基于矩阵分解的方…...

Redis 数据备份与恢复

Redis 数据备份与恢复 引言 Redis 是一款高性能的键值对存储系统,广泛应用于缓存、消息队列、分布式锁等领域。为了保证数据的安全性和可靠性,定期对 Redis 数据进行备份与恢复是至关重要的。本文将详细介绍 Redis 数据备份与恢复的方法,帮助您更好地管理和维护 Redis 数据…...

【leetcode】T541 (两点反思)

解题反思 闷着头往,往往会写成一团浆糊,还推倒重来,谋划好全局思路再开始很重要。 熟悉C的工具库很重要,一开始看到反转就还想着用stack来着,后面突然想起来用reverse函数刚好可以用哇,这题也就迎刃而解了…...

《STL基础之vector、list、deque》

【vector、list、deque导读】vector、list、deque这三种序列式的容器,算是比较的基础容器,也是大家在日常开发中常用到的容器,因为底层用到的数据结构比较简单,笔者就将他们三者放到一起做下对比分析,介绍下基本用法&a…...

嵌入式系统|DMA和SPI

文章目录 DMA(直接内存访问)DMA底层原理1. 关键组件2. 工作机制3. DMA传输模式 SPI(串行外设接口)SPI的基本原理SPI连接示例 DMA与SPI的共同作用 DMA(直接内存访问) 类型:DMA是一种数据传输接口…...

LevelDB 源码阅读:写入键值的工程实现和优化细节

读、写键值是 KV 数据库中最重要的两个操作,LevelDB 中提供了一个 Put 接口,用于写入键值对。使用方法很简单: leveldb::Status status leveldb::DB::Open(options, "./db", &db); status db->Put(leveldb::WriteOptions…...

寒假刷题Day18

一、16. 最接近的三数之和 这一题有负数&#xff0c;没有单调性&#xff0c;不能“大了右指针左移&#xff0c;小了左指针右移&#xff0c;最后存值域求差绝对值”。 class Solution { public:int threeSumClosest(vector<int>& nums, int target) {ranges::sort(n…...

力扣219.存在重复元素每日一题(大年初一)

以一道简单题开启全新的一年 哈希表&#xff1a;我们可以使用 哈希表 来存储数组元素及其对应的索引。通过遍历数组&#xff0c;我们可以检查当前元素是否已经存在于哈希表中&#xff0c;并判断索引差是否满足条件。 具体步骤如下&#xff1a; 创建一个哈希表 map&#xff0c…...

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”&#xff0c;它们分别为&#xff1a; 强变化&#xff1b;弱变化&#xff1b;局部重绘&#xff1b; 在Discord里分别都是用命令唤出的&#xff0c;但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中&#xff0c;我们发觉这样的逆天…...

Blazor-选择循环语句

今天我们来说说Blazor选择语句和循环语句。 下面我们以一个简单的例子来讲解相关的语法&#xff0c;我已经创建好了一个Student类&#xff0c;以此类来进行语法的运用 因为我们需要交互性所以我们将类创建在*.client目录下 if 我们做一个学生信息的显示&#xff0c;Gender为…...

根据每月流量和市场份额排名前20 的AI工具列表

ChatGPT&#xff1a;由Open AI研发&#xff0c;是一款对话式大型语言模型。它能够理解自然语言输入&#xff0c;生成连贯且符合逻辑的回复。可用于文本创作&#xff0c;如撰写文章、故事、诗歌&#xff1b;还能解答各种领域的知识问题&#xff0c;提供翻译、代码解释等服务&…...

关于安卓greendao打包时报错问题修复

背景 项目在使用greendao的时候&#xff0c;debug安装没有问题&#xff0c;一到打包签名就报了。 环境 win10 jdk17 gradle8 项目依赖情况 博主的greendao是一个独立的module项目&#xff0c;项目目前只适配了java&#xff0c;不支持Kotlin。然后被外部集成。greendao版本…...

前端面试笔试题目(一)

以下模拟了大厂前端面试流程&#xff0c;并给出了涵盖HTML、CSS、JavaScript等基础和进阶知识的前端笔试题目&#xff0c;以帮助你更好地准备面试。 面试流程模拟 1. 自我介绍&#xff08;5 - 10分钟&#xff09;&#xff1a;面试官会请你进行简单的自我介绍&#xff0c;包括…...

网络工程师 (10)设备管理

前言 设备管理中的数据传输控制方式是确保设备与内存&#xff08;或CPU&#xff09;之间高效、准确地进行数据传送的关键。 一、程序直接控制方式 1.工作原理&#xff1a; 由CPU发出I/O指令&#xff0c;直接控制数据的传输过程。CPU需要不断查询外设的状态&#xff0c;以确定数…...

如何让一个用户具备创建审批流程的权限

最近碰到一个问题&#xff0c;两个sandbox&#xff0c;照理用户的权限应该是一样的&#xff0c;结果开发环境里面我可以左右的做各种管理工作&#xff0c;但是使用change set上传后&#xff0c;另一个环境的同一个用户&#xff0c;没有相对于的权限&#xff0c;权限不足。 当时…...

unity学习23:场景scene相关,场景信息,场景跳转

目录 1 默认场景和Assets里的场景 1.1 scene的作用 1.2 scene作为project的入口 1.3 默认场景 2 场景scene相关 2.1 创建scene 2.2 切换场景 2.3 build中的场景&#xff0c;在构建中包含的场景 &#xff08;否则会认为是失效的Scene&#xff09; 2.4 Scenes in Bui…...

【Java高并发】基于任务类型创建不同的线程池

文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点&#xff1a; 降低资源消耗&#xff1a;线程是稀缺资源&#xff0c;如果无限…...

全网首发,MacMiniA1347安装飞牛最新系统0.8.36,改造双盘位NAS,超详细.36,改造双盘位nas,超详细

全网首发&#xff0c;MacMiniA1347安装飞牛最新系统0.8.36&#xff0c;改造双盘位NAS&#xff0c;超详细 小伙伴们大家好呀&#xff0c;勤奋的凯尔森同学又双叒叕来啦&#xff0c;今天这一期也是有点特别&#xff0c;我们把MacMiniA1347安装飞牛最新系统0.8.36&#xff0c;并且…...

简要介绍C++中的 max 和 min 函数以及返回值

简要介绍C中的 max 和 min 函数 在C中&#xff0c;std::max 和 std::min 是标准库 <algorithm> 中提供的函数&#xff0c;用于比较两个或多个值并返回最大值或最小值。这些函数非常强大且灵活&#xff0c;支持多种数据类型&#xff08;如整数、浮点数、字符串等&#xff…...

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

&#x1f9f8;安清h&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;【计算机网络】【Mybatis篇】 &#x1f6a6;作者简介&#xff1a;一个有趣爱睡觉的intp&#xff0c;期待和更多人分享自己所学知识的真诚大学生。 目录 &#x1f3af;项目基本介绍 &#x1f6a6;项…...

记忆化搜索(5题)

是什么&#xff1f; 是一个带备忘录的递归 如何实现记忆化搜索 1.添加一个备忘录&#xff08;建立一个可变参数和返回值的映射关系&#xff09; 2.递归每次返回的时候把结果放到备忘录里 3.在每次进入递归的时候往备忘录里面看看。 目录 1.斐波那契数列 2.不同路径 3.最…...

强化学习笔记——4策略迭代、值迭代、TD算法

基于策略迭代的贝尔曼方程和基于值迭代的贝尔曼方程&#xff0c;关系还是不太理解 首先梳理一下&#xff1a; 通过贝尔曼方程将强化学习转化为值迭代和策略迭代两种问题 求解上述两种贝尔曼方程有三种方法&#xff1a;DP&#xff08;有模型&#xff09;&#xff0c;MC&#xff…...

nginx目录结构和配置文件

nginx目录结构 [rootlocalhost ~]# tree /usr/local/nginx /usr/local/nginx ├── client_body_temp # POST 大文件暂存目录 ├── conf # Nginx所有配置文件的目录 │ ├── fastcgi.conf # fastcgi相关参…...

Spring RESTful API 设计与实现

Spring RESTful API的设计与实现极大地提升了开发效率和系统可维护性,通过遵循RESTful设计原则,使得API结构清晰、行为一致,便于扩展和维护。它在构建微服务架构中扮演着核心角色,支持松耦合的通信,同时通过标准的HTTP协议和数据格式增强了系统的互操作性。结合Spring Sec…...

【玩转全栈】--创建一个自己的vue项目

目录 vue介绍 创建vue项目 vue页面介绍 element-plus组件库 启动项目 vue介绍 Vue.js 是一款轻量级、易于上手的前端 JavaScript 框架&#xff0c;旨在简化用户界面的开发。它采用了响应式数据绑定和组件化的设计理念&#xff0c;使得开发者可以通过声明式的方式轻松管理数据和…...

【Envi遥感图像处理】008:波段(批量)分离与波段合成

文章目录 一、波段分离提取1. 提取单个波段2. 批量提取单个波段二、波段合成相关阅读:【ArcGIS微课1000例】0058:波段合成(CompositeBands)工具的使用 一、波段分离提取 1. 提取单个波段...

数据结构-Stack和栈

1.栈 1.1什么是栈 栈是一种特殊的线性表&#xff0c;只允许在固定的一段进行插入和删除操作&#xff0c;进行插入和删除操作的一段称为栈顶&#xff0c;另一端称为栈底。 栈中的数据元素遵顼后进先出LIFO&#xff08;Last In First Out&#xff09;的原则&#xff0c;就像一…...