当前位置: 首页 > news >正文

LevelDB 源码阅读:写入键值的工程实现和优化细节

读、写键值是 KV 数据库中最重要的两个操作,LevelDB 中提供了一个 Put 接口,用于写入键值对。使用方法很简单:

leveldb::Status status = leveldb::DB::Open(options, "./db", &db);
status = db->Put(leveldb::WriteOptions(), key, value);

LevelDB 最大的优点就是写入速度也非常快,可以支持很高的并发随机写。官方给过一个写入压力测试结果:

fillseq      :       1.765 micros/op;   62.7 MB/s
fillsync     :     268.409 micros/op;    0.4 MB/s (10000 ops)
fillrandom   :       2.460 micros/op;   45.0 MB/s
overwrite    :       2.380 micros/op;   46.5 MB/s

可以看到这里不强制要求刷磁盘的话,随机写入的速度达到 45.0 MB/s,每秒支持写入 40 万次。如果强制要求刷磁盘,写入速度会下降不少,也能够到 0.4 MB/s, 每秒支持写入 3700 次左右。

这里 Put 接口具体做了什么?数据的写入又是如何进行的?LevelDB 又有哪些优化?本文一起来看看。开始之前,先看一个大致的流程图:

LevelDB 写入整体流程图

个人博客地址:
LevelDB 源码阅读:写入键值的工程实现和优化细节

LevelDB 写入 key 的 2 种方式

LevelDB 支持一次写入一个键值对,也支持一次写入多个键值对。不论是单个写入,还是批量写内部都是通过 WriteBatch 来处理。

Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value) {WriteBatch batch;batch.Put(key, value);return Write(opt, &batch);
}

我们可以选择在调用 LevelDB 接口的应用层聚合写入操作,从而实现批量写入,提高写入吞吐。例如,在应用层可以设计一个缓冲机制,收集一定时间内的写入请求,然后将它们打包在一个 WriteBatch 中提交。这种方式可以减少磁盘的写入次数和上下文切换,从而提高性能。

当然也可以每次都写入单个键值,这时候 LevelDB 内部会通过 WriteBatch 来处理。如果在高并发情况下,可能会在内部合并多个写操作,然后将这批键值对写入 WAL 并更新到 memtable。

这里整体写入还是比较复杂的,本篇文章只先关注写入到 WAL 和 memtable 的过程。

LevelDB 写入详细步骤

完整的写入部分代码在 leveldb/db/db_impl.cc 的 DBImpl::Write 方法中,咱们一点点拆开看吧。

Status DBImpl::Write(const WriteOptions& options, WriteBatch* updates) {Writer w(&mutex_);w.batch = updates;w.sync = options.sync;w.done = false;MutexLock l(&mutex_);writers_.push_back(&w);while (!w.done && &w != writers_.front()) {w.cv.Wait();}if (w.done) {return w.status;}// ...
}

开始部分把 WriteBatch 和 sync 参数赋值给 Writer 结构体,然后通过一个 writers_ 队列来管理多个 Writer 结构体。这两个结构体和队列在整个写入过程中还是挺重要的,先来看看。

Writer 结构和处理队列

这里 writers_ 是一个 std::deque<Writer*> 类型的队列,用于管理多个 Writer 结构体。

std::deque<Writer*> writers_ GUARDED_BY(mutex_);

这里队列用 GUARDED_BY(mutex_) 装饰,表示队列的访问需要通过 mutex_ 互斥锁来保护。这个用到了 Clang 的静态线程安全分析功能,可以参考我之前的文章 LevelDB 源码阅读:利用 Clang 的静态线程安全分析

这里 Writer 结构体定义如下:

struct DBImpl::Writer {explicit Writer(port::Mutex* mu): batch(nullptr), sync(false), done(false), cv(mu) {}Status status;WriteBatch* batch;bool sync;bool done;port::CondVar cv;
};

这里 Writer 结构体封装了不少参数,其中最重要是一个 WriteBatch 指针,记录了每个 WriteBatch 写请求的数据。然后用一个 status 用来记录每个 WriteBatch 写请求的错误状态。

此外,用一个 sync 来标记每个 WriteBatch 写请求是否需要立马刷到磁盘中。默认是 false,不强制刷磁盘,如果系统崩溃,可能会丢掉部分还没来得及写进磁盘的数据。如果打开了 sync 选项,每次写入都会立马刷到磁盘,整体写入耗时会上涨,但是可以保证只要写入成功,数据就不会丢失。关于刷磁盘文件的更多细节,可以参考我之前的文章LevelDB 源码阅读:Posix 文件操作接口实现细节。

还有一个 **done 则用来标记每个 WriteBatch 的写请求是否完成。**这里因为内部可能会合并写入多个 WriteBatch,当本次写入请求被合并到其他批次写入后,本次请求标记完成,就不需要再处理了。从而避免重复执行,提高并发的写入效率。

为了实现等待和通知,这里还有一个条件变量 cv,用于支持多个写请求的批量处理,并实现多个写请求的同步。写入的时候,多个线程可以同时提交写入请求,每个写请求都会先被放入写入队列。实际写入过程,则是串行化写入,同一时刻只有一批写入过程在执行。每次会从队列中取出队首的写请求,如果此时队列中还有其他等待的写任务,则会被合并为一个批次一起处理。在当前批次的写入请求处理过程中,后续来的请求进入队列后都需要等待。当前批次的请求处理完成后,会通知后面进入队列在等待中的写请求。

结合这里的介绍,应该能看懂前面 Write 方法开始部分代码的含义了。对于每个写入请求,都会先创建一个 Writer 结构体,然后将其放入 writers_ 队列中。接下来在 while 循环中,判断当前写入请求是否完成,如果完成就会直接返回当前写入的状态结果。如果当前写入请求没在队首,则需要等待在 cv 条件变量上。

如果当前写入请求在队首,那么就需要执行实际的写入操作了,这里具体写入流程是什么样呢?

预先分配空间

接下来在正式写入前,要先确保有足够的空间来写入数据。这里会调用 MakeRoomForWrite 方法,确保在进行写入操作之前,有足够的资源和空间来处理新的写入请求。它负责管理内存表(memtable)的使用情况、控制 Level 0 文件的数量,并在需要时触发后台压缩。

// REQUIRES: this thread is currently at the front of the writer queue
Status DBImpl::MakeRoomForWrite(bool force) {mutex_.AssertHeld();assert(!writers_.empty());bool allow_delay = !force;Status s;while (true) {if (!bg_error_.ok()) {// Yield previous errors = bg_error_;break;}// ...}
}

这里开始部分是一些验证部分,用 AssertHeld 验证当前线程必须持有 mutex_ 互斥锁,并且 writers_ 队列不能为空。接着会判断 bg_error_ 是否为空,如果不为空,则直接返回 bg_error_ 状态。在下文中会看到,如果写入 WAL 刷磁盘失败,就会设置 bg_error_ ,这样会让后续的写入都直接返回失败。

在 while 循环中,接着是一系列 if 分支检查,处理不同情况。

else if (allow_delay && versions_->NumLevelFiles(0) >=config::kL0_SlowdownWritesTrigger) {// We are getting close to hitting a hard limit on the number of// L0 files.  Rather than delaying a single write by several// seconds when we hit the hard limit, start delaying each// individual write by 1ms to reduce latency variance.  Also,// this delay hands over some CPU to the compaction thread in// case it is sharing the same core as the writer.mutex_.Unlock();env_->SleepForMicroseconds(1000);allow_delay = false;  // Do not delay a single write more than oncemutex_.Lock();}

首先当 Level 0 文件数量接近 kL0_SlowdownWritesTrigger=8 阈值时,暂时释放锁,延迟 1 毫秒,以减缓写入速度。当然这里只允许延迟一次,避免长时间阻塞单个写入。这里之所以设置一个小的 Level 0 文件数量阈值,是为了防止 Level 0 文件太多后,到达系统瓶颈后,后续写入卡太长时间。在没到瓶颈前,就开始把延迟平摊到每个请求上,从而减缓压力。这里的注释也写的很清楚,上面也都贴出来了。

    else if (!force &&(mem_->ApproximateMemoryUsage() <= options_.write_buffer_size)) {// There is room in current memtablebreak;} 

接着这里判断如果当前 memtable 的使用量没超过最大容量,就直接返回了。这里 write_buffer_size 是 memtable 的最大容量,默认是 4MB。这里可以调整配置,如果大一点的话,会在内存缓存更多数据,提高写入的性能,但是会占用更多内存,并且下次打开 db 的时候,恢复时间也会更长些。

接下来有两种情况,是当前没有地方可以写入,因此需要等待了。

    else if (imm_ != nullptr) {// We have filled up the current memtable, but the previous// one is still being compacted, so we wait.Log(options_.info_log, "Current memtable full; waiting...\n");background_work_finished_signal_.Wait();} else if (versions_->NumLevelFiles(0) >= config::kL0_StopWritesTrigger) {// There are too many level-0 files.Log(options_.info_log, "Too many L0 files; waiting...\n");background_work_finished_signal_.Wait();}

第一种情况是不可变的 memtable 还在写入中,因此需要等待它写入完成。LevelDB 会维护两个 memtable,一个是当前可以写入的 memtable mem_,一个是不可变的 memtable imm_。每次写满一个 mem_ 后,就会把它转为 imm_ 然后刷数据到磁盘。如果 imm_ 还没完成刷磁盘,那么就必须等待刷完后才能把现有的 mem_ 转为新的 imm_。

第二种情况是 Level 0 文件数量太多,需要等待压缩完成。LevelDB 配置了 Level 0 文件数量的阈值 kL0_StopWritesTrigger,默认是 12,当 Level 0 文件数量超过这个阈值时,那么当前写入请求就需要等待。因为 Level 0 层的文件之间没有全局排序的保证,多个 Level 0 文件可能包含重叠的键范围。对于读来说,查询操作需要在所有 L0 文件中查找,文件数量过多会增加读取延迟。对于写来说,文件数量多,后台压缩的工作量也会增加,影响整体系统性能。所以这里强制控制 Level 0 的文件数量,达到阈值后就直接不给写入。

接下来的情况就是不可变的 imm_ 为空,同时 mem_ 也没足够空间,这时候要做的事情比较多:

  1. 创建新日志文件:生成新的日志文件号,并尝试创建新的 writable file 作为 WAL(Write-Ahead Log)。如果失败,重用文件号并退出循环,返回错误状态。
  2. 关闭旧日志文件:关闭当前日志文件。如果关闭失败,记录后台错误,阻止后续写入操作。
  3. 更新日志文件指针:设置新的日志文件指针,更新日志编号,创建新的 log::Writer 进行写入。
  4. 转换 memtable:将当前 memtable 转换为不可变 memtable(imm_),并创建新的 memtable 进行写入。通过 has_imm_.store(true, std::memory_order_release) 标记有不可变 memtable 存在。
  5. 触发后台压缩:调用 MaybeScheduleCompaction(),触发后台压缩任务,处理不可变 memtable。

这里可以看到 memtable 和 WAL 文件一一对应的,每个 memtable 对应一个 WAL 文件,WAL 文件记录写入 memtable 的所有操作,当 memtable 满时,同时切换 WAL 文件。同一时刻,前台 memtable 和新的 WAL 日志文件处理新的请求,同时后台的 imm_ 和旧的 WAL 文件处理压缩任务。等压缩完成,就可以删除旧的 WAL 文件了。

合并写入任务

接着是合并写入的逻辑,核心代码如下:

  uint64_t last_sequence = versions_->LastSequence();Writer* last_writer = &w;if (status.ok() && updates != nullptr) {  // nullptr batch is for compactionsWriteBatch* write_batch = BuildBatchGroup(&last_writer);WriteBatchInternal::SetSequence(write_batch, last_sequence + 1);last_sequence += WriteBatchInternal::Count(write_batch);{// ... 具体写入到 WAL 和 memtable }if (write_batch == tmp_batch_) tmp_batch_->Clear();versions_->SetLastSequence(last_sequence);}

首先是获取当前全局的 sequence 值,这里 sequence 用来记录写入键值对的版本号,全局单调递增。每个写入请求都会被分配一个唯一的 sequence 值,通过版本号机制来实现 MVCC 等特性。在写入当前批次键值对的时候,会先设置 sequence 值,写入成功后,还会更新 last_sequence 值。

为了提高写入并发性能,每次写入的时候,不止需要写队首的任务,还会尝试合并队列中后续的写入任务。这里合并的逻辑放在 BuildBatchGroup 中,主要是遍历整个写入队列,在控制整体批次的大小,以及保证刷磁盘的级别情况下,不断把队列后面的写入任务合并到队首的写入任务中。整体构建好的写入批次,会放到一个临时的对象 tmp_batch_ 中,在完整的写入操作完成后,会清空 tmp_batch_ 对象。

我们提到的每个写入任务其实封装为了一个 WriteBatch 对象,该类的实现支持了不同写入任务合并,以及获取任务的大小等。相关细节实现可以参考我前面的文章 LevelDB 源码阅读:如何优雅地合并写入和删除操作。

上面代码其实忽略了核心的写入到 WAL 和 memtable 的逻辑,下面来看看这部分的实现。

写入到 WAL 和 memtable

LevelDB 中写入键值对,会先写 WAL 日志,然后写入到 memtable 中。WAL 日志是 LevelDB 中实现数据恢复的关键,memtable 则是 LevelDB 中实现内存缓存和快速查询的关键。写入关键代码如下:

    // Add to log and apply to memtable.  We can release the lock// during this phase since &w is currently responsible for logging// and protects against concurrent loggers and concurrent writes// into mem_.{mutex_.Unlock();status = log_->AddRecord(WriteBatchInternal::Contents(write_batch));bool sync_error = false;if (status.ok() && options.sync) {status = logfile_->Sync();if (!status.ok()) {sync_error = true;}}if (status.ok()) {status = WriteBatchInternal::InsertInto(write_batch, mem_);}mutex_.Lock();if (sync_error) {// The state of the log file is indeterminate: the log record we// just added may or may not show up when the DB is re-opened.// So we force the DB into a mode where all future writes fail.RecordBackgroundError(status);}}

这里在写入到 WAL 和 memtable 的时候,会先释放 mutex_ 互斥锁,写入完成后,再重新加锁。注释也专门解释了下,因为当前队首 &w 正在负责写入 WAL 和 memtable,后续的写入调用,可以拿到 mutex_ 互斥锁,因此可以完成入队操作。但是因为不是队首,需要等在条件变量上,只有当前任务处理完成,才有机会执行。所以写入 WAL 和 memtable 的过程,虽然释放了锁,但整体还是串行化写入的。WAL 和 memtable 本身也不需要保证线程安全。

不过因为写 WAL 和 memtable 相对耗时,释放锁之后,其他需要用到 mutex_ 的地方,都可以拿到锁继续执行了,整体提高了系统的并发。

WAL(Write-Ahead Logging)是一种日志记录机制,它允许在数据写入磁盘之前,先记录日志。WAL 日志是追加写入,磁盘的顺序 IO 性能优于随机 IO 性能,因此追加写入一般效率比较高。写入 WAL 成功后,再把数据放到 memtable 中,memtable 是内存结构,写入效率也很高,等在内存积累到一定量级,再写入磁盘。如果系统崩溃重启,内存中 memtable 的数据可能会丢失,但是通过 WAL 日志,可以重放写入操作,从而恢复数据状态,确保数据的完整性。

这里具体写入,只是简单的调用 log::Writer 对象 log_ 的 AddRecord 方法来写入 WriteBatch 数据。log::Writer 会把这里的数据进行组织,然后在适当的时机写入磁盘,详细实现可以参考我前面的文章LevelDB 源码阅读:读写 WAL 日志保证持久性。

当然,如果写入的时候带了 sync=true,那么这里写入 WAL 成功后,会调用 logfile_->Sync() 方法,强制刷磁盘。这里稍微补充说明下,这里往文件里写内容是会通过系统调用 write 来完成,这个系统调用返回成功,并不保证数据一定被写入磁盘。文件系统一般会把数据先放到缓冲区,然后根据情况,选择合适的时机刷到磁盘中。要保证一定刷到磁盘中去,则需要另外的系统调用,不同平台有不同的接口,具体可以参考我之前的文章LevelDB 源码阅读:Posix 文件操作接口实现细节。

如果强制刷磁盘过程发生错误,那么这里会调用 RecordBackgroundError 方法,记录错误状态到 bg_error_ 中,这样后续所有的写入操作都会返回失败。

在写入 WAL 成功后,就可以写入 memtable 了。这里调用 WriteBatchInternal::InsertInto 方法,把 WriteBatch 数据插入到 memtable 中。关于 memtable 的实现,我后面文章会详细介绍。

更新批次写任务的状态

写入批次完成后,就需要更新批次写任务的状态,从 writers_ 队列的前端取出最先入队的 Writer 对象,然后开始遍历,直到批次中的最后一个写入任务。这里更新所有已经完成任务的状态,然后唤醒所有等待的写入任务。核心实现如下:

  while (true) {Writer* ready = writers_.front();writers_.pop_front();if (ready != &w) {ready->status = status;ready->done = true;ready->cv.Signal();}if (ready == last_writer) break;}// Notify new head of write queueif (!writers_.empty()) {writers_.front()->cv.Signal();}

最后如果队列中还有写入任务,则需要唤醒队首的写入任务,继续处理。至此整个写入处理完毕,可以返回给调用方写入的结果了。

其他工程实现细节

整个写入过程到此分析完了,不过还有些工程实现细节,值得一起看看。

混合 sync 和非 sync 写入

如果有一批写入请求,其中既有 sync 又有非 sync 的写入,那么 LevelDB 内部会怎么处理呢?

前面分析可以看到每次取出队首的写入任务后,会尝试合并队列中后续的写入任务。因为每个写入任务可以强制 sync 刷磁盘,也可以不刷,合并的时候,怎么处理这种混合不同 sync 配置的写入任务呢?

这里配置 sync=true 的时候写入会强制刷磁盘,对于合并后的批次写入,取得是队首的 sync。核心代码如下:

Status DBImpl::Write(const WriteOptions& options, WriteBatch* updates) {//...if (status.ok() && updates != nullptr) {  // nullptr batch is for compactions// ...{mutex_.Unlock();status = log_->AddRecord(WriteBatchInternal::Contents(write_batch));bool sync_error = false;if (status.ok() && options.sync) {status = logfile_->Sync();if (!status.ok()) {sync_error = true;}}// ...}}
}

所以,如果队首是的任务是不需要刷磁盘,那么合并的时候,就不能合并 sync=true 的写入任务。核心实现代码如下:

  for (; iter != writers_.end(); ++iter) {Writer* w = *iter;if (w->sync && !first->sync) {// Do not include a sync write into a batch handled by a non-sync write.break;}// ...}

不过如果队首是 sync=true 的写入任务,那么合并的时候,就不需要考虑被合并的写入任务的 sync 设置。因为整个合并后的批次,都会被强制刷磁盘。这样就可以保证不会降低写入的持久化保证级别,但是可以适当提升写入的持久化保证级别。当然这里提升写入的持久化级别保证,其实也并不会导致整体耗时上涨,因为这里队首一定要刷磁盘,顺带着多一点不需要刷磁盘的写入任务,也不会导致耗时上涨。

优化大批量小 key 写入延迟

上面实现可以看到,如果大批量并发写入的时候,写入请求会先被放入队列中,然后串行化写入。如果写入的 key 都比较小,那么从队首取出一个写入任务,然后和当前队列中的其他写入合并为一个批次。合并的时候,需要设置一个 max_size 来限制合并的 key 数量,那么这里 max_size 要设置多少合理呢?

这里 LevelDB 给了一个经验值,默认是 1 << 20 个字节。但是考虑一个场景,如果写入的 key 都比较小,合并的时候,可能会合并很多 key,从而导致写入耗时变长。由于是小 key 的写入,写入耗时长的话,体验上来并不好

所以这里加了个小优化,如果当前队首写入任务的整体 size 小于 128 << 10 个字节,那么这里 max_size 就会小很多。当然,这个值应该也只是经验值,我也没找到官方具体的说明。相关代码在
BuildBatchGroup 中:

 // Allow the group to grow up to a maximum size, but if the// original write is small, limit the growth so we do not slow// down the small write too much.size_t max_size = 1 << 20;if (size <= (128 << 10)) {max_size = size + (128 << 10);}

写入 WAL 成功,但是 memtable 失败

写入过程,会先写入 WAL 日志,写成功后,才写 memtable。但这两个写入并不是原子的,如果写 WAL 失败,不回写 memtable,并且会阻塞后续所有的写入,这样是合理的,也不会有问题。

但是如果写入 WAL 日志成功,但是写入 memtable 失败的话,返回给调用方的状态是写入失败,调用可能认为写失败。但是 WAL 成功写入,并且其他流程都是正常执行,也更新了全局的 sequence。万一这时候故障,从 WAL 恢复数据的时候,会把写 memtable 失败的也恢复,这样就导致调用方认为写失败的数据,其实成功写入了

这里自己暂时还没彻底搞明白,可能是 LevelDB 的潜在 bug,也可能是自己对整体代码还没理解透。这里尝试用 GPT O1 和 Deepseek 的 R1 深度思考分析了下,都倾向这里是 bug。Deepseek 给的思考过程也比较有意思:

我需要确认在LevelDB的实际运行中,这种情况发生的概率有多大。MemTable的写入失败通常可能由什么原因引起?比如内存不足,或者其他不可恢复的错误?如果是暂时性的错误,LevelDB是否有重试机制?

另外,查看LevelDB的官方文档或相关讨论,是否有提到这种情况的处理方式。比如,是否在写入MemTable失败时,LevelDB会主动删除或无效化对应的WAL记录?

可能还需要考虑数据库恢复流程。当LevelDB重启时,会读取WAL并重新构建MemTable。如果某个WAL记录对应的写入在MemTable失败,但WAL存在,恢复时会再次尝试写入MemTable。如果此时条件允许(比如内存足够),写入可能成功,导致不一致。但如果原来的失败是持久性的(如数据结构错误),恢复时可能再次失败,导致数据库无法打开,从而避免不一致。

此外,用户的问题是否假设了某些特定场景?例如,MemTable写入失败但数据库没有崩溃,之后正常关闭,这时候WAL未被清除,恢复时重新应用。这种情况是否可能?

AI 现在的深度思考能力,逻辑推理的能力还是非常强的,考虑问题比较全面。这里也欢迎读者留言讨论这个问题哈。

总结

文章有点长,这里简单总结下吧。LevelDB 的写入操作设计充分考虑了高并发和性能优化,通过一系列精巧的机制实现了高效的键值对写入。下面是一些值得借鉴的设计:

  1. 批量合并写入: LevelDB 通过 Writer 队列将多个写入请求合并处理,避免了频繁的磁盘 IO。每个写入请求会被放入队列,队列头部的写入请求负责合并后续请求,形成一个大的 WriteBatch。这种设计显著提高了吞吐量,尤其适合高并发的小键值对写入场景。

  2. WAL 日志处理崩溃恢复: WAL(Write-Ahead Log):所有写入操作首先顺序写入 WAL 日志,确保数据持久性。写入 WAL 后才更新内存中的 MemTable,这种 “先日志后内存” 的设计是 LevelDB 崩溃恢复的基石。

  3. 内存双缓冲机制: 当 MemTable 写满后,会转换为 Immutable MemTable 并触发后台压缩,同时创建新的 MemTable 和 WAL 文件。这种双缓冲机制避免了写入阻塞,实现了平滑的内存-磁盘数据流转

  4. 写入限流与自适应延迟: 通过 kL0_SlowdownWritesTrigger 和 kL0_StopWritesTrigger 阈值,在 Level 0 文件过多时主动引入写入延迟或暂停写入。这种 “软限流” 策略避免了系统过载后的雪崩效应。

  5. 动态批次合并: 根据当前队列头部请求的大小,动态调整合并批次的最大尺寸(如小请求合并 128KB,大请求合并 1MB),在吞吐量和延迟之间取得平衡。

  6. 条件变量唤醒机制: 通过 CondVar 实现高效的线程等待-通知,确保合并写入时不会长时间阻塞后续请求。

  7. 混合 Sync 处理: 支持同时处理需要强制刷盘(sync=true)和非强制刷盘的请求,优先保证队首请求的持久化级别,避免降低数据安全性。

  8. 错误隔离: WAL 写入失败会标记全局错误状态 bg_error_,直接拒绝掉所有后续写请求,防止数据不一致。

最后,欢迎大家留言讨论,一起学习 LevelDB 的实现细节。

相关文章:

LevelDB 源码阅读:写入键值的工程实现和优化细节

读、写键值是 KV 数据库中最重要的两个操作&#xff0c;LevelDB 中提供了一个 Put 接口&#xff0c;用于写入键值对。使用方法很简单&#xff1a; leveldb::Status status leveldb::DB::Open(options, "./db", &db); status db->Put(leveldb::WriteOptions…...

寒假刷题Day18

一、16. 最接近的三数之和 这一题有负数&#xff0c;没有单调性&#xff0c;不能“大了右指针左移&#xff0c;小了左指针右移&#xff0c;最后存值域求差绝对值”。 class Solution { public:int threeSumClosest(vector<int>& nums, int target) {ranges::sort(n…...

力扣219.存在重复元素每日一题(大年初一)

以一道简单题开启全新的一年 哈希表&#xff1a;我们可以使用 哈希表 来存储数组元素及其对应的索引。通过遍历数组&#xff0c;我们可以检查当前元素是否已经存在于哈希表中&#xff0c;并判断索引差是否满足条件。 具体步骤如下&#xff1a; 创建一个哈希表 map&#xff0c…...

Midjourney中的强变化、弱变化、局部重绘的本质区别以及其有多逆天的功能

开篇 Midjourney中有3个图片“微调”&#xff0c;它们分别为&#xff1a; 强变化&#xff1b;弱变化&#xff1b;局部重绘&#xff1b; 在Discord里分别都是用命令唤出的&#xff0c;但如今随着AI技术的发达在类似AI可人一类的纯图形化界面中&#xff0c;我们发觉这样的逆天…...

Blazor-选择循环语句

今天我们来说说Blazor选择语句和循环语句。 下面我们以一个简单的例子来讲解相关的语法&#xff0c;我已经创建好了一个Student类&#xff0c;以此类来进行语法的运用 因为我们需要交互性所以我们将类创建在*.client目录下 if 我们做一个学生信息的显示&#xff0c;Gender为…...

根据每月流量和市场份额排名前20 的AI工具列表

ChatGPT&#xff1a;由Open AI研发&#xff0c;是一款对话式大型语言模型。它能够理解自然语言输入&#xff0c;生成连贯且符合逻辑的回复。可用于文本创作&#xff0c;如撰写文章、故事、诗歌&#xff1b;还能解答各种领域的知识问题&#xff0c;提供翻译、代码解释等服务&…...

关于安卓greendao打包时报错问题修复

背景 项目在使用greendao的时候&#xff0c;debug安装没有问题&#xff0c;一到打包签名就报了。 环境 win10 jdk17 gradle8 项目依赖情况 博主的greendao是一个独立的module项目&#xff0c;项目目前只适配了java&#xff0c;不支持Kotlin。然后被外部集成。greendao版本…...

前端面试笔试题目(一)

以下模拟了大厂前端面试流程&#xff0c;并给出了涵盖HTML、CSS、JavaScript等基础和进阶知识的前端笔试题目&#xff0c;以帮助你更好地准备面试。 面试流程模拟 1. 自我介绍&#xff08;5 - 10分钟&#xff09;&#xff1a;面试官会请你进行简单的自我介绍&#xff0c;包括…...

网络工程师 (10)设备管理

前言 设备管理中的数据传输控制方式是确保设备与内存&#xff08;或CPU&#xff09;之间高效、准确地进行数据传送的关键。 一、程序直接控制方式 1.工作原理&#xff1a; 由CPU发出I/O指令&#xff0c;直接控制数据的传输过程。CPU需要不断查询外设的状态&#xff0c;以确定数…...

如何让一个用户具备创建审批流程的权限

最近碰到一个问题&#xff0c;两个sandbox&#xff0c;照理用户的权限应该是一样的&#xff0c;结果开发环境里面我可以左右的做各种管理工作&#xff0c;但是使用change set上传后&#xff0c;另一个环境的同一个用户&#xff0c;没有相对于的权限&#xff0c;权限不足。 当时…...

unity学习23:场景scene相关,场景信息,场景跳转

目录 1 默认场景和Assets里的场景 1.1 scene的作用 1.2 scene作为project的入口 1.3 默认场景 2 场景scene相关 2.1 创建scene 2.2 切换场景 2.3 build中的场景&#xff0c;在构建中包含的场景 &#xff08;否则会认为是失效的Scene&#xff09; 2.4 Scenes in Bui…...

【Java高并发】基于任务类型创建不同的线程池

文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点&#xff1a; 降低资源消耗&#xff1a;线程是稀缺资源&#xff0c;如果无限…...

全网首发,MacMiniA1347安装飞牛最新系统0.8.36,改造双盘位NAS,超详细.36,改造双盘位nas,超详细

全网首发&#xff0c;MacMiniA1347安装飞牛最新系统0.8.36&#xff0c;改造双盘位NAS&#xff0c;超详细 小伙伴们大家好呀&#xff0c;勤奋的凯尔森同学又双叒叕来啦&#xff0c;今天这一期也是有点特别&#xff0c;我们把MacMiniA1347安装飞牛最新系统0.8.36&#xff0c;并且…...

简要介绍C++中的 max 和 min 函数以及返回值

简要介绍C中的 max 和 min 函数 在C中&#xff0c;std::max 和 std::min 是标准库 <algorithm> 中提供的函数&#xff0c;用于比较两个或多个值并返回最大值或最小值。这些函数非常强大且灵活&#xff0c;支持多种数据类型&#xff08;如整数、浮点数、字符串等&#xff…...

【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册

&#x1f9f8;安清h&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;【计算机网络】【Mybatis篇】 &#x1f6a6;作者简介&#xff1a;一个有趣爱睡觉的intp&#xff0c;期待和更多人分享自己所学知识的真诚大学生。 目录 &#x1f3af;项目基本介绍 &#x1f6a6;项…...

记忆化搜索(5题)

是什么&#xff1f; 是一个带备忘录的递归 如何实现记忆化搜索 1.添加一个备忘录&#xff08;建立一个可变参数和返回值的映射关系&#xff09; 2.递归每次返回的时候把结果放到备忘录里 3.在每次进入递归的时候往备忘录里面看看。 目录 1.斐波那契数列 2.不同路径 3.最…...

强化学习笔记——4策略迭代、值迭代、TD算法

基于策略迭代的贝尔曼方程和基于值迭代的贝尔曼方程&#xff0c;关系还是不太理解 首先梳理一下&#xff1a; 通过贝尔曼方程将强化学习转化为值迭代和策略迭代两种问题 求解上述两种贝尔曼方程有三种方法&#xff1a;DP&#xff08;有模型&#xff09;&#xff0c;MC&#xff…...

nginx目录结构和配置文件

nginx目录结构 [rootlocalhost ~]# tree /usr/local/nginx /usr/local/nginx ├── client_body_temp # POST 大文件暂存目录 ├── conf # Nginx所有配置文件的目录 │ ├── fastcgi.conf # fastcgi相关参…...

Spring RESTful API 设计与实现

Spring RESTful API的设计与实现极大地提升了开发效率和系统可维护性,通过遵循RESTful设计原则,使得API结构清晰、行为一致,便于扩展和维护。它在构建微服务架构中扮演着核心角色,支持松耦合的通信,同时通过标准的HTTP协议和数据格式增强了系统的互操作性。结合Spring Sec…...

【玩转全栈】--创建一个自己的vue项目

目录 vue介绍 创建vue项目 vue页面介绍 element-plus组件库 启动项目 vue介绍 Vue.js 是一款轻量级、易于上手的前端 JavaScript 框架&#xff0c;旨在简化用户界面的开发。它采用了响应式数据绑定和组件化的设计理念&#xff0c;使得开发者可以通过声明式的方式轻松管理数据和…...

【Envi遥感图像处理】008:波段(批量)分离与波段合成

文章目录 一、波段分离提取1. 提取单个波段2. 批量提取单个波段二、波段合成相关阅读:【ArcGIS微课1000例】0058:波段合成(CompositeBands)工具的使用 一、波段分离提取 1. 提取单个波段...

数据结构-Stack和栈

1.栈 1.1什么是栈 栈是一种特殊的线性表&#xff0c;只允许在固定的一段进行插入和删除操作&#xff0c;进行插入和删除操作的一段称为栈顶&#xff0c;另一端称为栈底。 栈中的数据元素遵顼后进先出LIFO&#xff08;Last In First Out&#xff09;的原则&#xff0c;就像一…...

内容检索(2025.01.30)

随着创作数量的增加&#xff0c;博客文章所涉及的内容越来越庞杂&#xff0c;为了更为方便地阅读&#xff0c;后续更新发布的文章将陆续在此汇总并附上原文链接&#xff0c;感兴趣的小伙伴们可持续关注文章发布动态&#xff01; 博客域名&#xff1a;http://my-signal.blog.cs…...

牛客周赛 Round 77

题目目录 C-小红走网格解题思路参考代码 D-隐匿社交网络解题思路参考代码 F-计树解题思路参考代码 C-小红走网格 解题思路 根据裴蜀定理&#xff1a;设a&#xff0c;b是不全为0的整数&#xff0c;对任意整数x&#xff0c;y&#xff0c;满足gcd&#xff08;a&#xff0c;b&…...

c++面试:类定义为什么可以放到头文件中

这个问题是刚了解预编译的时候产生的疑惑。 声明是指向编译器告知某个变量、函数或类的存在及其类型&#xff0c;但并不分配实际的存储空间。声明的主要目的是让编译器知道如何解析程序中的符号引用。定义不仅告诉编译器实体的存在&#xff0c;还会为该实体分配存储空间&#…...

Oracle查看数据库表空间使用情况

Oracle RAC环境查看表空间使用情况 查询字段释义&#xff1a; NEED_ADDFILE,--是否需增加表空间文件 TABLESPACE_NAME,--表空间名称 TABLESPACE_FILE_COUNT, --表空间当前数据文件数量 NOW_FILEENABLE_BLOCKS,--表空间文件当前数据块数 NOW_FILEENABLE_BYTES_GB,--表空间文件当…...

Spring Boot 热部署实现指南

在开发 Spring Bot 项目时&#xff0c;热部署功能能够显著提升开发效率&#xff0c;让开发者无需频繁重启服务器就能看到代码修改后的效果。下面为大家详细介绍一种实现 Spring Boot 热部署的方法&#xff0c;同时也欢迎大家补充其他实现形式。 步骤一、开启 IDEA 自动编译功能…...

如何构建ObjC语言编译环境?构建无比简洁的clang编译ObjC环境?Windows搭建Swift语言编译环境?

如何构建ObjC语言编译环境? 除了在线ObjC编译器&#xff0c;本地环境Windows/Mac/Linux均可以搭建ObjC编译环境。 Mac自然不用多说&#xff0c;ObjC是亲儿子。(WSL Ubuntu 22.04) Ubuntu可以安装gobjc/gnustep和gnustep-devel构建编译环境。 sudo apt-get install gobjc gnus…...

C++——类和对象(下)

1.初始化列表 之前我们实现构造函数时&#xff0c;初始化成员变量主要使用函数体内赋值&#xff0c;构造函数初始化还有一种方式&#xff0c;就是初始化列表&#xff0c;初始化列表的使用方式是以一个冒号开始&#xff0c;接着是一个以逗号分隔的数据成员列表&#xff0c;每个…...

R 字符串:深入理解与高效应用

R 字符串:深入理解与高效应用 引言 在R语言中,字符串是数据处理和编程中不可或缺的一部分。无论是数据清洗、数据转换还是数据分析,字符串的处理都是基础技能。本文将深入探讨R语言中的字符串概念,包括其基本操作、常见函数以及高效应用方法。 字符串基本概念 字符串定…...

C#面试常考随笔7:什么是匿名⽅法?还有Lambda表达式?

匿名方法本质上是一种没有显式名称的方法&#xff0c;它可以作为参数传递给需要委托类型的方法&#xff0c;常用于事件处理、回调函数等场景&#xff0c;能够让代码更加简洁和紧凑。 使用场景 事件处理&#xff1a;在处理事件时&#xff0c;不需要为每个事件处理程序单独定义…...

舵机型号与识别

舵机型号繁多&#xff0c;不同品牌和制造商有不同的命名规则。常见的舵机品牌包括 Futaba、Hitec、Tower Pro、Savox、JX Servo 等。以下是舵机型号的常见识别方法以及一些典型的型号示例&#xff1a; 一、舵机型号的识别方法 型号命名规则&#xff1a; 舵机型号通常由字母和数…...

【memgpt】letta 课程6: 多agent编排

Lab 6: Multi-Agent Orchestration 多代理协作 letta 是作为一个服务存在的,app通过restful api 通信 多智能体之间如何协调与沟通? 相互发送消息共享内存块,让代理同步到不同的服务的内存块...

《DeepSeek手机版:开启AI移动新时代》

DeepSeek 手机版爆火&#xff1a;现象与背景 在当今数字化时代&#xff0c;AI 技术的发展日新月异&#xff0c;如同一股汹涌澎湃的浪潮&#xff0c;深刻地改变着我们的生活。而在这股浪潮中&#xff0c;DeepSeek 手机版宛如一颗璀璨的新星&#xff0c;迅速崛起&#xff0c;引发…...

列表(列表是什么)

你将学习列表是什么以及如何使用列表元素。列表让你能够在一个地方存储成组的信息&#xff0c;其中可以只包含几个元素&#xff0c;也可以包含数百万个元素。 列表是新手可直接使用的最强大的Python功能之一&#xff0c;它融合了众多重要的编程概念。 列表是什么 列表 由一系列…...

C语言-运算符

1. 按位与运算符&#xff08;&&#xff09; 按位与运算符对两个整数的每一位执行“与”操作。只有当两个相应位都为 1 时&#xff0c;结果才为 1 &#xff1b;否则为 0。 // 示例 int a 5; // 二进制: 0101 int b 3; // 二进制: 0011 int result a & b; …...

yolov11、yolov8部署的7种方法(yolov11、yolov8部署rknn的7种方法),一天一种部署方法,7天入门部署

由于涉及量化、部署两个领域&#xff0c;本博文难免有不对之处&#xff0c;欢迎指正。 本博客对 yolov11&#xff08;yolov8&#xff09;尝试了7种不同的部署方法&#xff0c;在最基础的模型上一步一步的去掉解码相关的操作&#xff08;移到后处理种进行&#xff09;&#xff0…...

事务03之MVCC机制

MVCC 多版本并发控制机制 文章目录 MVCC 多版本并发控制机制一&#xff1a;并发事务的场景1&#xff1a;读读场景2&#xff1a;写写场景3&#xff1a;读写 or 写读场景 二&#xff1a;MVCC机制综述1&#xff1a;MVCC日常生活的体现2&#xff1a;多版本并发控制 三&#xff1a;M…...

Autosar-Os是怎么运行的?(时间保护)

写在前面&#xff1a; 入行一段时间了&#xff0c;基于个人理解整理一些东西&#xff0c;如有错误&#xff0c;欢迎各位大佬评论区指正&#xff01;&#xff01;&#xff01; 1.功能概述 AUTOSAR OS 的四大可定制类型凸显了时间保护&#xff08;Timing Protection&#xff09;…...

论文阅读(九):通过概率图模型建立连锁不平衡模型和进行关联研究:最新进展访问之旅

1.论文链接&#xff1a;Modeling Linkage Disequilibrium and Performing Association Studies through Probabilistic Graphical Models: a Visiting Tour of Recent Advances 摘要&#xff1a; 本章对概率图模型&#xff08;PGMs&#xff09;的最新进展进行了深入的回顾&…...

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配

【1】引言 前序学习了图像的常规读取和基本按位操作技巧&#xff0c;相关文章包括且不限于&#xff1a; python学opencv|读取图像-CSDN博客 python学opencv|读取图像&#xff08;四十九&#xff09;原理探究&#xff1a;使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…...

视频脚本生成器(基于openai API和streamlit)

utils.py&#xff1a; # 所有和ai交互的代码放进utils.py里&#xff08;utils 通常是 “utilities” 的缩写&#xff0c;意为 “实用工具” 或 “实用函数”&#xff09;from langchain.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from lan…...

《LLM大语言模型+RAG实战+Langchain+ChatGLM-4+Transformer》

文章目录 Langchain的定义Langchain的组成三个核心组件实现整个核心组成部分 为什么要使用LangchainLangchain的底层原理Langchain实战操作LangSmithLangChain调用LLM安装openAI库-国内镜像源代码运行结果小结 使用Langchain的提示模板部署Langchain程序安装langserve代码请求格…...

【MySQL — 数据库增删改查操作】深入解析MySQL的 Update 和 Delete 操作

1. 测试数据 mysql> select* from exam1; ----------------------------------------- | id | name | Chinese | Math | English | ----------------------------------------- | 1 | 唐三藏 | 67.0 | 98.0 | 56.0 | | 2 | 孙悟空 | 87.0 | 78.…...

AnyThingLLM本地私有知识库搭建

***************************************************** 环境准备 操作系统&#xff1a;Windows11 内存&#xff1a;32GB RAM 存储&#xff1a;预留 300GB 可用空间 显存: 16G 网络: 100M带宽 前置准备: 已安装ollama环境 deepseek本地大模型 ***************************…...

数仓ETL测试

提取&#xff0c;转换和加载有助于组织使数据在不同的数据系统中可访问&#xff0c;有意义且可用。ETL工具是用于提取&#xff0c;转换和加载数据的软件。在当今数据驱动的世界中&#xff0c;无论大小如何&#xff0c;都会从各种组织&#xff0c;机器和小工具中生成大量数据。 …...

leetcode——将有序数组转化为二叉搜索树(java)

给你一个整数数组 nums &#xff0c;其中元素已经按 升序 排列&#xff0c;请你将其转换为一棵 平衡 二叉搜索树。 示例 1&#xff1a; 输入&#xff1a;nums [-10,-3,0,5,9] 输出&#xff1a;[0,-3,9,-10,null,5] 解释&#xff1a;[0,-10,5,null,-3,null,9] 也将被视为正确答…...

蓝桥杯模拟算法:多项式输出

P1067 [NOIP2009 普及组] 多项式输出 - 洛谷 | 计算机科学教育新生态 这道题是一道模拟题&#xff0c;我们需要分情况讨论&#xff0c;我们需要做一下分类讨论 #include <iostream> #include <cstdlib> using namespace std;int main() {int n;cin >> n;for…...

新鲜速递:DeepSeek-R1开源大模型本地部署实战—Ollama + MaxKB 搭建RAG检索增强生成应用

在AI技术快速发展的今天&#xff0c;开源大模型的本地化部署正在成为开发者们的热门实践方向。最火的莫过于吊打OpenAI过亿成本的纯国产DeepSeek开源大模型&#xff0c;就在刚刚&#xff0c;凭一己之力让英伟达大跌18%&#xff0c;纳斯达克大跌3.7%&#xff0c;足足是给中国AI产…...

【张雪峰高考志愿填报】合集

【张雪峰高考志愿填报】合集 链接&#xff1a;https://pan.quark.cn/s/89a2d88fa807 高考结束&#xff0c;分数即将揭晓&#xff0c;志愿填报的关键时刻近在眼前&#xff01;同学们&#xff0c;这可是人生的重要转折点&#xff0c;选对志愿&#xff0c;就像为未来铺就一条…...