当前位置: 首页 > news >正文

分布式专题(10)之ShardingSphere分库分表实战指南

一、ShardingSphere产品介绍

         Apache ShardingSphere 是一款分布式的数据库生态系统, 可以将任意数据库转换为分布式数据库,并通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。Apache ShardingSphere 设计哲学为 Database Plus,旨在构建异构数据库上层的标准和生态。 它关注如何充分合理地利用数据库的计算和存储能力,而并非实现一个全新的数据库。 它站在数据库的上层视角,关注它们之间的协作多于数据库自身。

        另外需要注意的是ShardingSphere的版本演进路线。

         当前最新的版本是5.x。可以看到,对于当前版本,ShardingSphere的核心是可插拔。其核心设计哲学就是连接、增强以及可拔插。这是官网对于其整个设计哲学的核心描述。

         你现在当然不需要去了解各个细节,但是你应该要理解ShardingSphere是希望演进成一个重要的分库分表的功能核心。这个功能核心是构建在现有的数据库产品之上的,同时他可以支持大量的可插拔的上层应用扩展。这也意味着,在后面学习ShardingSphere时,你一定需要花更多心思去理解如何对ShardingSphere的功能进行扩展,而不能仅仅是学会如何使用ShardingSphere已经提供的功能。

二、客户端分库分表与服务端分库分表

        ShardingSphere最为核心的产品有两个:一个是ShardingJDBC,这是一个进行客户端分库分表的框架。另一个是ShardingProxy,这是一个进行服务端分库分表的产品。他们代表了两种不同的分库分表的实现思路。

2.1 ShardingJDBC客户端分库分表

        ShardingSphere最为核心的产品有两个:一个是ShardingJDBC,这是一个进行客户端分库分表的框架。另一个是ShardingProxy,这是一个进行服务端分库分表的产品。他们代表了两种不同的分库分表的实现思路。

  • 适用于任何基于 JDBC 的 ORM 框架,如:JPA, Hibernate, Mybatis, Spring JDBC Template 或直接使用 JDBC;
  • 支持任何第三方的数据库连接池,如:DBCP, C3P0, BoneCP, HikariCP 等;
  • 支持任意实现 JDBC 规范的数据库,目前支持 MySQL,PostgreSQL,Oracle,SQLServer 以及任何可使用 JDBC 访问的数据库。

2.2 ShardingProxy服务端分库分表 

         ShardingSphere-Proxy 定位为透明化的数据库代理端,通过实现数据库二进制协议,对异构语言提供支持。 目前提供 MySQL 和 PostgreSQL 协议,透明化数据库操作,对 DBA 更加友好。

  • 向应用程序完全透明,可直接当做 MySQL/PostgreSQL 使用;
  • 兼容 MariaDB 等基于 MySQL 协议的数据库,以及 openGauss 等基于 PostgreSQL 协议的数据库;
  • 适用于任何兼容 MySQL/PostgreSQL 协议的的客户端,如:MySQL Command Client, MySQL Workbench, Navicat 等。

2.3 ShardingSphere混合部署架构 

         这两个产品都各有优势。ShardingJDBC跟客户端在一起,使用更加灵活。而ShardingProxy是一个独立部署的服务,所以他的功能相对就比较固定。他们的整体区别如下:

        另外,在产品图中,Governance Center也是其中重要的部分。他的作用有点类似于微服务架构中的配置中心,可以使用第三方服务统一管理分库分表的配置信息,当前建议使用的第三方服务是Zookeeper,同时也支持Nacos,Etcd等其他第三方产品。

      由于ShardingJDBC和ShardingProxy都支持通过Governance Center,将配置信息交个第三方服务管理,因此,也就自然支持了通过Governance Center进行整合的混合部署架构。

三、快速上手ShardingJDBC 

         ​ 我们预备将一批课程信息分别拆分到两个库中的两个表里。

3.1 搭建基础环境 

         接下来我们使用最常用的SpringBoot+MyBatis+MyBatis-plus快速搭建一个可以访问数据的简单应用,以这个应用作为我们分库分表的基础。

       ​ step1: 在数据库中创建course表,建表语句如下:

CREATE TABLE course  (`cid` bigint(0) NOT NULL AUTO_INCREMENT,`cname` varchar(50) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,`user_id` bigint(0) NOT NULL,`cstatus` varchar(10) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,PRIMARY KEY (`cid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

​         step2: 搭建一个Maven项目,在pom.xml中加入依赖,其中就包含访问数据库最为简单的几个组件。

<dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-dependencies</artifactId><version>2.2.1.RELEASE</version><type>pom</type><scope>import</scope></dependency><!-- mybatisplus依赖 --><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.0.5</version></dependency><dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>1.1.20</version></dependency></dependencies></dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId></dependency><!-- 数据源连接池 --><dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>1.1.20</version></dependency><!-- mysql连接驱动 --><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId></dependency><!-- mybatisplus依赖 --><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.3.3</version></dependency></dependencies>

         step3: 使用MyBatis-plus的方式,直接声明Entity和Mapper,映射数据库中的course表。

public class Course {private Long cid;private String cname;private Long userId;private String cstatus;//省略。getter ... setter ....
}public interface CourseMapper extends BaseMapper<Course> {
}@SpringBootApplication
@MapperScan("com.roy.jdbcdemo.mapper")
public class App {public static void main(String[] args) {SpringApplication.run(App.class,args);}
}

         step5: 在springboot的配置文件application.properties中增加数据库配置。

spring.datasource.druid.db-type=mysql
spring.datasource.druid.driver-class-name=com.mysql.cj.jdbc.Driver
spring.datasource.druid.url=jdbc:mysql://localhost:3306/coursedb?serverTimezone=UTC
spring.datasource.druid.username=root
spring.datasource.druid.password=root

         step6: 做一个单元测试,简单的把course课程信息插入到数据库,以及从数据库中进行查询。

@SpringBootTest
@RunWith(SpringRunner.class)
public class JDBCTest {@Resourceprivate CourseMapper courseMapper;@Testpublic void addcourse() {for (int i = 0; i < 10; i++) {Course c = new Course();c.setCname("java");c.setUserId(1001L);c.setCstatus("1");courseMapper.insert(c);//insert into course values ....System.out.println(c);}}@Testpublic void queryCourse() {QueryWrapper<Course> wrapper = new QueryWrapper<Course>();wrapper.eq("cid",1L);List<Course> courses = courseMapper.selectList(wrapper);courses.forEach(course -> System.out.println(course));}
}

3.2 引入ShardingSphere分库分表 

        ​ 接下来,我们将在这个简单案例上使用ShardingSphere快速Course表的分库分表功能。

          step1:调整pom.xml中的依赖,引入ShardingSphere。

        ShardingSphere的实现机制和我们之前章节中使用DynamicDataSource框架实现读写分离很类似,也是在底层注入一个带有分库分表功能的DataSource数据源。因此,在调整依赖时,需要注意不要直接使用druid-sprint-boot-starter依赖了。因为这个依赖会在Spring容器中注入一个DataSource,这样再要使用ShardingSphere注入DataSource就会产生冲突了。

<dependencies><!-- shardingJDBC核心依赖 --><dependency><groupId>org.apache.shardingsphere</groupId><artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId><version>5.2.1</version><exclusions><exclusion><artifactId>snakeyaml</artifactId><groupId>org.yaml</groupId></exclusion></exclusions></dependency><!-- 坑爹的版本冲突 --><dependency><groupId>org.yaml</groupId><artifactId>snakeyaml</artifactId><version>1.33</version></dependency><!-- SpringBoot依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId><exclusions><exclusion><artifactId>snakeyaml</artifactId><groupId>org.yaml</groupId></exclusion></exclusions></dependency><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId></dependency><!-- 数据源连接池 --><!--注意不要用这个依赖,他会创建数据源,跟上面ShardingJDBC的SpringBoot集成依赖有冲突 --><!--        <dependency>--><!--            <groupId>com.alibaba</groupId>--><!--            <artifactId>druid-spring-boot-starter</artifactId>--><!--            <version>1.1.20</version>--><!--        </dependency>--><dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.1.20</version></dependency><!-- mysql连接驱动 --><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId></dependency><!-- mybatisplus依赖 --><dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-boot-starter</artifactId><version>3.4.3.3</version></dependency></dependencies>

         step2: 在对应数据库里创建分片表:按照我们之前的设计,去对应的数据库中自行创建course_1和course_2表。但是这里要注意,在创建分片表时,cid字段就不要用自增长了。因为数据分到四个表后,每个表都自增长,就没办法保证cid字段的唯一性了。

        step3: 增加ShardingJDBC的分库分表配置,然后,好玩的事情来了。应用层代码不需要做任何的修改,直接修改application.properties里的配置就可以完成我们之前设计的分库分表的目标。

# 打印SQL
spring.shardingsphere.props.sql-show = true
spring.main.allow-bean-definition-overriding = true# ----------------数据源配置
# 指定对应的真实库
spring.shardingsphere.datasource.names=m0,m1
# 配置真实库
spring.shardingsphere.datasource.m0.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.m0.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.m0.url=jdbc:mysql://localhost:3306/coursedb?serverTimezone=UTC
spring.shardingsphere.datasource.m0.username=root
spring.shardingsphere.datasource.m0.password=rootspring.shardingsphere.datasource.m1.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.m1.driver-class-name=com.mysql.cj.jdbc.Driver
spring.shardingsphere.datasource.m1.url=jdbc:mysql://localhost:3306/coursedb2?serverTimezone=UTC
spring.shardingsphere.datasource.m1.username=root
spring.shardingsphere.datasource.m1.password=root
#------------------------分布式序列算法配置
# 雪花算法,生成Long类型主键。
spring.shardingsphere.rules.sharding.key-generators.alg_snowflake.type=SNOWFLAKE
spring.shardingsphere.rules.sharding.key-generators.alg_snowflake.props.worker.id=1
# 指定分布式主键生成策略
spring.shardingsphere.rules.sharding.tables.course.key-generate-strategy.column=cid
spring.shardingsphere.rules.sharding.tables.course.key-generate-strategy.key-generator-name=alg_snowflake
#-----------------------配置实际分片节点
spring.shardingsphere.rules.sharding.tables.course.actual-data-nodes=m$->{0..1}.course_$->{1..2}
#-----------------------配置分库策略,按cid取模
spring.shardingsphere.rules.sharding.tables.course.database-strategy.standard.sharding-column=cid
spring.shardingsphere.rules.sharding.tables.course.database-strategy.standard.sharding-algorithm-name=course_db_algspring.shardingsphere.rules.sharding.sharding-algorithms.course_db_alg.type=MOD
spring.shardingsphere.rules.sharding.sharding-algorithms.course_db_alg.props.sharding-count=2
#给course表指定分表策略  standard-按单一分片键进行精确或范围分片
spring.shardingsphere.rules.sharding.tables.course.table-strategy.standard.sharding-column=cid
spring.shardingsphere.rules.sharding.tables.course.table-strategy.standard.sharding-algorithm-name=course_tbl_alg
# 分表策略-INLINE:按单一分片键分表
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.type=INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.props.algorithm-expression=course_$->{cid%2+1}

配置过程,刚开始看会有点复杂,但是对应之前的设计图不难对应上。而且后面也会详细来解读配置过程。

这里主要需要理解一下的是配置中用到的Groovy表达式。 比如 m$->${0..1}.course_$->{1..2} 和 course_$->{cid%2+1} 。这是ShardingSphere支持的Groovy表达式,在后面会大量接触到这样的表达式。这个表达式中,$->{}部分为动态部分,大括号内的就是Groovy语句。 两个点,表示一个数据组的起点和终点。m$->${0..1}表示m0和m1两个字符串集合。course_$->{1..2}表示course_1和course_2集合。 course_$->{cid%2+1} 表示根据cid的值进行计算,计算的结果再拼凑上course_前缀。

         在日志里也能看到实际的执行情况。

这个示例中,course信息只能平均分到两个表中,而无法均匀分到四个表中。这其实是根据cid进行计算的结果。而将course_tbl_alg的计算表达式改成 course_$->{((cid+1)%4).intdiv(2)+1} 后,理论上,如果cid是连续递增的,就可以将数据均匀分到四个表里。但是snowflake雪花算法生成的ID并不是连续的,所以有时候还是无法分到四个表。

四、理解ShardingSphere核心概念

         从这个简单示例中,我们可以接触到分库分表很多核心的概念。这些概念都是后面进行更复杂的分库分表时,需要大量运用的重要工具。

4.1 垂直分片与水平分片

         这是设计分库分表方案时经常会提到的概念。 其中垂直分片表示按照业务的纬度,将不同的表拆分到不同的库当中。这样可以减少每个数据库的数据量以及客户端的连接数,提高查询效率。而水平分表表示按照数据的纬度,将原本存在同一张表中的数据,拆分到多张子表当中。每个子表只存储一份的数据。这样可以将数据量分散到多张表当中,减少每一张表的数据量,提升查询效率。

4.2 ShardingSphere实现分库分表的核心概念 

         接下来我们依次解析一下刚才示例中配置的一些重要的概念,可以对照一下之前的配置信息进行验证。

  1. 虚拟库: ShardingSphere的核心就是提供一个具备分库分表功能的虚拟库,他是一个ShardingSphereDatasource实例。应用程序只需要像操作单数据源一样访问这个ShardingSphereDatasource即可。
  2. 真实库: 实际保存数据的数据库。这些数据库都被包含在ShardingSphereDatasource实例当中,由ShardingSphere决定未来需要使用哪个真实库。
  3. 逻辑表: 应用程序直接操作的逻辑表。
  4. 真实表: 实际保存数据的表。这些真实表与逻辑表表名不需要一致,但是需要有相同的表结构,可以分布在不同的真实库中。应用可以维护一个逻辑表与真实表的对应关系,所有的真实表默认也会映射成为ShardingSphere的虚拟表。
  5. 分布式主键生成算法: 给逻辑表生成唯一主键。由于逻辑表的数据是分布在多个真实表当中的,所有,单表的索引就无法保证逻辑表的ID唯一性。ShardingSphere集成了几种常见的基于单机生成的分布式主键生成器。比如SNOWFLAKE,COSID_SNOWFLAKE雪花算法可以生成单调递增的long类型的数字主键,还有UUID,NANOID可以生成字符串类型的主键。当然,ShardingSphere也支持应用自行扩展主键生成算法。比如基于Redis,Zookeeper等第三方服务,自行生成主键。
  6. 分片策略: 表示逻辑表要如何分配到真实库和真实表当中,分为分库策略和分表策略两个部分。分片策略由分片键和分片算法组成。分片键是进行数据水平拆分的关键字段。如果没有分片键,ShardingSphere将只能进行全路由,SQL执行的性能会非常差。分片算法则表示根据分片键如何寻找对应的真实库和真实表。简单的分片策略可以使用Groovy表达式直接配置,当然,ShardingSphere也支持自行扩展更为复杂的分片算法。

         示例当中给course表分配配置了分库策略course_db_alg ,和分表策略 course_tbl_alg。其中course_db_alg是使用的ShardingSphere内置的简单算法MOD取模。如果对于字符串类型的主键,也提供了HASH_MOD进行计算。这两个算法都需要配置一个参数sharding‐count分片数量。这种内置的算法虽然简单,但是不太灵活。 因为对2取模的结果只能是0和1,而对于course表来说,他的真实表是course_1和course_2,后缀需要在取模的结果上加1,这种计算就没法通过简单的取模算法实现了,所以需要通过Groovy表达式进行定制。

五、ShardingSphere深入实战

         理解这些基础概念之后,我们就继续深入更多的分库分表场景。下面的过程会通过一系列的问题来给你解释ShardingSphere最常用的分片策略。这个过程强烈建议你自己动手试试。因为不管你之前熟不熟悉ShardingSphere,你都需要一步步回顾总结一下分库分表场景下需要解决的是哪些稀奇古怪的问题。分库分表的问题非常非常多,你需要的是学会思考,而不是API。

4.1 简单INLINE分片算法 

         我们之前配置的简单分库分表策略已经可以根据自动生成的cid,将数据插入到不同的真实库当中。那么当然也支持按照cid进行数据查询。

 @Testpublic void queryCourse() {QueryWrapper<Course> wrapper = new QueryWrapper<Course>();
//        wrapper.eq("cid",851198095084486657L);wrapper.in("cid",851198095084486657L,851198095139012609L,851198095180955649L,4L);List<Course> courses = courseMapper.selectList(wrapper);courses.forEach(course -> System.out.println(course));}

         像= 和 in 这样的操作,可以拿到cid的精确值,所以都可以直接通过表达式计算出可能的真实库以及真实表,ShardingSphere就会将逻辑SQL转去查询对应的真实库和真实表。这些查询的策略,只要配置了sql-show参数,都会打印在日志当中。

        如果不使用分片键cid进行查询,那么SQL语句就只能根据actual-nodes到所有的真实库和真实表里查询。而这时ShardingSphere是怎么执行的呢?例如,如果直接执行select * from course,执行情况是这样的:

2023-04-12 15:55:02.958  INFO 12448 --- [           main] ShardingSphere-SQL                       : Logic SQL: SELECT  cid,cname,user_id,cstatus  FROM course2023-04-12 15:55:02.958  INFO 12448 --- [           main] ShardingSphere-SQL                       : Actual SQL: m0 ::: SELECT  cid,cname,user_id,cstatus  FROM course_1 UNION ALL SELECT  cid,cname,user_id,cstatus  FROM course_2
2023-04-12 15:55:02.958  INFO 12448 --- [           main] ShardingSphere-SQL                       : Actual SQL: m1 ::: SELECT  cid,cname,user_id,cstatus  FROM course_1 UNION ALL SELECT  cid,cname,user_id,cstatus  FROM course_2

         在之前4.x版本下,这种情况会拆分成四个SQL,查询四次。而当前版本下,会将每一个真实库里的语句通过UNION合并成一个大SQL,一起进行查询。为什么要这样呢?这其实是一个很大的优化。因为如果需要对一个真实库进行多个SQL查询,那么就需要通过多线程进行并发查询,这种情况下,如果要进行后续的结果归并,比如sum,max这样的结果归并,那就只能将所有的结果都合并到一个大内存,再进行归并。这种方式称为内存归并。这种方式是比较消耗内存的。而如果合并成了一个大的SQL,对一个真实库只要进行一次SQL查询,这样就可以通过一个线程进行查询。在进行结果归并时,就可以拿一条数据归并一次。这种方式称为流式归并。相比内存归并可以极大的节约内存。

       在使用in进行查询时,有可能计算出属于多个不同的分片。在4.x版本当中,如果出现了这种情况,由于ShardingSphere无法确定in算出来的分片有多少个,所以遇到这种情况,他就不再去计算in中所有的分片结果了,直接改为全路由分片。这样计算比较简单,但是查询的效率肯定不好。而在当前版本下,则优化了这个问题。比如示例当中in操作的cid有奇数也有偶数,新版本就能够准确的计算出m0.course_1和m1.course_2两个分片。

4.2 STANDARD标准分片算法

​         应用当中我们可能对于主键信息不只是进行精确查询,还需要进行范围查询。例如:

@Testpublic void queryCourseRange(){//select * from course where cid between xxx and xxxQueryWrapper<Course> wrapper = new QueryWrapper<>();wrapper.between("cid",799020475735871489L,799020475802980353L);List<Course> courses = courseMapper.selectList(wrapper);courses.forEach(course -> System.out.println(course));}

          这时,如果直接执行,那么由于ShardingSphere无法根据配置的表达式计算出可能的分片值,所以执行时他就会抛出一个异常。

        报错信息明确提到需要添加一个allow-range-query-with-inline-sharding参数。这时,就需要给course_tbl_alg算法添加这个参数。

# 允许在inline策略中使用范围查询。
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.props.allow-range-query-with-inline-sharding=true

         加上这个参数后,就可以进行查询了。但是这样就可以了吗?观察一下Actual SQL的执行方式,你会发现这时SQL还是按照全路由的方式执行的。之前一直强调过,这是效率最低的一种执行方式。那么有没有办法通过查询时的范围下限和范围上限自己计算出一个目标真实库和真实表呢?当然是支持的。记住这个问题,在后续章节会带你解决

5.3  COMPLEX_INLINE复杂分片算法

       现在既然可以根据cid进行查询,那么还可以增加其他的查询条件吗?像这样:

 @Testpublic void queryCourseComplexSimple(){QueryWrapper<Course> wrapper = new QueryWrapper<Course>();wrapper.orderByDesc("user_id");wrapper.in("cid",851198095084486657L,851198095139012609L);wrapper.eq("user_id",1001L);List<Course> course = courseMapper.selectList(wrapper);//select * from couse where cid in (xxx) and user_id =xxxSystem.out.println(course);}

         执行一下,这当然是可以的。但是有一个小问题,user_id查询条件只能参与数据查询,但是并不能参与到分片算法当中。例如在我们的示例当中,所有的user_id都是1001L,这其实是数据一个非常明显的分片规律。如果user_id的查询条件不是1001L,那这时其实不需要到数据库中去查,我们也能知道是不会有结果的。有没有办法让user_id也参与到分片算法当中呢?

        当然是可以的, 不过STANDARD策略就不够用了。这时候就需要引入COMPLEX_INLINE策略。注释掉之前给course表配置的分表策略,重新分配一个新的分表策略:

#给course表指定分表策略  complex-按多个分片键进行组合分片
spring.shardingsphere.rules.sharding.tables.course.table-strategy.complex.sharding-columns=cid,user_id
spring.shardingsphere.rules.sharding.tables.course.table-strategy.complex.sharding-algorithm-name=course_tbl_alg
# 分表策略-COMPLEX:按多个分片键组合分表
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.type=COMPLEX_INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.props.algorithm-expression=course_$->{(cid+user_id+1)%2+1}

        在这个配置当中,就可以使用cid和user_id两个字段联合确定真实表。例如在查询时,将user_id条件设定为1002L,此时不管cid传什么值,就总是会路由到错误的表当中,查不出数据了。 

5.4 CLASS_BASED 分片算法

        虽然对于COMPLEX_INLINE策略,也支持添加allow-range-query-with-inline-sharding参数让他能够支持分片键的范围查询,但是这时这种复杂的分片策略就明显不能再用一个简单的表达式来忽悠了。

        这就需要一个Java类来实现这样的规则。这个算法类也不用自己瞎设计,只要实现ShardingSphere提供的ComplexKeysShardingAlgorithm接口就行了。

  

package com.roy.shardingDemo.algorithm;import com.google.common.collect.Range;
import org.apache.shardingsphere.sharding.api.sharding.complex.ComplexKeysShardingAlgorithm;
import org.apache.shardingsphere.sharding.api.sharding.complex.ComplexKeysShardingValue;
import org.apache.shardingsphere.sharding.exception.syntax.UnsupportedShardingOperationException;import java.util.*;/*** 实现自定义COMPLEX分片策略* 声明算法时,ComplexKeysShardingAlgorithm接口可传入一个泛型,这个泛型就是分片键的数据类型。* 这个泛型只要实现了Comparable接口即可。* 但是官方不建议声明一个明确的泛型出来,建议是在doSharding中再做类型转换。这样是为了防止分片键类型与算法声明的类型不符合。*/
public class MyComplexAlgorithm implements ComplexKeysShardingAlgorithm<Long> {private static final String SHARING_COLUMNS_KEY = "sharding-columns";private Properties props;//保留配置的分片键。在当前算法中其实是没有用的。private Collection<String> shardingColumns;@Overridepublic void init(Properties props) {this.props = props;this.shardingColumns = getShardingColumns(props);}/*** 实现自定义分片算法* @param availableTargetNames 在actual-nodes中配置了的所有数据分片* @param shardingValue 组合分片键* @return 目标分片*/@Overridepublic Collection<String> doSharding(Collection<String> availableTargetNames, ComplexKeysShardingValue<Long> shardingValue) {//select * from cid where cid in (xxx,xxx,xxx) and user_id between {lowerEndpoint} and {upperEndpoint};Collection<Long> cidCol = shardingValue.getColumnNameAndShardingValuesMap().get("cid");Range<Long> userIdRange = shardingValue.getColumnNameAndRangeValuesMap().get("user_id");//拿到user_id的查询范围Long lowerEndpoint = userIdRange.lowerEndpoint();Long upperEndpoint = userIdRange.upperEndpoint();//如果下限 》= 上限if(lowerEndpoint >= upperEndpoint){//抛出异常,终止去数据库查询的操作throw new UnsupportedShardingOperationException("empty record query","course");//如果查询范围明显不包含1001}else if(upperEndpoint<1001L || lowerEndpoint>1001L){//抛出异常,终止去数据库查询的操作throw new UnsupportedShardingOperationException("error range query param","course");
//            return result;}else{List<String> result = new ArrayList<>();//user_id范围包含了1001后,就按照cid的奇偶分片String logicTableName = shardingValue.getLogicTableName();//操作的逻辑表 coursefor (Long cidVal : cidCol) {String targetTable = logicTableName+"_"+(cidVal%2+1);if(availableTargetNames.contains(targetTable)){result.add(targetTable);}}return result;}}private Collection<String> getShardingColumns(final Properties props) {String shardingColumns = props.getProperty(SHARING_COLUMNS_KEY, "");return shardingColumns.isEmpty() ? Collections.emptyList() : Arrays.asList(shardingColumns.split(","));}public void setProps(Properties props) {this.props = props;}@Overridepublic Properties getProps() {return this.props;}@Overridepublic String getType(){return "MYCOMPLEX";}
}

        在核心的dosharding方法当中,就可以按照我们之前的规则进行判断。不满足规则,直接抛出UnsupportedShardingOperationException异常,就可以组织ShardingSphere把SQL分配到真实数据库中执行。

         接下来,还是需要增加策略配置,让course表按照这个规则进行分片。

# 使用CLASS_BASED分片算法- 不用配置SPI扩展文件
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.type=CLASS_BASED
# 指定策略 STANDARD|COMPLEX|HINT
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.props.strategy=COMPLEX
# 指定算法实现类。这个类必须是指定的策略对应的算法接口的实现类。 STANDARD-> StandardShardingAlgorithm;COMPLEX->ComplexKeysShardingAlgorithm;HINT -> HintShardingAlgorithm
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.props.algorithmClassName=com.roy.shardingDemo.algorithm.MyComplexAlgorithm

 5.5 HINT_INLINE强制分片算法

         接下来我们把查询场景再进一步,需要查询所有cid为奇数的课程信息。这要怎么查呢?按照MyBatis-plus的机制,你应该很快能想到在CourseMapper中实现一个自定义的SQL语句就行了。

public interface CourseMapper extends BaseMapper<Course> {@Select("select * from course where MOD(cid,2)=1")List<Long> unsupportSql();
}

         OK,拿过去试试。

@Testpublic void unsupportTest(){//select * from course where mod(cid,2)=1List<Long> res = courseMapper.unsupportSql();res.forEach(System.out::println);}

         执行结果当然是没有问题。但是你会发现,分片的问题又出来了。在我们当前的这个场景下,course的信息就是按照cid的奇偶分片的,所以自然是希望只去查某一个真实表就可以了。这种基于虚拟列的查询语句,对于ShardingSphere来说实际上是一块难啃的骨头。因为他很难解析出你是按照cid分片键进行查询的,并且不知道怎么组织对应的策略去进行分库分表。所以他的做法只能又是性能最低的全路由查询。

实际上ShardingSphere无法正常解析的语句还有很多。基本上用上分库分表后,你的应用就应该要和各种多表关联查询、多层嵌套子查询、distinct查询等各种复杂查询分手了。

         这个cid的奇偶关系并不能通过SQL语句正常体现出来,这时,就需要用上ShardingSphere提供的另外一种分片算法HINT强制路由。HINT强制路由可以用一种与SQL无关的方式进行分库分表。

        注释掉之前给course表分配的分表算法,重新分配一个HINT_INLINE类型的分表算法。

#给course表指定分表策略  hint-与SQL无关的方式进行分片
spring.shardingsphere.rules.sharding.tables.course.table-strategy.hint.sharding-algorithm-name=course_tbl_alg
# 分表策略-HINT:用于SQL无关的方式分表,使用value关键字。
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.type=HINT_INLINE
spring.shardingsphere.rules.sharding.sharding-algorithms.course_tbl_alg.props.algorithm-expression=course_$->{value}

        ​ 然后,在应用进行查询时,使用HintManager给HINT策略指定value的值。

 @Testpublic void queryCourseByHint(){//强制只查course_1表HintManager hintManager = HintManager.getInstance();// 强制查course_1表hintManager.addTableShardingValue("course","1");//select * from course;List<Course> courses = courseMapper.selectList(null);courses.forEach(course -> System.out.println(course));//线程安全,所有用完要注意关闭。hintManager.close();//hintManager关闭的主要作用是清除ThreadLocal,释放内存。HintManager实现了AutoCloseable接口,所以建议使用try-resource的方式,用完自动关闭。//try(HintManager hintManager = HintManager.getInstance()){ xxxx }}

         这样就可以让SQL语句只查询course_1表,在当前场景下,也就相当于是实现了只查cid为奇数的需求。

5.6 常用策略总结

         在之前的示例中就介绍了ShardingSphere提供的MOD、HASH-MOD这样的简单内置分片策略,standard、complex、hint三种典型的分片策略以及CLASS_BASED这种扩展分片策略的方法。为什么要有这么多的分片策略,其实就是以为分库分表面临的业务场景其实是很复杂的。即便是ShardingSphere,也无法真的像MySQL、Oracle这样的数据库产品一样,完美的兼容所有的SQL语句。因此,一旦开始决定用分库分表,那么后续业务中的每一个SQL语句就都需要结合分片策略进行思考,不能像操作真正数据库那样随心所欲了。

相关文章:

分布式专题(10)之ShardingSphere分库分表实战指南

一、ShardingSphere产品介绍 Apache ShardingSphere 是一款分布式的数据库生态系统&#xff0c; 可以将任意数据库转换为分布式数据库&#xff0c;并通过数据分片、弹性伸缩、加密等能力对原有数据库进行增强。Apache ShardingSphere 设计哲学为 Database Plus&#xff0c;旨在…...

支付宝订单码支付

1.订单码支付&#xff0c;首先下载官方网站提供的sdk包到你的项目中。 2.选择控制器复制官方文档的获取二维码相关的代码示例。打开sdk包中v2的index.php文件&#xff0c;这个才是你选择语言的具体代码。 3.引用里面所需要的类文件&#xff0c;文件下载到你的项目中后&#xf…...

使用 Django 和 AWS ECR 实现容器化应用的管理

在现代云原生应用的开发和部署中,容器化技术已经成为主流。Amazon Elastic Container Registry (ECR) 是一种完全管理的 Docker 容器注册表服务,可以与 Amazon ECS、EKS 和其他容器服务无缝集成。在这篇文章中,我们将介绍如何使用 Django 和 AWS ECR 实现集成管理,包括创建、更…...

DeepWalk 原理详解

概述&#xff1a; DeepWalk 是一种流行的图嵌入方法&#xff0c;用于学习图结构数据中节点的低维表示。它通过将图的节点视作序列数据&#xff0c;利用自然语言处理中的技术&#xff08;类似于word2vec算法&#xff09;来捕捉节点间的关系&#xff0c;可以帮助我们理解和利用图…...

深入理解批量归一化(BN):原理、缺陷与跨小批量归一化(CmBN)

在训练深度神经网络时&#xff0c;批量归一化&#xff08;Batch Normalization&#xff0c;简称BN&#xff09;是一种常用且有效的技术&#xff0c;它帮助解决了深度学习中训练过程中的梯度消失、梯度爆炸和训练不稳定等。然而&#xff0c;BN也有一些局限性&#xff0c;特别是在…...

基于Spring Boot的雅苑小区管理系统

一、系统背景与意义 随着信息化技术的快速发展&#xff0c;传统的小区物业管理方式已经难以满足现代居民对于高效、便捷服务的需求。因此&#xff0c;开发一款基于Spring Boot的小区管理系统显得尤为重要。该系统旨在通过信息化手段&#xff0c;实现小区物业管理的智能化、自动…...

物理层知识要点

文章目录 物理层接口的四大特性通信基础编码和调制&#xff08;1&#xff09;数字数据编码为数字信号&#xff08;2&#xff09;模拟数据编码为数字信号&#xff08;3&#xff09;常见调制方式&#xff08;3&#xff09;信道的极限容量 多路复用技术数据传输方式物理层下的传输…...

项目里用到了哪些设计模式是怎么使用的?

在软件开发项目中&#xff0c;设计模式是解决特定问题的通用模板或最佳实践。它们提供了一种经过验证的方式来组织代码&#xff0c;使其更易于理解、维护和扩展。下面我将详细介绍一些常见的设计模式及其在项目中的应用方式。 1. 单例模式&#xff08;Singleton Pattern&#…...

CPU性能篇-CPU 100%如何定位根因-Day 03

1. CPU使用率 1.1 关键指标介绍 user&#xff08;通常缩写为 us&#xff09;&#xff0c;代表用户态 CPU 时间。注意&#xff0c;它不包括下面的 nice 时间&#xff0c;但包括了 guest 时间。nice&#xff08;通常缩写为 ni&#xff09;&#xff0c;代表低优先级用户态 CPU 时…...

访谈积鼎科技总经理:国产CFD软件发展与未来趋势展望

傅彦国&#xff0c;上海积鼎信息科技有限公司创始人 记者&#xff1a;请傅总介绍下我国流体仿真行业的发展现状是怎样的&#xff1f; 傅彦国&#xff1a;自2018年政府加大了对核心技术自主研发的支持力度&#xff0c;国产CFD软件逐渐步入发展正轨。 首先&#xff0c;从市场规…...

四种自动化测试模型实例及优缺点详解

一、线性测试 1.概念&#xff1a; 通过录制或编写对应应用程序的操作步骤产生的线性脚本。单纯的来模拟用户完整的操作场景。 &#xff08;操作&#xff0c;重复操作&#xff0c;数据&#xff09;都混合在一起。 2.优点&#xff1a; 每个脚本相对独立&#xff0c;且不产生…...

数字后端培训项目Floorplan常见问题系列专题续集1

今天继续给大家分享下数字IC后端设计实现floorplan阶段常见问题系列专题。这些问题都是来自于咱们社区IC后端训练营学员提问的问题库。目前这部分问题库已经积累了4年了&#xff0c;后面会陆续分享这方面的问题。 希望对大家的数字后端学习和工作有所帮助。 数字后端项目Floor…...

NVIDIA GPU 内部架构介绍

NVIDIA GPU 架构 NVIDIA GPU 的 SM&#xff08;Streaming Multiprocessor&#xff09; 和 GPC&#xff08;Graphics Processing Cluster&#xff09; 是 GPU 架构中的关键组成部分。它们决定了 GPU 的计算能力和性能&#xff0c;以下是对这两个参数的详细介绍&#xff1a; 1. …...

[spring]实例化对象(静动态工厂)

在前面文章的例子当中&#xff0c;我们都创建了Bean对象。spring里常用的获取类的实例化对象有几种方式&#xff1a;构造函数获取Bean对象、静态和动态工厂获取Bean对象、实现FactoryBean规范。 因为一些步骤没有什么别的不同&#xff0c;所以我不会重复去讲&#xff0c;届时会…...

【转】arm64架构的银河麒麟系统Kylin的qt安装教程

转自&#xff1a;arm64架构的银河麒麟系统Kylin的qt安装教程_银河麒麟安装qt-CSDN博客 文章目录 前言 一、准备环境 安装C编译器和调试器 二、安装qt、qtcreator 检查是否已经安装过Qt组件 安装Qt组件和Qt creator 检查组件是否安装成功&#xff1a; 三、测试程序运行 报错 Qt…...

C# Main方法 和顶级语句详解

总目录 前言 Main方法 和顶级语句 介绍。 一、Main方法 1. 基本信息 Main 方法是 C# 应用程序的入口点。 Main 方法是应用程序启动后调用的第一个方法。C# 程序中只能有一个入口点。如果多个类包含 Main 方法&#xff0c;必须使用 StartupObject 编译器选项来编译程序&#…...

传输层协议分析头歌

第1关&#xff1a;TCP 包基础 本机使用的IP地址和TCP端口号(用;隔开):192.168.1.102;1161 gaia.cs.umass.edu的IP地址和端口号(用;隔开):128.119.245.12;80 第2关&#xff1a;三次握手 第一次握手&#xff0c;TCP SYN区段的序列号是&#xff1a;232129012 gaia.cs.umass.edu…...

JAVA AOP简单实践(基于SpringBoot)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

重温设计模式--迭代器模式

文章目录 迭代器模式&#xff08;Iterator Pattern&#xff09;概述迭代器模式的结构迭代器模式UML图C 代码示例应用场景 迭代器模式&#xff08;Iterator Pattern&#xff09;概述 定义&#xff1a; 迭代器模式是一种行为型设计模式&#xff0c;它提供了一种方法来顺序访问一个…...

Unity-Editor扩展GUI基本实现一个可拖拉放的格子列表

短短几百行代码,好吧,又是“参考”了国外的月亮 操作,还真地挺自然的。。。。。。国外的实现有点小牛 拖拉,增加+ 一个Element 鼠标左键长按,可以出提示 鼠标右键,清除Element, 有点小bug,不是很自然地完全清除, using System.Collections; using System.Collecti…...

Android 11添加电容笔电量监测需求

软件平台&#xff1a;Android11 硬件平台&#xff1a;QCS6125 需求&#xff1a;PAD接入电容笔&#xff0c;该笔通过驱动上报坐标及当前电量等数据&#xff0c;即走系统的input通道&#xff0c;需要系统层监测到该硬件数据&#xff0c;这里主要展示电量&#xff0c;对用户显示提…...

迈向AGI——大模型创新体验嘉年华邀请函

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; ‍ 深度对话&#xff0c;思想碰撞 大模型创新体验嘉年华诚邀您与我们共同见证 智见未来&#xff0c;只等你来 往期精彩文章推荐 关于AI TIME AI TIME源起于2019年&#xff0c;旨在发扬科学思辨精神&#xff0c…...

VSCode 性能优化指南:提高编码效率,减少资源占用

Visual Studio Code&#xff08;简称VSCode&#xff09;是一款广受欢迎的代码编辑器&#xff0c;以其强大的功能和丰富的插件生态系统著称。然而&#xff0c;随着项目规模的扩大和插件数量的增加&#xff0c;VSCode 的性能可能会受到影响。本文将介绍一系列优化措施&#xff0c…...

如何获取 ABAP 内表中的重复项

要识别 ABAP 内表中的重复项&#xff0c;可以结合使用排序和循环。下面的示例展示了如何查找内部表中的重复条目&#xff1a; DATA: BEGIN OF itab OCCURS 0,field1 TYPE i,field2 TYPE c LENGTH 10,END OF itab,wa LIKE LINE OF itab.* Add sample data to internal table it…...

android 登录界面编写

1、登录页面实现内容 1.实现使用两个EditText输入框输入用户名和密码。 2.使用CheckBox控件记住密码功能。 3.登录时候&#xff0c;验证用户名和密码是否为空。 4.当前CheckBox控件记住密码勾上时&#xff0c;使用SharedPreferences存储用户名和密码。 5.登录时候使用Prog…...

3D-resnet 50 医学3D图像二分类python代码

离上次发布3D-resnet代码时隔两年&#xff0c;最近让AI推荐3D-resnet的文章给我&#xff0c;AI推荐了三篇 其中两篇是我两年前发的&#xff0c;另一篇在这里Resnet3D预训练网络...... 于是决定更新之前代码&#xff0c;供诸位参考1. 可以用cpu或gpu&#xff08;推荐8G以上&…...

android sqlite 数据库简单封装示例(java)

sqlite 数据库简单封装示例&#xff0c;使用记事本数据库表进行示例。 首先继承SQLiteOpenHelper 使用sql语句进行创建一张表。 public class noteDBHelper extends SQLiteOpenHelper {public noteDBHelper(Context context, String name, SQLiteDatabase.CursorFactory fact…...

项目练习:若依-前端项目的目录结构介绍

文章目录 一、目录截图二、目录讲解 一、目录截图 二、目录讲解 1、首先&#xff0c;我们可以看到&#xff0c;这个VUE项目&#xff0c;只有一个App.vue&#xff0c;所以&#xff0c;它是一个单页面系统。 这个App.vue是根组件&#xff0c;root组件。 2、public目录 在Vue 3.…...

Android 之 List 简述

一、简单创建方式 Android 开发中&#xff0c;列表有很多种类&#xff0c;如ArrayList、LinkedList、List、MutableList等&#xff0c;创建列表的方式如下所示&#xff1a; fun listDemo() {// 使用 listOf 创建不可变的空列表val list listOf<Int>()val list1 listOf…...

CV(6)-SIFT和Hash

前言 仅记录学习过程&#xff0c;有问题欢迎讨论 SIFT:尺度不变特征变换&#xff1a; SIFT提取图像的局部特征&#xff0c;在尺度空间寻找极值点&#xff0c;并提取出其位置、尺度、方向信息。SIFT的应用范围包括物体辨别、机器人地图感知与导航、影像拼接、3D模型建立、手势…...

javax.net.ssl.SSLPeerUnverifiedException: Hostname 192.168.13.13 not verified:

javax.net.ssl.SSLPeerUnverifiedException: Hostname 192.168.13.13 not verified: 前言&#xff1a; 之前需求推送数据是采用http:192.168.13.13:8000 后面业务需求修改为 https:192.168.13.13:443 修改后推送数据到第三方报以下异常&#xff0c; https://192.168.13.13:443…...

用Unity做没有热更需求的单机游戏是否有必要使用AssetBundle?

在使用Unity开发没有热更需求的单机游戏时&#xff0c;是否使用AssetBundle&#xff08;AB包&#xff09;是一个值得探讨的问题。以下是对此问题的详细分析&#xff1a; 一、AssetBundle的概述 AssetBundle是Unity中用于存储和加载游戏资源的打包文件&#xff0c;可以包含各种…...

WebRTC Simulcast 大小流介绍与优化实践

Simulcast 是 WebRTC 中的一种标准化技术 &#xff0c;简称大小流。通过 Simulcast&#xff0c;客户端可以同时发送同一视频的多个版本。每个版本都以不同的分辨率和帧率独立编码&#xff0c;带宽较多的拉流端可以接收较高质量的视频流&#xff0c;带宽有限的拉流端则可以接收较…...

软件测试之测试用例

文章目录 测试用例测试用例的编写总结 测试用例 测试用例:描述测试点执行的文档(测试输入、执行条件、预期结果等) 作用 1.测试点能被精准执行 2.便于团队合作测试用例核心内容 用例编号、用例标题、所属模块、优先级、前置条件、测试步骤、测试数据、预期结果 测试用例的编写…...

Redis--通用命令学习

目录 一、引言 二、基础命令 1.set 2.get 3.keys 3.1 keys &#xff1f; 3.2 keys * 3.3 keys [abe] 3.4 keys [^] 3.5 keys [a-b] 4.exists 5.delete 6.expire 7.ttl 8.type 三、Redis中的过期策略&#xff08;面试题&#xff09; 1.惰性删除 2.定期删除 …...

自动控制系统综合与LabVIEW实现

自动控制系统综合是为了优化系统性能&#xff0c;确保其可靠性、稳定性和灵活性。常用方法包括动态性能优化、稳态误差分析、鲁棒性设计等。结合LabVIEW&#xff0c;可以通过图形化编程、高效数据采集与处理来实现系统综合。本文将阐述具体方法&#xff0c;并结合硬件选型提供实…...

一篇文章学会HTML

目录 页面结构 网页基本标签 图像标签 超链接标签 文本链接 图像链接 锚链接 功能链接 列表 有序列表 无序列表 自定义列表 表格 跨列/跨行 表头 媒体元素 视频 音频 网站的嵌套 表单 表单元素 文本框 单选框 多选框 按钮 下拉框 文本域和文件域 表…...

48页PPT|2024智慧仓储解决方案解读

本文概述了智慧物流仓储建设方案的行业洞察、业务蓝图及建设方案。首先&#xff0c;从政策层面分析了2012年至2020年间国家发布的促进仓储业、物流业转型升级的政策&#xff0c;这些政策强调了自动化、标准化、信息化水平的提升&#xff0c;以及智能化立体仓库的建设&#xff0…...

React Props 完整使用指南

React Props 完整使用指南 1. 类组件中的 Props 1.1 基本使用 // 父组件 class ParentComponent extends React.Component {render() {return (<ChildComponent name"John"age{25}isStudent{true}hobbies{[reading, swimming]}/>);} }// 子组件 class Child…...

金融数据可视化实现

一、设计题目 金融数据可视化 二、设计目的 使学生掌握用Pandas第三方库数据计算、数据分析的知识与能力。Pandas是专门用于数据分析的库&#xff0c;其提供的read_excel()方法可以方便的读取xlsx格式的文件中的数据到Pandas中的DataFrame中。 DataFrame.plot(kindline)&am…...

逆袭之路(6)——解析数据世界的灵动基石——变量

困厄铸剑心&#xff0c;逆袭展锋芒。 寒苦凝壮志&#xff0c;腾跃绘华章。 我要逆袭。 目录 一、引言 二、变量的定义 三、变量的性质 &#xff08;一&#xff09;可变性 &#xff08;二&#xff09;有界性 &#xff08;三&#xff09;关联性 四、变量的类型 &#xff…...

【云原生】kubeadm搭建的kubernetes1.28集群上自建ingress-nginx服务

1、查询兼容性 先确认下kubernetes版本与ingress-nginx版本兼容性 Ingress-NGINX 版本支持的 k8s 版本Alpine 版本Nginx 版本Helm Chart 版本v1.12.0-beta.01.31, 1.30, 1.29, 1.283.20.31.25.54.12.0-beta.0v1.11.31.30, 1.29, 1.28, 1.27, 1.263.20.31.25.54.11.3v1.11.21.3…...

分布式协同 - 分布式事务_TCC解决方案

文章目录 导图Pre流程图2PC VS 3PC VS TCC2PC&#xff08;Two-Phase Commit&#xff0c;二阶段提交&#xff09;3PC&#xff08;Three-Phase Commit&#xff0c;三阶段提交&#xff09;TCC&#xff08;Try-Confirm-Cancel&#xff09;2PC、3PC与TCC的区别2PC、3PC与TCC的联系 导…...

两分钟解决:vscode卡在设置SSH主机,VS Code-正在本地初始化VSCode服务器

问题原因 remote-ssh还是有一些bug的&#xff0c;在跟新之后可能会一直加载初始化SSH主机解决方案 1.打开终端2.登录链接vscode的账号&#xff0c;到家目录下3.找到 .vscode-server文件,删掉这个文件4.重启 vscode 就没问题了...

SpringBoot3整合FastJSON2如何配置configureMessageConverters

在 Spring Boot 3 中整合 FastJSON 2 主要涉及到以下几个步骤&#xff0c;包括添加依赖、配置 FastJSON 作为 JSON 处理器等。下面是详细的步骤&#xff1a; 1. 添加依赖 首先&#xff0c;你需要在你的 pom.xml 文件中添加 FastJSON 2 的依赖。以下是 Maven 依赖的示例&#…...

数据库安全-redisCouchdb

1.redis未授权访问 默认端口:6379 1.1 Redis沙盒逃逸漏洞RCE-CVE-2022-0543 介绍&#xff1a;Redis 是一套开源的使用 ANSI C编写、支持网络、可基于内存亦可持久化的日志型、键值存储数据库&#xff0c;并提供多种语言的API。Redis 如果在没有开启认证的情况下&#xff0c;…...

java如何使用poi-tl在word模板里渲染多张图片

1、poi-tl官网地址 http://deepoove.com/poi-tl/ 2、引入poi-tl的依赖 <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId><version>1.12.1</version></dependency>3、定义word模板 释义&#xf…...

ASP.NET |日常开发中常见问题归纳讲解

ASP.NET &#xff5c;日常开发中常见问题归纳讲解 前言一、性能问题1.1 数据库访问性能1.2 视图状态&#xff08;在ASP.NET Web Forms 中&#xff09; 二、安全问题2.1 SQL 注入2.2 跨站脚本攻击&#xff08;XSS&#xff09; 三、状态管理问题3.1 会话状态&#xff08;Session …...

Jenkins安全部署规范及安全基线

Jenkins安全部署规范及安全基线 进入安全设置界面启用安全Disable remember me访问控制——安全域&#xff08;Security Realm&#xff09;servlet容器代理&#xff08;Delegate to servlet container&#xff09;Jenkins专有用户数据库&#xff08;Jenkins’ own user databas…...

stm32定时器输出比较----驱动步进电机

定时器输出比较理论 OC(Output Compare)输出比较输出比较可以通过比较CNT与CCR寄存器值的关系,来对输出电平进行置1、置0或翻转的操作,用于输出一定频率和占空比的PWM波形每个高级定时器和通用定时器都拥有4个输出比较通道高级定时器的前3个通道额外拥有死区生成和互补输出…...