探索大语言模型(LLM):循环神经网络的深度解析与实战(RNN、LSTM 与 GRU)
一、循环神经网络(RNN)
1.1 基本原理
循环神经网络之所以得名,是因为它在处理序列数据时,隐藏层的节点之间存在循环连接。这意味着网络能够记住之前时间步的信息,并利用这些信息来处理当前的输入。
想象一下,我们正在处理一段文本,每个单词就是一个时间步的输入。RNN 在读取每个单词时,不仅会考虑当前单词的含义,还会结合之前已经读过的单词信息,从而更好地理解整个句子的语境。
用数学公式来表示,假设我们有一个输入序列 x 1 , x 2 , . . . , x T x_1,x_2,...,x_T x1,x2,...,xT,在时间步t,RNN 的隐藏状态 h t h_ t ht的计算方式如下: h t = σ ( W x h x t + W h h h t − 1 + b h ) h_t=σ(W_{xh}x_t+W_{hh}h_{t−1}+b_h) ht=σ(Wxhxt+Whhht−1+bh)
其中,σ是激活函数(通常为 tanh 或 sigmoid), W x h W_{xh} Wxh是输入到隐藏层的权重矩阵, W h h W_{hh} Whh是隐藏层到隐藏层的权重矩阵, b h b_h bh是偏置项。输出 y t y_t yt通常通过以下公式计算:
y t = W h y h t + b y y_t =W_{hy}h_t+b_y yt=Whyht+by
这里 W h y W_{hy} Why是隐藏层到输出层的权重矩阵, b y b_y by是输出层的偏置项。
1.2 前向传播过程
以前文提到的文本处理为例,假设我们有一个简单的句子 “我喜欢深度学习”,我们将每个单词通过词向量表示后作为输入 x t x_t xt依次输入到 RNN 中。在第一个时间步,输入 “我” 对应的词向量 x 1 x_1 x1,结合初始隐藏状态 h 0 h_0 h0(通常初始化为零向量),通过上述公式计算得到隐藏状态 h 1 h_1 h1。接着,输入 “喜欢” 对应的词向量 x 2 x_2 x2,此时结合 h 1 h_1 h1计算 h 2 h_2 h2,以此类推,直到处理完整个句子。最终的隐藏状态
h T h_T hT可以用于预测句子的情感倾向(比如是积极还是消极)等任务。
1.3 训练过程
RNN 的训练通常使用反向传播通过时间(Backpropagation Through Time, BPTT)算法。BPTT 算法本质上是标准反向传播算法在时间序列上的扩展。它通过计算损失函数(比如交叉熵损失)关于网络参数( W x h W_{xh} Wxh , W h h W_{hh} Whh , W h y W_{hy} Why , b h b_h bh , b y b_y by等)的梯度,然后使用梯度下降等优化算法来更新参数,使得损失函数逐渐减小。在计算梯度时,由于隐藏层状态在时间步之间的循环连接,梯度会在时间维度上进行反向传播,这也是 BPTT 名称的由来。
1.4 面临的挑战
RNN 虽然具有记忆能力,但在处理长序列时,会面临梯度消失或梯度爆炸的问题。简单来说,当反向传播的时间步数增多时,梯度在传递过程中可能会变得非常小(梯度消失),导致前面时间步的信息对当前时间步的影响几乎可以忽略不计,使得模型难以学习到长距离的依赖关系;或者梯度变得非常大(梯度爆炸),导致参数更新不稳定,模型无法正常训练。
挑战类型 | 描述 | 对模型的影响 |
---|---|---|
梯度消失 | 反向传播时梯度逐渐变小 | 难以学习长距离依赖关系,模型性能下降 |
梯度爆炸 | 反向传播时梯度逐渐变大 | 参数更新不稳定,模型无法正常训练 |
二、长短期记忆网络(LSTM)
2.1 结构与原理
为了解决 RNN 的梯度问题,LSTM 应运而生。LSTM 引入了一种特殊的结构 —— 细胞状态(Cell State),它就像一条信息高速公路,能够让信息在序列中相对轻松地流动,从而有效捕捉长期依赖关系。
LSTM 通过三个门来控制细胞状态中的信息:遗忘门(Forget Gate)、输入门(Input Gate)和输出门(Output Gate)。
遗忘门决定从上一个时间步的细胞状态 C t − 1 C_{t−1} Ct−1中丢弃哪些信息,其计算公式为:
f t = σ ( W x f x t + W h f h t − 1 + b f ) f_t=σ(W_{xf}x_t+W_{hf}h_{t−1}+b_f) ft=σ(Wxfxt+Whfht−1+bf)
这里 W x f , W h f , b f W_{xf} ,W_{hf} ,b_f Wxf,Whf,bf分别是遗忘门对应的权重矩阵和偏置项。
输入门决定将哪些新信息添加到细胞状态中,它由两部分组成。首先是输入门值 i t i_t it,计算公式为:
i t = σ ( W x i x t + W h i h t − 1 + b i ) i_t=σ(W_{xi}x_t+W_{hi}h_{t−1}+b_i) it=σ(Wxixt+Whiht−1+bi)
然后是候选细胞状态 C ~ t \tilde C_t C~t,计算公式为:
C ~ t = t a n h ( W x C x t + W h C h t − 1 + b C ) \tilde C_t =tanh(W_{xC}x_t+W_{hC}h_{t−1}+b_C) C~t=tanh(WxCxt+WhCht−1+bC)
最终更新后的细胞状态 C t C_t Ct为:
C t = f t ⊙ C t − 1 + i t ⊙ C ~ t C_t =f_t ⊙C_{t−1} +i_t⊙ \tilde C_t Ct=ft⊙Ct−1+it⊙C~t
其中 ⊙ ⊙ ⊙表示逐元素相乘。
输出门决定细胞状态的哪些部分将作为当前时间步的输出 h t h_t ht,计算公式为:
o t = σ ( W x o x t + W h o h t − 1 + b o ) o_t=σ(W_{xo}x_t+W_{ho}h_{t−1}+b_o) ot=σ(Wxoxt+Whoht−1+bo)
然后当前时间步的隐藏状态 h t h_t ht为:
h t = o t ⊙ t a n h ( C t ) h_t=o_t⊙tanh(C_t) ht=ot⊙tanh(Ct)
LSTM 结构示意图:
2.2 工作流程
在每个时间步,LSTM 首先通过遗忘门决定保留或丢弃上一个时间步细胞状态中的哪些信息。然后通过输入门和候选细胞状态决定添加哪些新信息到细胞状态中。更新完细胞状态后,再通过输出门决定输出哪些信息作为当前时间步的隐藏状态。这个过程不断重复,使得 LSTM 能够有效处理长序列数据。
2.3 应用案例 - 股价预测
假设我们要预测某只股票未来的价格走势。我们将过去一段时间(比如 100 天)的股票价格作为输入序列,通过 LSTM 模型进行训练。在训练过程中,LSTM 可以学习到股票价格之间的长期依赖关系,比如某些宏观经济因素对股价的长期影响。当训练完成后,我们可以输入最近一段时间的股价,让模型预测未来几天的股价。与传统的时间序列预测方法相比,LSTM 能够更好地捕捉股价波动中的复杂模式,从而提高预测的准确性。
三、门控循环单元(GRU)
3.1 结构与原理
GRU 可以看作是 LSTM 的简化版本。它将 LSTM 中的遗忘门和输入门合并为一个更新门(Update Gate),同时取消了单独的细胞状态,直接通过隐藏状态传递信息。
更新门 z t z_t zt的计算公式为:
z t = σ ( W x z x t + W h z h t − 1 + b z ) z_t=σ(W_{xz}x_t+W_{hz}h_{t−1}+b_z) zt=σ(Wxzxt+Whzht−1+bz)
重置门(Reset Gate) r t r_t rt的计算公式为:
r t = σ ( W x r x t + W h r h t − 1 + b r ) r_t=σ(W_{xr}x_t +W_{hr} h_{t−1} +b_r) rt=σ(Wxrxt+Whrht−1+br)
候选隐藏状态 h ~ t \tilde h_t h~t的计算公式为:
h ~ t = t a n h ( W x h x t + r t ⊙ ( W h h h t − 1 ) + b h ) \tilde h_t=tanh(W_{xh}x_t +r_t ⊙(W_{hh}h_{t−1})+b_h) h~t=tanh(Wxhxt+rt⊙(Whhht−1)+bh)
最终的隐藏状态 h t h_t ht 为:
h t = ( 1 − z t ) ⊙ h t − 1 + z t ⊙ h ~ t h_t =(1−z_t )⊙h_{t−1} +z_t ⊙\tilde h_t ht=(1−zt)⊙ht−1+zt⊙h~t
GRU 结构示意图:
3.2 与 LSTM 的比较
与 LSTM 相比,GRU 结构更简单,参数更少,因此训练速度更快。在一些对实时性要求较高或者数据量较小的场景中,GRU 可能会表现得更好。但在处理非常复杂的长序列数据时,LSTM 由于其更精细的门控机制,可能会取得更好的效果。
模型 | 结构特点 | 参数数量 | 训练速度 | 适用场景 |
---|---|---|---|---|
LSTM | 有细胞状态,三个门控 | 较多 | 较慢 | 复杂长序列数据 |
GRU | 无细胞状态,两个门控 | 较少 | 较快 | 实时性要求高或数据量小 |
3.3 应用案例 - 实时语音识别
在实时语音识别系统中,需要快速处理连续的语音流数据。GRU 由于其简单高效的结构,能够在保证一定准确率的前提下,快速对语音数据进行处理和识别。它可以实时地将输入的语音信号转换为文字,满足人们在语音交互场景中的需求。
总结
循环神经网络(RNN)为处理序列数据提供了基础框架,但其在长序列处理上的局限性促使了长短期记忆网络(LSTM)和门控循环单元(GRU)的诞生。LSTM 通过精细的门控机制和细胞状态,有效地解决了梯度问题,能够处理复杂的长序列数据。GRU 则在保持一定性能的同时,通过简化结构提高了训练效率。在实际应用中,我们需要根据具体任务的特点和需求,选择合适的模型。希望通过本文的介绍,你对 RNN、LSTM 和 GRU 有了更深入的理解,并能够在自己的项目中灵活运用它们。
相关文章:
探索大语言模型(LLM):循环神经网络的深度解析与实战(RNN、LSTM 与 GRU)
一、循环神经网络(RNN) 1.1 基本原理 循环神经网络之所以得名,是因为它在处理序列数据时,隐藏层的节点之间存在循环连接。这意味着网络能够记住之前时间步的信息,并利用这些信息来处理当前的输入。 想象一下…...
从零开始开发 MCP Server
作者:张星宇 在大型语言模型(LLM)生态快速演进的今天,Model Context Protocol(MCP)作为连接 AI 能力与真实世界的标准化协议,正逐步成为智能体开发的事实标准。该协议通过定义 Resources&#…...
Oracle日志系统之重做日志和归档日志
Oracle日志系统之重做日志和归档日志 重做日志归档日志 本文讨论Oracle日志系统中对数据恢复非常重要的两个日志:重做日志和归档日志。 重做日志 重做日志,英文名Redo Log,顾名思义,是用来数据重做的,主要使用场景是事…...
嵌入式开发--STM32G4系列硬件CRC支持MODBUS和CRC32
需求 在项目中,需要用到MODBUS CRC16校验,也要用到CRC32的校验,出于效率的考虑,准备用硬件CRC。 CRC 16的参数模型有很多种,我这里用的是MODBUS,对于不同的参数模型,会有不同的参数设置和初值&a…...
基于尚硅谷FreeRTOS视频笔记——4—多任务处理
目录 多任务处理 任务调度 任务的调度策略 优先级不同 优先级相同 多任务处理 通俗来讲就是 能够在同一时间 同时 进行多个任务的处理,这就时多任务处理。 但是,单核处理器一次只能处理一个任务,就是说在while中,任务们只能…...
中小型及初创企业如何实现数字化转型?
在当今动态的商业环境中,财务团队开始肩负起推动企业数字化转型的重任,即从传统的财务规划系统稳步迈向基于商业智能平台和以创新技术为驱动的解决方案领域。这些举措有望提高运营和分析效率,同时依托数据驱动的决策机制,帮助企业…...
java输出、输入语句
先创建一个用于测试的java 编写程序 #java.util使java标准库的一个包,这里拉取Scanner类 import java.util.Scanner;public class VariableTest {public static void main(String[] args) {#创建一个 Scanner 对象Scanner scanner new Scanner(System.in);System.…...
Python基础知识语法归纳总结(数据类型-1)
Python基础知识&语法归纳总结(数据类型) 一、Python基本数据类型 尤其注意,Python中的变量不需要特定的去声明,每个变量在使用前都必须对其进行赋值,它没有类型,我们所说的“类型”是变量所指的内存中对…...
Spring数据访问全解析:ORM整合与JDBC高效实践
目录 一、Spring ORM集成深度剖析 🌟 ORM模块架构设计 核心集成特性: 整合MyBatis示例配置: 二、Spring JDBC高效实践指南 🌟 传统JDBC vs Spring JDBC对比 🌟 JdbcTemplate核心操作示例 批量操作优化…...
哪种电脑更稳定?Mac?Windows?还是云电脑? 实测解密
随着科技的发展进步,电脑已成为当下各类群体的必备产品之一,它的妙用有很多,无论是学生党、打工人还是已经退休的人群或都离不开它的存在。然而,电脑虽好却也差异很大、不同品牌、不同系统、不同配置、不同价位的统统都会有区别。…...
【AI模型学习】关于写论文——论文的审美
文章目录 一、“补丁法”(Patching)1.1 介绍1.2 方法论1.3 实例 二、判断工作的价值2.1 介绍2.2 详细思路2.3 科研性vs工程性 三、novelty以及误区3.1 介绍3.2 举例 看了李沐老师的读论文系列后,总结三个老师提到的有关课题研究和论文写作的三…...
【面经】杭州产链数字科技一面
1.介绍一下自己 面试官您好!我叫***,目前是就读于****计算机科学与技术专业的一名学生。我平时在学校也自学了编程相关的知识,比如Java基础、Springboot、SpringCloud,关系型数据库Mysql,非关系型数据库Redisÿ…...
微信小程序调用yolo目标检测模型
目录 后端 前端微信小程序 完整代码 后端 利用Flask,调用目标检测模型,后端代码如下。 # flask_yolo.py from flask import Flask, request, jsonify from ultralytics import YOLO from PIL import Imageapp Flask(__name__) model_path best.p…...
vmware17 虚拟机 ubuntu22.04 桥接模式,虚拟机无法接收组播消息
问题描述: 在一个项目中,宿主机win10中,使用的vmware17pro 虚拟机安装的ubuntu22.04,按照网上的教程使用Qt绑定组播消息,在另外一个Ubuntu工控机上发送用wiresahrk抓包的组播消息 sudo tcpreplay -i enp1s0 --loop0 y…...
Kaggle-Bag of Words Meets Bags of Popcorn-(二分类+NLP+Bert模型)
Bag of Words Meets Bags of Popcorn 题意: 有很多条电影评论记录,问你每一条记录是积极性的评论还是消极性的评论。 数据处理: 1.首先这是文件是zip形式,要先解压,注意sep ‘\t’。 2.加载预训练的 BERT 分词器 …...
数字信号处理技术架构与功能演进
数字信号处理(DSP)是通过数字运算实现信号分析、变换、滤波及调制解调的技术领域,其发展过程与技术应用如下: 一、定义与核心功能 技术定义:通过算法将模拟信号转换为数字形式进行处理,具有高精度、可编程…...
IaaS架构剖析、场景实践
一、什么是 IaaS 1.1 定义 Infrastructure as a Service(IaaS,基础设施即服务)是一种按需、弹性提供计算、存储、网络和安全等底层 IT 资源的云服务模式。用户通过 API、CLI 或 Web 控制台即可在几分钟内创建、扩容或释放资源,而…...
国产之光DeepSeek架构理解与应用分析02
本专栏 国产之光DeepSeek架构理解与应用分析-CSDN博客 国产之光DeepSeek架构理解与应用分析02-CSDN博客 前置的一些内容理解 GPU TPU NPU的区别? 设计目的 GPU:最初是为了加速图形渲染而设计的,用于处理图像和视频数据,以提供高…...
EDID结构
EDID DDC通讯中传输显示设备数据 VGA , DVI 的EDID由128字节组成,hdmi的EDID增加扩展块128字节。扩展快的内容主要是和音频属性相关的,DVI和vga没有音频,hdmi自带音频,扩展快数据规范按照cea-861x标准。 Edid为了让pc或其他的图像…...
4.黑马学习笔记-SpringMVC(P43-P47)
1.SpringMVC简介 SpringMVC技术(更少的代码,简便)与servlet技术功能相同,属于web层开发技术。 SpringMVC是一种基于java实现MVC模型的轻量级web框架。 轻量级指的是(内存占用比较低,运行效率高)…...
CSS 文件格式
A QFrame#andrFrm[status"android_en"] A:表示父类或顶层窗口的类型。如果 A 是一个自定义的类名,确保该类已经正确注册到 Qt 系统中。QFrame:表示具体的控件类型。#andrFrm:表示控件的对象名称(通过 setOb…...
java输出HelloWorld
创建一个java格式文件,这里命令为HelloWorld 这里我选择用notepad编译,也可以直接用记事本 #public 访问修饰词,表示这个类可以被其他任何类访问 #class 定义类的关键字 #HelloWorld 类名,遵循驼峰命名法(首字母大写…...
【SAP ME 44】在 HANA DB中报废SFC时的SHOP_ORDER表记录锁定
症状 SELECT…FROM SHOP_ORDER FOR UPDATE 在 SFC 报废期间持有锁,当同时调用数量较大时,可能会导致 HANA 数据库出现大量锁积压。这有时会导致因等待 HANA 数据库释放“选择更新”锁而导致报废 SFC 花费数分钟。 HANA 数据库日志中的示例: # begin PreparedStatement_ex…...
《软件设计师》复习笔记(12.1)——范围管理、进度管理
目录 一、范围管理 1. 核心概念 2. 范围管理过程 WBS(工作分解结构)示例 真题示例: 二、进度管理 1. 核心过程 2. 关键工具与技术 真题示例: 一、范围管理 1. 核心概念 项目范围:为交付产品必须完成的工作…...
Git-使用教程(新手向)
一、基本概念: 1.Git,Github的关系: Git --- 本地用于管理代码的工具,可类比为游戏存档。(存档,仓库,项目在Git中是一个东西) Github --- 远程仓库平台,可类比为云端。…...
密码学中的盐值是什么?
目录 1. 盐值的基本概念 2. 盐值的作用 (1) 防止彩虹表攻击 (2) 防止相同的密码生成相同的哈希值 (3) 增加暴力破解的难度 3. 如何使用盐值? (1) 生成盐值 (2) 将盐值附加到密码 (3) 存储盐值和哈希值 (4) 验证密码 4. 盐值如何增加暴力破解的难度 在线暴…...
[工具]Java xml 转 Json
[工具]Java xml 转 Json 依赖 <!-- https://mvnrepository.com/artifact/cn.hutool/hutool-all --> <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.8.37</version> </dependen…...
安全光幕的CE认证
在工业自动化飞速发展的当下,安全光幕作为保障操作人员安全的关键设备,其重要性不言而喻。对于想要进军欧盟市场的安全光幕制造商来说,CE 认证是必须跨越的一道关卡。今天,我们就来深入探讨安全光幕的 CE 认证流程。 什么是安全…...
DNS解析失败怎么解决?
在互联网时代,畅快地浏览网页、使用各类网络服务已成为生活常态。然而,当屏幕突然弹出 “DNS解析失败”的提示,原本顺畅的网络连接戛然而止,让人倍感困扰。DNS即域名系统,它如同互联网的 “电话簿”,负责将…...
亚马逊商品详情API数据接口概述,Amazon API
亚马逊商品详情API数据接口概述 亚马逊商品详情API(如Amazon Product Advertising API或Selling Partner API (SP-API))是亚马逊为开发者提供的官方接口,允许通过编程方式获取商品的详细信息,包括商品标题、价格、描述、图片、用…...
TCP/IP和UDP协议的发展历程
TCP/IP和UDP协议的发展历程 引言 互联网的发展史是人类技术创新的辉煌篇章,而在这一发展过程中,通信协议发挥了奠基性的作用。TCP/IP(传输控制协议/互联网协议)和UDP(用户数据报协议)作为互联网通信的基础…...
LeetCode 259 题全解析:Swift 快速找出“满足条件”的三人组
文章目录 摘要描述示例 1:示例 2:示例 3: 题解答案(Swift)题解代码分析示例测试及结果时间复杂度空间复杂度总结 摘要 本文围绕 LeetCode 259 题“较小的三数之和”,通过 Swift 给出两种解法,并…...
【MySQL】MySQL表的增删改查(CRUD) —— 上篇
目录 MySQL表的增删改查(CRUD) 1. 新增(Create)/插入数据 1.1 单行数据 全列插入 insert into 表名 values(值, 值......); 1.2 单行数据 指定列插入 1.3 多行数据 指定列插入 1.4 关于时间日期(datetime&am…...
基于大模型的腹股沟疝诊疗全流程风险预测与方案制定研究报告
目录 一、引言 1.1 研究背景与意义 1.2 国内外研究现状 1.3 研究目的与创新点 二、大模型技术概述 2.1 大模型基本原理 2.2 常用大模型类型及特点 2.3 大模型在医疗领域的应用潜力 三、腹股沟疝诊疗流程分析 3.1 腹股沟疝的发病机制与分类 3.2 传统术前评估方法与局…...
使用nssm将Nginx配置为Windows服务
使用nssm将Nginx配置为Windows服务 下载nssm工具 :使用NSSM创建服务启动并验证服务管理服务(启动/停止/重启) 下载nssm工具 : nssm下载网址 下载到指定路径下,解压就行。 使用NSSM创建服务 winr打开运行命令框&am…...
(8)VTK C++开发示例 --- 交互式3D部件
文章目录 1. 概述2. CMake链接VTK3. main.cpp文件4. 演示效果 更多精彩内容👉内容导航 👈👉VTK开发 👈 1. 概述 这个例子介绍了3D小部件(vtkBoxWidget)。3D小部件利用了前面介绍的事件/观察者设计模式。它们…...
ReAct、CoT 和 ToT:大模型提示词推理架构的对比分析
ReAct、CoT 和 ToT:大模型提示词推理架构的对比分析 在大型语言模型(LLM)的研究与应用中,如何有效提升模型在复杂任务上的推理能力是关键问题之一。目前,ReAct(Reasoning and Acting)、CoT&…...
Evidential Deep Learning和证据理论教材的区别(主要是概念)
最近终于彻底搞懂了Evidential Deep Learning,之前有很多看不是特别明白的地方,原来是和证据理论教材(是的,不只是国内老师写的,和国外的老师写的教材出入也比较大)的说法有很多不一样,所以特地…...
golang context源码
解析 context结构 Deadline:返回 context 的过期时间; Done:返回 context 中的 channel; Err:返回错误; Value:返回 context 中的对应 key 的值. type Context interface {Deadline() (deadl…...
VSCODE插值表达式失效问题
GET https://cdn.jsdelivr.net/npm/vue2.6.14/dist/vue.js net::ERR_CONNECTION_-CSDN博客 更换正确的vue域名 GET https://cdn.jsdelivr.net/npm/vue2.6.14/dist/vue.js net::ERR_CONNECTION_ <script src"https://unpkg.com/vue2.6.14/dist/vue.js"></sc…...
6.VTK 颜色
文章目录 概念RGB示例HSV示例 概念 RGB颜色系统:通过红(R)、绿(G)、蓝(B)三个颜色分量的组合来定义颜色。每个分量的取值范围是0到1,其中(0, 0, 0)代表黑色,而(1, 1, 1)代表白色。可以使用vtkProperty::SetColor(r, g, b)方法为Actor设置颜色…...
MQTTClient.c的线程模型与异步事件驱动
MQTTClient.c的线程模型与异步事件驱动 1. 多线程架构设计 MQTTClient.c通过分离网络I/O和用户逻辑线程实现异步通信,核心设计如下: sequenceDiagramparticipant 主线程 as 主线程(用户调用)participant 发送队列 as 发送队列pa…...
Flutter异常Couldn‘t find dynamic library in default locations
Flutter项目在Windows系统使用ffigen生成代码时报下面的错误: [SEVERE] : Couldnt find dynamic library in default locations. [SEVERE] : Please supply one or more path/to/llvm in ffigens config under the key llvm-path. Unhandled exception: Exception: …...
在PyCharm中部署AI模型的完整指南
引言 随着人工智能技术的快速发展,越来越多的开发者开始将AI模型集成到他们的应用程序中。PyCharm作为一款强大的Python IDE,为AI开发提供了出色的支持。本文将详细介绍如何在PyCharm中部署AI模型,从环境配置到最终部署的完整流程。 第一部分:准备工作 1. 安装PyCharm …...
6.6.图的广度优先遍历(英文缩写BFS)
树是一种特殊的图,树的广度优先遍历即层次遍历,所以会从树的角度入手图的广度优先遍历: BFS与DFS的区别在于,BFS使用了队列,DFS使用了栈 一.广度优先遍历: 1.树的广度优先遍历: 详情见"…...
练习(杨辉三角、字符串旋转)
一、 以下程序执行的结果: int main() {//0~255unsigned char a 200;//00000000000000000000000011001000//11001000 - a 截断unsigned char b 100;//00000000000000000000000001100100//01100100 - b unsigned char c 0;c a b;//11001000 - a//0110010…...
L1-7 矩阵列平移
题目 给定一个 nn 的整数矩阵。对任一给定的正整数 k<n,我们将矩阵的偶数列的元素整体向下依次平移 1、……、k、1、……、k、…… 个位置,平移空出的位置用整数 x 补。你需要计算出结果矩阵的每一行元素的和。 输入格式: 输入第一行给出…...
webgl入门实例-11模型矩阵 (Model Matrix)基本概念
WebGL 模型矩阵 (Model Matrix) 在WebGL和3D图形编程中,模型矩阵(Model Matrix)是将物体从局部坐标系(模型空间)转换到世界坐标系的关键变换矩阵。 什么是模型矩阵? 模型矩阵是一个4x4的矩阵,用于表示物体在世界空间中的位置、旋转和缩放。…...
【漫话机器学习系列】209.均值的标准误差(Standard Error of the Mean)
均值的标准误差(Standard Error of the Mean)详解 在统计学中,我们经常会遇到“均值的标准误差”这个概念,英文称为 Standard Error of the Mean(简称 SEM)。它是对样本均值作为总体均值估计的可靠程度的一…...
Multi Agents Collaboration OS:文档合规性及质量检测助手设计及实践
文档审查及质量检测背景 随着企业运营和知识管理的日益复杂,文档的合规性与质量成为确保信息准确、流程顺畅及风险控制的关键环节。传统上,人工进行文档的合规性和质量检测不仅耗时耗力,且易受主观因素影响,难以保证检测的全面性…...