当前位置: 首页 > news >正文

ChatBI的落地挑战——技术先进≠产品可用

近年来,大语言模型(LLM)的爆发让“对话式BI”(ChatBI)成为行业热点。然而,许多企业发现,尽管技术Demo令人惊艳,实际落地却困难重重——用户提问率低、回答准确度不稳定、使用场景模糊。

衡石科技在ChatBI的实践中发现:技术能力只是基础,真正的产品价值取决于形态是否匹配用户场景。本文将深入探讨:

为什么ChatBI的形态不能单纯由技术驱动?
衡石如何通过场景适配设计提升ChatBI的可用性?
技术实现上如何支撑多形态灵活部署?

一、技术优先的ChatBI为何容易失败?

1. 孤立对话框模式的局限性

许多ChatBI产品模仿ChatGPT,提供独立搜索框界面,但企业用户面临:

  • 缺乏上下文:用户需要手动输入完整业务背景(如“请分析2024年Q1华东区销售额”),而实际场景中需求往往产生于具体看板或业务流程中。

  • 使用门槛高:非技术人员不熟悉数据术语,难以构建有效提问。

技术视角:纯LLM方案依赖提示词工程(Prompt Engineering),但企业查询需要结合数据模型、权限等上下文。

2. 通用大模型与垂直场景的鸿沟

  • 数据口径问题:LLM可能混淆“销售额”(财务口径)与“GMV”(运营口径)。

  • 业务逻辑缺失:例如“高价值客户”需关联企业自定义的RFM模型。

衡石方案:通过智能数据模型(IDM)将自然语言映射到结构化查询,而非依赖LLM自由生成。


二、衡石ChatBI的场景适配设计

1. 三类核心场景与形态匹配

场景用户需求传统BI方案衡石ChatBI形态
监控业务进展快速获取标准化指标固定报表/看板嵌入式Dashboard助手
业务决策支持实时分析辅助操作嵌入式图表业务系统内AI分析按钮
团队协同沟通即时数据问答与分享Excel/人工查询IM工具智能机器人
技术实现差异
  • Dashboard助手:需与可视化组件联动(如点击图表后提问“为什么此指标异常”)。

  • IM机器人:需支持短文本意图识别(如“上季度营收”需自动关联企业财年定义)。

2. 场景化适配的技术关键点

(1) 上下文感知架构
  • 业务系统嵌入:通过微前端(Micro Frontend)技术注入ChatBI模块,共享当前页面数据上下文(如CRM中的客户ID)。

  • IM集成:解析聊天记录中的实体(如“@财务 2024预算”),自动过滤敏感数据。

(2) 混合式查询引擎

(3) 权限与数据治理

动态数据脱敏:根据用户角色限制AI回答范围(如销售仅能查看所属区域数据)。
审计日志:记录所有AI生成查询,满足合规要求。
三、技术架构如何支撑场景灵活性?

1. 插件化部署模型

衡石ChatBI采用模块化设计,支持快速适配不同场景:

业务系统集成:提供轻量级JS SDK,支持一键嵌入。
IM机器人:通过Webhook对接企微/飞书API。
2. 场景优化的模型微调

看板场景:训练模型优先识别指标术语(如“DAU”“转化率”)。
IM场景:优化短文本理解(如“营收怎么样?”→“请确认需要2024年Q1的全球营收吗?”)。
3. 性能与成本平衡

冷热查询分离:高频问题(如“今日销售额”)缓存结果,复杂分析走实时计算。
LLM分级调用:简单查询用轻量模型(如FastChat),深度分析调用GPT-4。

技术为场景服务,才是ChatBI的破局点

衡石ChatBI的核心洞察在于:企业不需要“全能AI”,而是需要“恰到好处的智能”。通过场景化形态设计、混合式技术架构、严格的数据治理,衡石让ChatBI从技术噱头转化为真实的生产力工具。

未来方向:随着AI Agent技术的发展,ChatBI或将进一步实现“自主分析-行动建议-业务执行”的闭环,但场景适配性仍将是技术演进的北极星指标。

相关文章:

ChatBI的落地挑战——技术先进≠产品可用

近年来,大语言模型(LLM)的爆发让“对话式BI”(ChatBI)成为行业热点。然而,许多企业发现,尽管技术Demo令人惊艳,实际落地却困难重重——用户提问率低、回答准确度不稳定、使用场景模糊…...

1.2 测试设计阶段:打造高质量的测试用例

测试设计阶段:打造高质量的测试用例 摘要 本文详细介绍了软件测试流程中的测试设计阶段,包括测试用例设计、测试数据准备、测试环境搭建和测试方案设计等内容。通过本文,读者可以系统性地了解测试设计的方法和技巧,掌握如何高效…...

x64dbg调试python解释器

可以先写个input()这会让dbg中断在ntdll模块中,查看调用堆栈在系统调用结束后的打断点 然后直接断到PyObject_Vectorcall函数...

浙江大学DeepSeek系列专题线上公开课第二季第四期即将上线!端云协同:让AI更懂你的小心思! - 张圣宇 研究员

今晚8点10分左右,端云协同:让AI更懂你的小心思!浙大学者张圣宇研究员将揭秘人机交互新玩法。浙江大学DeepSeek系列专题线上公开课第二季第四期即将上线! 讲座 主题: 大小模型端云协同赋能人机交互 主讲人&#xff1a…...

【项目管理】第3章 信息系统治理 --知识点整理

相关文档,希望互相学习,共同进步 风123456789~-CSDN博客 (一)知识总览 对应:第1章-第5章 (二)知识笔记 三、信息系统治理 本文涉及信息系统治理与审计的核心知识。 1)…...

算法与数据结构线性表之栈和队列

Hello大家好&#xff01; 很高兴与大家见面&#xff01; 给生活添点快乐&#xff0c;开始今天的编程之路。 我的博客:<但愿. 我的专栏:C语言、题目精讲、算法与数据结构、C 欢迎点赞&#xff0c;关注 一 栈 1概念&#xff1a;栈是⼀种特殊的线性表&#xff0c;其只允许…...

【Introduction to Reinforcement Learning】翻译解读2

2.2 马尔可夫决策过程&#xff08;MDPs&#xff09; 马尔可夫决策过程&#xff08;MDP&#xff09;为顺序决策提供了框架&#xff0c;其中动作不仅影响即时奖励&#xff0c;还会影响未来结果。与多臂老虎机问题不同&#xff0c;MDP中的即时奖励与延迟奖励相平衡。在多臂老虎机…...

2016年-全国大学生数学建模竞赛(CUMCM)试题速浏、分类及浅析

2016年-全国大学生数学建模竞赛(CUMCM)试题速浏、分类及浅析 全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling)是国家教委高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学…...

UI测试(2)

1、HTML 是用来描述网页的一种语言。 指的是超文本标记语言 (Hyper Text Markup Language) &#xff0c;HTML 不是一种编程语言&#xff0c;而是一种标记语言 (markup language) 负责定义页面呈现的内容&#xff1a;标签语言&#xff1a;<标签名>标签值<标签名>&am…...

Pr视频剪辑 Premiere Pro 2024 for Mac

Pr视频剪辑 Premiere Pro 2024 for Mac 文章目录 Pr视频剪辑 Premiere Pro 2024 for Mac一、介绍二、效果三、下载 一、介绍 Premiere Pro 2024 for Mac是一款专业的视频编辑软件&#xff0c;广泛应用于电影、电视、广告等领域。它为Mac用户提供了强大的剪辑、调色、音频处理等…...

电源测试系统自动化转型:Chroma 8000 与 NSAT-8000 核心功能对比解析

在全球制造业加速智能化升级的背景下&#xff0c;电源模块测试正从传统手动模式向自动化、智能化深度转型。作为企业降本增效与提升竞争力的关键&#xff0c;如何选择适配的测试系统成为行业焦点。本文聚焦市场主流的 Chroma 8000 与 NSAT-8000 两款系统&#xff0c;从功能设计…...

智能指针和STL库学习思维导图和练习

思维导图&#xff1a; #include <iostream> #include <vector> #include <string> using namespace std;// 用户结构体 struct User {string username;string password; };vector<User> users; // 存储所有注册用户// 使用迭代器查找用户名是否存在 ve…...

【JS】二分查找

题目 步骤 初始化指针&#xff1a;定义 left 和 right 两个指针&#xff0c;分别指向数组的起始位置和末尾位置&#xff0c;确定查找范围。进入循环&#xff1a;只要 left 小于等于 right&#xff0c;就继续执行循环&#xff0c;因为此时查找范围不为空。计算中间索引&#xff…...

Mamba模型

为什么要提出mamba模型&#xff1f; transformer特点&#xff1a;训练快&#xff0c;推理慢&#xff0c;计算成本O&#xff08;n*n&#xff09; Rnn的特点&#xff1a;训练慢&#xff0c;推理快&#xff0c;容易遗忘 其实很容易理解&#xff0c;因为RNN的输入只包含前一个隐…...

人工智能通识速览(Part4. 评估指标)

四、评估指标 1.回归模型 均方误差&#xff08;MSE&#xff09; 优点&#xff1a;数学性质良好&#xff0c;计算简单&#xff0c;对误差的惩罚力度较大&#xff0c;能很好地反映模型预测值与真实值之间的平均差异程度&#xff0c;便于比较不同模型的性能。缺点&#xff1a;由…...

IT运维服务方案

一、服务目标 IT 运维服务致力于构建稳固、高效且智能的信息系统生态&#xff0c;为客户的业务运营筑牢数字化根基。凭借前沿的主动式维护策略&#xff0c;运用大数据分析、智能监控等技术手段&#xff0c;提前洞察系统隐患&#xff0c;在萌芽阶段化解潜在故障。同时&#xff0…...

【简历全景认知2】电子化时代对简历形式的降维打击:从A4纸到ATS的生存游戏

一、当简历遇上数字洪流:传统形式的式微 在1990年代,一份排版精美的纸质简历还能让HR眼前一亮;但今天,超过75%的 Fortune 500 企业使用ATS(Applicant Tracking System)进行初筛,未优化的简历可能在5秒内就会沦为数字废土。这种变迁本质上符合「技术接纳生命周期」理论—…...

LLM面试题七

NLP算法工程师面试题8道|含解析 分类场景下bert和gptprompt的方式哪种会有更好效果&#xff0c;为什么&#xff1f; 在分类场景下&#xff0c;BERT比GPT更适合用于建模&#xff0c;因为BERT的结构中包含了双向的Transformer编码器&#xff0c;而GPT的结构中只包含单向的Transf…...

Semaphore

关于作者&#xff1a; CSDN内容合伙人、技术专家&#xff0c; 从零开始做日活千万级APP&#xff0c;带领团队单日营收超千万。 专注于分享各领域原创系列文章 &#xff0c;擅长java后端、移动开发、商业化变现、人工智能等&#xff0c;希望大家多多支持。 目录 一、导读二、概览…...

视频插帧EMAVFI:extracting motion and appearance via inter-frame attention for video

文章目录 EMAVFI:extracting motion and appearance via inter-frame attention for efficient video frame interpolation1.核心概述2.帧间注意力机制为什么可以表示运动信息3.网络架构4.dataset类5.demo推理和训练代码6.总结 EMAVFI:extracting motion and appearance via in…...

⑨数据中心-M-LAG技术配置

华三数据中心网络是指华三提供的专门设计用于数据中心环境的网络解决方案。这种网络通常具有高性能、可扩展性和可靠性&#xff0c;旨在支持大规模数据中心的需求。华三数据中心网络解决方案通常包括以下特点&#xff1a; 1. 高带宽&#xff1a;支持高密度数据中心环境中大量网…...

永磁同步电机无速度算法--基于HOPLL的滑模观测器

一、原理介绍 传统PLL算法为二阶系统&#xff0c;其实现是基于转速变化变化缓慢的假设&#xff0c;因此在转速频繁出现动态变化时会导致动态性能不佳。为改善系统动态性能&#xff0c;将转速微分量引入PLL中&#xff0c;作为附加状态变量&#xff0c;与电角速度及转速共同构成…...

【Linux网络】网络套接字socket

&#x1f308;个人主页&#xff1a;秦jh__https://blog.csdn.net/qinjh_?spm1010.2135.3001.5343 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/qinjh_/category_12891150.html 目录 Socket 编程预备 理解源 IP 地址和目的 IP 地址 认识端口号 端口号范围划分…...

ubuntu wifi配置(命令行版本)

1、查询当前设备环境的wifi列表 nmcli dev wifi list2、连接wifi nmcli dev wifi connect "MiFi-SSID" password "Password" #其中MiFi-SSID是wifi的密码&#xff0c;Password是wifi的密码3、查看连接情况 nmcli dev status...

配环境的经验

pip install -e . 该命令用于以“编辑模式”&#xff08;也称为开发模式&#xff09;安装当前目录下的 Python 包&#xff0c;比如包含有 setup.py、setup.cfg 或 pyproject.toml 文件的项目-e 是 --editable 的简写。以编辑模式安装时&#xff0c;pip 会在你的 Python 环境中创…...

STM32cubmax配置STM32407VET6,实现网络通信

文章目录 一、开发准备1、硬件准备2、软件准备 二、STM32CubeMX工程配置步骤1、创建新工程 三、外设配置步骤1&#xff09;调试接口&#xff08;SWD&#xff09;配置2&#xff09;时钟配置3&#xff09;串口&#xff08;USART&#xff09;配置4&#xff09;IO口配置&#xff08…...

LeetCode 热题 100_完全平方数(84_279_中等_C++)(动态规划(完全背包))

LeetCode 热题 100_完全平方数&#xff08;84_279&#xff09; 题目描述&#xff1a;输入输出样例&#xff1a;题解&#xff1a;解题思路&#xff1a;思路一&#xff08;动态规划&#xff08;完全背包&#xff09;&#xff09;&#xff1a; 代码实现代码实现&#xff08;思路一…...

【C++】vector的底层封装和实现

目录 目录前言基本框架迭代器容量第一个测试&#xff0c;野指针异常第二轮测试&#xff0c;浅拷贝的问题 元素访问修改操作push_backinsert迭代器失效问题 erase 默认成员函数构造函数双重构造引发调用歧义 拷贝构造赋值重载析构函数 源码end 目录 前言 废话不多说&#xff0…...

AI前端组件库Ant DesIgn X

Ant Design X AI&#xff1a;体验新秩序 Ant Design 团队精心打造 RICH 设计范式&#xff0c;为 AI 界面提供卓越解决方案&#xff0c;引领智能交互新体验。 设计语言与理论 官网&#xff1a; Ant Design X - 轻松打造 AI 驱动的界面。 AI 设计范式 —— RICH 是我们在蚂蚁…...

BGP路由协议之解决 IBGP 水平分割带来的问题

主要有以下 3 种方案&#xff1a; 全互联 &#xff1a;配置量大、耗费资源联邦&#xff1a; 配置量大、邻居会重建、中断时间较长RR 路由反射器&#xff1a;目前主流使用、简单、好用 联邦 IBGP 水平分割问题用与防止 AS 内部产生环路&#xff0c;在很大程度上杜绝了 IBGP 路…...

基于Java的人脸识别在线考试系统(jsp+springboot+mysql8.x)

基于Java的人脸识别在线考试系统(jspspringbootmysql8.x) 在线考试系统提供全面的考试管理和用户管理功能。登录界面支持管理员、教师和学生三种身份验证&#xff0c;确保不同用户访问相应的功能模块。系统自动组卷功能允许管理员根据不同科目和题型&#xff0c;如单选题、多选…...

如何对LLM大型语言模型进行评估与基准测试

基础概念 这几年&#xff0c;随着生成式 AI 和大型语言模型&#xff08;LLMs&#xff09;的兴起&#xff0c;AI 领域整体迎来了一波大爆发。 随着各种基于 LLM 的应用程序在企业里落地&#xff0c;人们开始需要评估不同推理部署方案的性价比。 LLM 应用的部署成本&#xff0c;…...

C语言内存函数和数据在内存的存储

一、内存操作函数深度解析 函数名原型核心特性典型应用场景注意事项memcpyvoid* memcpy(void* dest, const void* src, size_t num)内存块无重叠复制&#xff0c;性能高数组拷贝、结构体复制1. 必须确保目标空间足够 2. 不支持重叠内存&#xff08;用memmove替代&#xff09; …...

ChatGPT之智能驾驶问题讨论

ChatGPT之智能驾驶问题讨论 1. 源由2. 问题&#xff1a;2.1 智能驾驶级别定义&#x1f697; L2&#xff08;部分自动化&#xff0c;Partial Automation&#xff09;&#x1f916; L3&#xff08;有条件自动化&#xff0c;Conditional Automation&#xff09;&#x1f6f8; L4&a…...

【PalladiumZ2 使用专栏 1 -- 波形 trigger 抓取详细介绍】

文章目录 Palladium Z2 OverviewPalladium 波形抓取Palladium 波形存放文件创建Palladium Trigger 断点设置Palladium 加探针并 dumpPalladium 波形查看 Palladium Z2 Overview Cadence Palladium Z2 是 Cadence 推出的企业级硬件仿真加速平台&#xff0c;旨在应对复杂 SoC 设…...

elasticsearch 8设置验证登录查询

最近总是困扰于9200网络勒索,老是在捣乱,动不动给我清理了index,实在是费劲,今天研究了下config配置,设置ca验证。 以下是完整的步骤和配置,确保生成的证书文件与elasticsearch.yml的配置一致: 1. 生成CA证书 运行以下命令生成CA证书:让输入账号或密码请直接回车。 …...

为什么使用了CDN源服务器需要关闭防火墙?

在网站运营过程中&#xff0c;不少站长会遇到这样的困惑&#xff1a;当使用 CDN 源服务器时&#xff0c;好像就得关闭源服务器的防火墙&#xff0c;不然就状况百出。这背后究竟是什么原因呢&#xff1f; 当你在浏览网页时&#xff0c;要是看到 “502 - 服务暂时不可用” 的提…...

Android 学习之 Navigation导航

1. Navigation 介绍 Navigation 组件 是 Android Jetpack 的一部分&#xff0c;用于简化应用内导航逻辑&#xff0c;支持 Fragment、Activity 和 Compose 之间的跳转。核心优势&#xff1a; 单 Activity 架构&#xff1a;减少 Activity 冗余&#xff0c;通过 Fragment 或 Com…...

初识 Three.js:开启你的 Web 3D 世界 ✨

3D 技术已经不再是游戏引擎的专属&#xff0c;随着浏览器技术的发展&#xff0c;我们完全可以在网页上实现令人惊艳的 3D 效果。而 Three.js&#xff0c;作为 WebGL 的封装库&#xff0c;让 Web 3D 的大门向更多开发者敞开了。 这是我开启这个 Three.js 专栏的第一篇文章&…...

PyTorch 笔记

简介与安装 PyTorch 是一个开源的 Python 机器学习库&#xff0c;基于 Torch 库&#xff0c;底层由C实现&#xff0c;应用于人工智能领域&#xff0c;如计算机视觉和自然语言处理。 PyTorch 最初由 Meta Platforms 的人工智能研究团队开发&#xff0c;现在属 于Linux 基金会的…...

day24学习Pandas库

文章目录 三、Pandas库4.函数计算3遍历3.1.遍历Series对象3.2.遍历DataFrame对象 4排序4.1 sort_index4.2 sort_values 5.去重drop_duplicates6.先分组在计算6.1 groupby6.2 filter过滤 7.合并未完待续.. 三、Pandas库 4.函数计算 3遍历 3.1.遍历Series对象 在讲解Series部…...

AI日报 - 2025年4月8日

AI日报 - 2025年4月8日 &#x1f31f; 今日概览&#xff08;60秒速览&#xff09; ▎&#x1f916; 模型进展 | Llama 4发布引爆讨论 (性能、应用、部署、训练争议)&#xff0c;OpenAI保持高速迭代&#xff0c;香港大学推Dream 7B扩散模型。 Meta Llama 4 Scout & Maveric…...

Linux学习笔记(2) 命令基础:从概念到实践(期末,期中复习笔记全)

前言 一、认识命令行与命令 二、Linux 命令的基础格式 三、命令示例解析 &#xff08;1&#xff09;ls -l /home/itheima &#xff08;2&#xff09;cp -r test1 test2 四结语 前言 在 Linux 系统的世界里&#xff0c;命令行是与系统交互的重要方式。熟练掌握 Linux 命令…...

langgraph简单Demo4(checkpoint检查点)

在 langgraph 里&#xff0c;检查点&#xff08;checkpoint&#xff09;是一项重要的功能&#xff0c;它能够记录工作流在执行过程中的中间状态。当工作流因某些原因中断时&#xff0c;可以从检查点恢复继续执行&#xff0c;避免从头开始&#xff0c;提升效率。 示例&#xff…...

【题解】AtCoder AT_abc400_c 2^a b^2

题目大意 我们定义满足下面条件的整数 X X X 为“好整数”&#xff1a; 存在一个 正整数 对 ( a , b ) (a,b) (a,b) 使得 X 2 a ⋅ b 2 X2^a\cdot b^2 X2a⋅b2。 给定一个正整数 N N N&#xff08; 1 ≤ N ≤ 1 0 18 1\le N\le 10^{18} 1≤N≤1018&#xff09;&#xff…...

七种驱动器综合对比——《器件手册--驱动器》

目录 九、驱动器 概述 定义 功能 分类 1. 按负载类型分类 2. 按功能特性分类 工作原理 优势 应用领域 详尽阐述 1 隔离式栅极驱动器 定义 工作原理 应用场景 优势 2 变压器驱动器 定义 工作原理 应用场景 优势 设计注意事项 3 LED驱动 定义 功能与作用 应用场景 设计…...

GStreamer开发笔记(一):GStreamer介绍,在windows平台部署安装,打开usb摄像头对比测试

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://blog.csdn.net/qq21497936/article/details/147049923 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、O…...

西湖大学团队开源SaProt等多款蛋白质语言模型,覆盖结构功能预测/跨模态信息搜索/氨基酸序列设计等

2025 年 3 月 22—23 日&#xff0c;上海交通大学「AI 蛋白质设计峰会」正式举行。 本次峰会汇聚了来自清华大学、北京大学、复旦大学、浙江大学、厦门大学等知名高校的 300 多位专家学者&#xff0c;以及 200 余位行业领军企业代表和技术研发人员&#xff0c;深入探讨了 AI 在…...

ansible+docker+docker-compose快速部署4节点高可用minio集群

目录 github项目地址 示例服务器列表 安装前 修改变量文件group_vars/all.yml 修改ansible主机清单 修改setup.sh安装脚本 用法演示 安装后验证 github项目地址 https://github.com/sulibao/ansible_minio_cluster.git 示例服务器列表 安装前 修改变量文件group_var…...

说话人分离中的聚类方法:深入解析Agglomerative聚类、KMeans聚类和Oracle聚类

说话人分离&#xff08;Speaker Diarization&#xff09;是将音频流根据说话人身份划分为同质片段的过程。这一过程中的关键步骤是聚类&#xff0c;即将说话人嵌入&#xff08;embeddings&#xff09;分组为不同的簇&#xff0c;每个簇代表一个独特的说话人。在pyannote.audio管…...