当前位置: 首页 > news >正文

说话人分离中的聚类方法:深入解析Agglomerative聚类、KMeans聚类和Oracle聚类

说话人分离(Speaker Diarization)是将音频流根据说话人身份划分为同质片段的过程。这一过程中的关键步骤是聚类,即将说话人嵌入(embeddings)分组为不同的簇,每个簇代表一个独特的说话人。在pyannote.audio`管道中使用的三种聚类方法:层次聚类(Agglomerative Clustering)KMeans聚类(KMeans Clustering)Oracle聚类(Oracle Clustering)


1. 层次聚类(Agglomerative Clustering)

工作原理

层次聚类是一种分层聚类方法,通过迭代合并最相似的簇对来构建簇的树状结构(树状图)。以下是其具体步骤:

  1. 成对距离计算

    • 使用指定的度量(如cosineeuclidean)计算所有说话人嵌入之间的成对距离。
  2. 树状图构建

    • 将每个嵌入初始化为一个独立的簇。
    • 基于选择的链接方法(如averagecompleteward),迭代合并两个最接近的簇。
  3. 切割树状图

    • 当簇之间的距离超过预定义的阈值时,停止合并。
    • 最终得到的簇即为说话人分组。
  4. 重新分配小簇

    • 将包含少于min_cluster_size个嵌入的簇重新分配到较大的簇中,基于簇中心相似性。

优点

  • 无需预先指定簇的数量
    • 层次聚类不需要预先指定簇的数量(k),因此在说话人数量未知的情况下非常适用。
  • 分层结构
    • 树状图提供了聚类过程的可视化表示,有助于理解说话人之间的关系。
  • 灵活性
    • 能够处理不同大小的簇,并且对初始化的敏感性较低。

缺点

  • 计算成本高
    • 成对距离计算和树状图构建在大数据集上可能较慢。
  • 对阈值敏感
    • 阈值的选择会显著影响簇的数量。

适用场景

  • 当说话人数量未知时。
  • 当需要分层表示说话人关系时。
  • 适用于中小型数据集。

2. KMeans聚类(KMeans Clustering)

工作原理

KMeans是一种基于分区的聚类方法,将嵌入划分为预定义数量的簇(k)。以下是其具体步骤:

  1. 初始化

    • 随机初始化k个簇中心。
  2. 分配

    • 将每个嵌入分配到最近的簇中心。
  3. 更新

    • 根据分配的嵌入重新计算簇中心。
  4. 迭代

    • 重复分配和更新步骤,直到收敛(即簇中心不再变化)。

优点

  • 简单且快速
    • KMeans计算效率高,适用于中小型数据集。
  • 适用于已知簇数量
    • 当说话人数量已知时,KMeans可以产生准确的结果。

缺点

  • 需要预先指定簇数量
    • 必须预先指定簇的数量(k),这在说话人数量未知时具有挑战性。
  • 对初始化敏感
    • 最终簇的结果可能因初始簇中心的位置而不同。
  • 假设簇为球形
    • KMeans假设簇是球形且大小相近,这在实际情况中可能不成立。

适用场景

  • 当说话人数量已知时。
  • 适用于中小型数据集。
  • 当计算效率是优先考虑因素时。

3. Oracle聚类(Oracle Clustering)

工作原理

Oracle聚类使用**真实标签(ground truth annotations)**将嵌入分配到簇中。以下是其具体步骤:

  1. 真实标签映射

    • 使用真实标签将嵌入映射到说话人。
  2. 簇分配

    • 根据真实标签将嵌入分配到簇中。
  3. 簇中心计算

    • 根据分配的嵌入计算每个簇的中心。

优点

  • 最优聚类
    • 由于使用真实标签,Oracle聚类提供了最佳可能的聚类结果。
  • 适用于评估
    • 主要用于基准测试和评估说话人分离管道的性能。

缺点

  • 需要真实标签
    • 真实标签在实际场景中不可用,因此Oracle聚类在实际应用中不实用。

适用场景

  • 用于评估和基准测试。
  • 当真实标签可用时。

聚类方法对比

方法是否需要预先指定簇数量优点缺点适用场景
层次聚类灵活,分层结构,无需预先指定k计算成本高,对阈值敏感说话人数量未知,中小型数据集
KMeans聚类简单,快速,适用于已知k需要预先指定k,对初始化敏感,假设簇为球形说话人数量已知,中小型数据集
Oracle聚类最优聚类,适用于评估需要真实标签,不适用于实际场景评估和基准测试

结论

聚类是说话人分离中的关键步骤,聚类方法的选择会显著影响管道的准确性和效率。以下是选择合适方法的快速指南:

  • 当说话人数量未知且需要灵活性时,使用层次聚类
  • 当说话人数量已知且计算效率是优先考虑因素时,使用KMeans聚类
  • 用于评估和基准测试时,使用Oracle聚类

相关文章:

说话人分离中的聚类方法:深入解析Agglomerative聚类、KMeans聚类和Oracle聚类

说话人分离(Speaker Diarization)是将音频流根据说话人身份划分为同质片段的过程。这一过程中的关键步骤是聚类,即将说话人嵌入(embeddings)分组为不同的簇,每个簇代表一个独特的说话人。在pyannote.audio管…...

蓝桥杯真题——前缀总分、遗迹

蓝桥杯2024年第十五届省赛真题-前缀总分 题目描述 给定 n 个由小写英文字母组成的字符串 s1, s2, , sn &#xff0c;定义前缀总分为V ∑i<j P(si, sj) &#xff0c;其中 P(si, sj) 表示 si, sj 的最长公共前缀的长度。 小蓝可以选择其中一个字符串&#xff0c;并修改其…...

性能比拼: MySQL vs PostgreSQL

本内容是对知名性能评测博主 Anton Putra MySQL vs PostgreSQL Performance Benchmark (Latency - Throughput - Saturation) 内容的翻译与整理, 有适当删减, 相关指标和结论以原作为准 MySQL vs PostgreSQL 数据库性能对比** 在本内容中&#xff0c;我们将对比 MySQL 和 Pos…...

TypeScript 中的 infer 关键字用途

infer 是 TypeScript 中的高级类型关键字&#xff0c;主要用于条件类型中推断类型。它允许我们在条件类型的 extends 子句中声明一个类型变量&#xff0c;然后在该条件类型的 true 分支中使用这个推断出的类型。 1. 基本语法 type SomeType<T> T extends infer U ? U…...

关于Spring MVC中@RequestParam注解的详细说明,用于在前后端参数名称不一致时实现参数映射。包含代码示例和总结表格

以下是关于Spring MVC中RequestParam注解的详细说明&#xff0c;用于在前后端参数名称不一致时实现参数映射。包含代码示例和总结表格&#xff1a; 1. 核心作用 RequestParam用于显式绑定HTTP请求参数到方法参数&#xff0c;支持以下场景&#xff1a; 参数名不一致&#xff1…...

Spring Boot中Spring MVC相关配置的详细描述及表格总结

以下是Spring Boot中Spring MVC相关配置的详细描述及表格总结&#xff1a; Spring MVC 配置项详解 1. 异步请求配置 spring.mvc.async.request-timeout 描述&#xff1a;设置异步请求的超时时间&#xff08;单位&#xff1a;毫秒&#xff09;。默认值&#xff1a;未设置&…...

Shell脚本编程之正则表达式

一、概念 在 Shell 脚本中&#xff0c;正则表达式是一种强大且常用的文本处理工具&#xff0c;它可以用来匹配、搜索、替换和截取字符串。 正则表达式是由一些字符去描述规则&#xff0c;在正则表达式中有两类字符 (1)元字符(Meta Character)&#xff1a;Shell 环境中具有特殊含…...

spring-ai-openai调用Xinference1.4.1报错

1、Xinference 报错logs 此处是调用 /v1/chat/completions 接口 2025-04-06 15:48:51 xinference | return await dependant.call(**values) 2025-04-06 15:48:51 xinference | File "/usr/local/lib/python3.10/dist-packages/xinference/api/restful_api.py", …...

XC7K160T-2FFG676I Kintex‑7系列 Xilinx 赛灵思 FPGA 详细技术规格

XC7K160T-1FFG676I XC7K160T-1FFG676C XC7K160T-2FFG676C 1. 基本概述 XC7K160T-2FFG676I 属于 Xilinx Kintex‑7 系列 FPGA&#xff0c;该系列芯片采用 28nm &#xff08;HKMG&#xff09;工艺制造&#xff0c;旨在提供高性能与低功耗的平衡。该芯片主要面向对高速数据处理、…...

C++学习之udp通信

1.UDP特点 c /* udp 传输层协议, 和tcp是一样的 特点: 面向无连接的, 不安全的, 报式传输协议 1. 无连接: udp通信的时候不需要connect 1). 通信不需要建立连接 2). 如果想给对方发送数据, 只需要指定对方的IP和端口 2. udp会丢包 1). 数…...

2020年-全国大学生数学建模竞赛(CUMCM)试题速浏、分类及浅析

2020年-全国大学生数学建模竞赛(CUMCM)试题速浏、分类及浅析 全国大学生数学建模竞赛(China Undergraduate Mathematical Contest in Modeling)是国家教委高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学…...

【数据标准】数据标准化实施流程与方法-保障机制篇

导读&#xff1a;1、数据标准化保障机制&#xff08;组织架构、协作流程&#xff09;是​​战略落地的基石​​&#xff0c;确保责权分明与资源协同&#xff1b;2、数据标准化制度建设&#xff08;政策、标准、工具&#xff09;构建了​​统一治理框架​​&#xff0c;规范数据…...

ZLMediaKit部署与配置

ZLMediaKit编译 # 安装编译器 sudo apt install build-essential cmake# 其它依赖库 sudo apt-get install libssl-dev libsdl-dev libavcodec-dev libavutil-dev ffmpeg git cd /usr/local/srcgit clone --depth 1 https://gitee.com/xia-chu/ZLMediaKit.git cd ZLMediaKit# …...

38、web前端开发之Vue3保姆教程(二)

三、Vue3语法详解 1、组件 1 什么是组件? 组件是 Vue.js 中最重要的概念之一。它是一种可复用的 Vue 实例,允许我们将 UI 拆分为独立的、可复用的部分。组件可以提高代码的组织性和可维护性。 2 创建组件 在 Vue 3 中,组件通常使用单文件组件(SFC)编写,其包含三个主…...

知识中台如何重构企业信息生态?关键要素解析

在信息化快速发展的时代&#xff0c;企业面临着如何高效整合和管理知识资源的挑战。知识中台作为企业信息管理的核心工具&#xff0c;正在帮助企业提升运营效率和创新力。本文将探讨知识中台如何重构企业信息生态&#xff0c;并解析其关键要素。 一、什么是知识中台&#xff1f…...

蓝桥杯python组备赛(记录个人模板)

文章目录 栈队列堆递归装饰器并查集树状数组线段树最近公共祖先LCAST表字典树KMPmanacher跳表(代替C STL的set)dijkstra总结 栈 用list代替 队列 用deque双端队列替代 堆 用heapq 递归装饰器 众所周知&#xff0c;python的递归深度只有1000&#xff0c;根本满足不了大部…...

C++的多态 - 下

目录 多态的原理 虚函数表 1.计算包含虚函数类的大小 2.虚函数表介绍 多态底层原理 1.父类引用调用 2.父类指针调用 3.动态绑定与静态绑定 单继承和多继承关系的虚函数表 函数指针 1.函数指针变量 (1)函数指针变量创建 (2)函数指针变量的使用 (3)两段有趣的代码 …...

XSS(跨站脚本攻击)

什么是 XSS 攻击&#xff1f; XSS 攻击&#xff08;Cross-Site Scripting&#xff09;是一种常见的网络攻击手段&#xff0c;攻击者通过在网站上注入恶意的 JavaScript 代码&#xff0c;让网站在用户的浏览器中执行这些恶意代码&#xff0c;进而达到 窃取信息、篡改网页内容 或…...

LLM Agents的历史、现状与未来趋势

引言 大型语言模型&#xff08;Large Language Model, LLM&#xff09;近年在人工智能领域掀起革命&#xff0c;它们具备了出色的语言理解与生成能力。然而&#xff0c;单纯的LLM更像是被动的“回答者”&#xff0c;只能根据输入给出回复。为了让LLM真正“行动”起来&#xff…...

最简rnn_lstm模型python源码

1.源码 GitCode - 全球开发者的开源社区,开源代码托管平台 不到120行代码&#xff0c;参考了《深度学习与交通大数据实战》3.2节。注意这本书只能在京东等在线商城网购&#xff0c;才能拿到相应的数据集和源码。我的是在当地新华书店买的——买清华出版社&#xff0c;记得这个…...

基于Android的图书借阅和占座系统(源码+lw+部署文档+讲解),源码可白嫖!

摘要 基于Android的图书借阅和占座系统设计的目的是为用户提供图书信息、图书馆、图书资讯等内容&#xff0c;用户可以进行图书借阅、预约选座等操作。 与PC端应用程序相比&#xff0c;图书借阅和占座系统的设计主要面向于广大用户&#xff0c;旨在为用户提供一个图书借阅及占…...

vue3+element-plus动态与静态表格数据渲染

一、表格组件&#xff1a; <template> <el-table ref"myTable" :data"tableData" :header-cell-style"headerCellStyle" header-row-class-name"my-table-header" cell-class-name"my-td-cell" :row-style"r…...

数据库50个练习

数据表介绍 --1.学生表 Student(SId,Sname,Sage,Ssex) --SId 学生编号,Sname 学生姓名,Sage 出生年月,Ssex 学生性别 --2.课程表 Course(CId,Cname,TId) --CId 课程编号,Cname 课程名称,TId 教师编号 --3.教师表 Teacher(TId,Tname) --TId 教师编号,Tname 教师姓名 --4.成绩…...

Open CASCADE学习|读取点集拟合样条曲线(续)

问题 上一篇文章已经实现了样条曲线拟合&#xff0c;但是仍存在问题&#xff0c;Tolerance过大拟合成直线了&#xff0c;Tolerance过大头尾波浪形。 正确改进方案 1️⃣ 核心参数优化 通过调整以下参数控制曲线平滑度&#xff1a; Standard_Integer DegMin 3; // 最低阶…...

HTML基础教程:创建双十一购物狂欢节网页

页面概况&#xff1a; 在这篇技术博客中&#xff0c;我将详细讲解如何使用HTML基础标签创建一个简单而美观的双十一购物狂欢节主题网页。我们将逐步分析代码结构&#xff0c;了解每个HTML元素的作用&#xff0c;以及如何通过HTML属性控制页面布局和样式。 页面整体结构 首先&…...

ES6 新增特性 箭头函数

简述&#xff1a; ECMAScript 6&#xff08;简称ES6&#xff09;是于2015年6月正式发布的JavaScript语言的标准&#xff0c;正式名为ECMAScript 2015&#xff08;ES2015&#xff09;。它的目标是使得JavaScript语言可以用来编写复杂的大型应用程序&#xff0c;成为企业级开发语…...

【C++算法】49.分治_归并_计算右侧小于当前元素的个数

文章目录 题目链接&#xff1a;题目描述&#xff1a;解法C 算法代码&#xff1a;图解 题目链接&#xff1a; 315. 计算右侧小于当前元素的个数 题目描述&#xff1a; 解法 归并排序&#xff08;分治&#xff09; 当前元素的后面&#xff0c;有多少个比我小。&#xff08;降序&…...

Multi-class N-pair Loss论文理解

一、N-pair loss 对比 Triplet loss 对于N-pair loss来说&#xff0c;当N2时&#xff0c;与triplet loss是很相似的。对anchor-positive pair&#xff0c;都只有一个negative sample。而且&#xff0c;N-pair loss&#xff08;N2时&#xff09;为triplet loss的平滑近似Softpl…...

uniapp微信小程序地图marker自定义气泡 customCallout偶尔显示不全解决办法

这个天坑问题&#xff0c;在微信开发工具上是不会显示出来的,只有在真机上才会偶尔出现随机样式偏移/裁剪/宽长偏移&#xff0c;询问社区也只是让你提交代码片段&#xff0c;并无解决办法。 一开始我怀疑是地图组件加载出现了问题&#xff0c;于是给地图加了一个v-if"reL…...

蓝桥杯嵌入式总结

1.lcd显示和led引脚冲突 在lcd使用到的函数中加入两行代码 uint16_t temp GPIOC->ODR; GPIOC->ODR temp; 2.关于PA15,PB4pwm波输入捕获 首先pwm输入捕获中断 使用 HAL_TIM_IC_Start_IT(&htim2,TIM_CHANNEL_1); 再在输入捕获中断回调函数中使用 void HAL…...

C#的反射机制

C#反射机制详解 什么是反射&#xff1f; 反射(Reflection)是C#中的一项强大功能&#xff0c;它允许程序在运行时动态获取类型信息、访问和操作对象成员。简单来说&#xff0c;反射使程序可以在不预先知道类型的情况下&#xff0c;查看、使用和修改程序集中的代码。 常见反射…...

Java并发编程高频面试题

一、基础概念 1. 并行与并发的区别&#xff1f; 并行&#xff1a;多个任务在多个CPU核心上同时执行&#xff08;物理上同时&#xff09;。并发&#xff1a;多个任务在单CPU核心上交替执行&#xff08;逻辑上同时&#xff09;。类比&#xff1a;并行是多个窗口同时服务&#x…...

Invalid bound statement (not found)

前言&#xff1a; 通过实践而发现真理&#xff0c;又通过实践而证实真理和发展真理。从感性认识而能动地发展到理性认识&#xff0c;又从理性认识而能动地指导革命实践&#xff0c;改造主观世界和客观世界。实践、认识、再实践、再认识&#xff0c;这种形式&#xff0c;循环往…...

【Vue-路由】学习笔记

目录 <<回到导览路由1.单页应用和多页面2.路由基本使用2.1.路由的含义2.2.VueRouter插件2.3.配置路由规则和导航2.4.组件目录存放2.5.路由模块封装 3.rounter3.1.router-link实现高亮3.2.自定义匹配类名3.3.声明式导航3.3.1.查询参数传参3.3.2.动态路由传参3.3.3.总结 3.…...

前端服务配置详解:从入门到实战

前端服务配置详解&#xff1a;从入门到实战 一、环境配置文件&#xff08;.env&#xff09; 1.1 基础结构 在项目根目录创建 .env 文件&#xff1a; # 开发环境 VUE_APP_API_BASE_URL http://localhost:3000/api VUE_APP_VERSION 1.0.0# 生产环境&#xff08;.env.produc…...

Java安全管理器 - SecurityManager

什么是Java安全管理器&#xff1f; Java安全管理器是Java提供的保护JVM和程序安全的机制&#xff0c;它能限制用户的代码对文件、内存、资源、网络的操作和访问&#xff0c;防止恶意代码入侵程序。常用来控制用户提交的代码对各种资源的访问权限&#xff0c;防止用户恶意提交代…...

Arrays操作工具 Lambda表达式 集合 迭代器 数据结构 泛型 set集合 list集合

Arrays操作工具 自己定义的排序规则 简单理解如果是&#xff1a;o1 - o2 升序排列 o2 - o1 降序排列 Lambda表达式 函数式编程 函数式编程&#xff08;Functional programming&#xff09;是一种思想特点。 面向对象&#xff1a;先去找对象&#xff0c;让对象做事情。。函数式…...

ORM、Mybatis和Hibernate、Mybatis使用教程、parameterType、resultType、级联查询案例、resultMap映射

DAY21.1 Java核心基础 ORM Object Relationship Mapping 对象关系映射 面向对象的程序到—关系型数据库的映射 比如java – MySQL的映射 ORM框架就是实现这个映射的框架 Hibernate、Mybatis、MybatisPlus、Spring Data JPA、Spring JDBC Spring Data JPA的底层就是Hiber…...

《Java八股文の文艺复兴》第十一篇:量子永生架构——对象池的混沌边缘(终极试炼·完全体)

Tags: - Java高并发 - 量子架构 - 混沌工程 - 赛博修真 - 三体防御 目录&#xff1a; 卷首语&#xff1a;蝴蝶振翅引发的量子海啸 第一章&#xff1a;混沌初开——对象池的量子涅槃&#xff08;深度扩展&#xff09; 第二章&#xff1a;混沌计算——对象复活的降维打击&…...

蓝桥杯备赛---真题训练之15届蓝桥杯找回连接之旅

题目 介绍 在网络世界中&#xff0c;突然间失去了所有的连接。作为勇敢的冒险者&#xff0c;你将踏上一段惊险刺激的旅程&#xff0c;穿越充满谜题和挑战的网络景观&#xff0c;与神秘的网络幽灵对抗&#xff0c;解开断网之谜&#xff0c;找回失去的连接&#xff0c;带领人们重…...

PowerApps MDA-模版-文档模版无法下载和上传Word模版

Power Apps的高级设置-模版中&#xff0c;文档模版目前只能看到新建和上传Excel模版&#xff0c;看不到Word模版 这是一个已知bug, 什么时候能修复不好说&#xff0c;解决办法也很简单&#xff0c;先上传一个Excel模版&#xff0c;随便任何一个实体就行&#xff0c;为的是视图列…...

全国大学生数学建模竞赛赛题深度分析报告(2010-2024)

全国大学生数学建模竞赛赛题深度分析报告&#xff08;2010-2024&#xff09; 全国大学生数学建模竞赛(CUMCM)是中国最具影响力的大学生科技竞赛之一&#xff0c;本报告将对2010-2024年间的赛题进行全面统计分析&#xff0c;包括题目类型、领域分布、模型方法等多个维度&#x…...

职坐标解析自动驾驶技术发展新趋势

内容概要 作为智能交通革命的核心驱动力&#xff0c;自动驾驶技术正以惊人的速度重塑出行生态。2023年&#xff0c;行业在多传感器融合与AI算法优化两大领域实现突破性进展&#xff1a;激光雷达、摄像头与毫米波雷达的协同精度提升至厘米级&#xff0c;而深度学习模型的实时决…...

快速入手-前后端分离Python权限系统 基于Django5+DRF+Vue3.2+Element Plus+Jwt

引用&#xff1a;打造前后端分离Python权限系统 基于Django5DRFVue3.2Element PlusJwt 视频教程 &#xff08;火爆连载更新中..&#xff09;_哔哩哔哩_bibili 说明&#xff1a;1、结合个人DRF基础和该视频去根据自己的项目进行开发。 2、引用该视频中作者的思路去升华自身的项…...

HTTP 协议详解

HTTP 协议 HTTP&#xff08;HyperText Transfer Protocol&#xff0c;超文本传输协议&#xff09;是互联网上应用最广泛的协议之一&#xff0c;用于在客户端&#xff08;如浏览器&#xff09;和服务器之间传输超文本&#xff08;如网页&#xff09;。 HTTP 是万维网&#xff…...

巧记英语四级单词 Unit1-4【晓艳老师版】

tain—take拿着、sus 下面&#xff0c;只有sur表示上面、ob表示方向、de往下&#xff0c;分开 retain v.保持 re-重复&#xff0c;tain—take拿着&#xff0c;重复的拿着maintain v. 维持&#xff0c;维修&#xff0c;保养 main主要的&#xff0c;主要的东西都拿着的那个人维…...

Transformers without Normalization论文翻译

论文信息&#xff1a; 作者&#xff1a;Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, Zhuang Liu 论文地址&#xff1a;arxiv.org/pdf/2503.10622 代码仓库&#xff1a;jiachenzhu/DyT: Code release for DynamicTanh (DyT) 摘要 归一化层在现代神经网络中无处不在…...

Ollama

目录 定义与核心功能应用场景Ollama与Llama的关系安装与使用 Ollama是一个开源的本地大语言模型&#xff08;LLM&#xff09;运行框架&#xff0c;专为在本地机器上便捷部署和运行大型语言模型而设计。以下是关于Ollama的全面介绍&#xff1a; 定义与核心功能 多种预训练语言模…...

社交app圈子模块0到1实现

一、逻辑分析 用户相关 用户需要能够创建圈子&#xff0c;这涉及到用户身份验证&#xff0c;确保只有注册用户可以进行创建操作。每个圈子有创建者&#xff0c;创建者对圈子有一定的管理权限&#xff0c;如设置圈子规则、邀请成员等。 圈子信息 圈子需要有名称、简介、头像等基…...

OpenCV--图像边缘检测

在计算机视觉和图像处理领域&#xff0c;边缘检测是极为关键的技术。边缘作为图像中像素值发生急剧变化的区域&#xff0c;承载了图像的重要结构信息&#xff0c;在物体识别、图像分割、目标跟踪等众多应用场景中发挥着核心作用。OpenCV 作为强大的计算机视觉库&#xff0c;提供…...