2024.6使用 UMLS 集成的基于 CNN 的文本索引增强医学图像检索
Enhancing Medical Image Retrieval with UMLS-Integrated CNN-Based Text Indexing
问题
- 医疗图像检索中,图像与相关文本的一致性问题,如患者有病症但影像可能无明显异常,影响图像检索系统准确性。
- 传统的基于文本的医学图像检索(TBMIR)方法存在不足,如简单关键字方法忽略医学实体含义,概念方法则耗时耗空间。
- 卷积神经网络(CNN)模型在医疗图像检索尤其是 TBMIR 中的应用效果不佳,原因是排名过程复杂,且现有模型未充分考虑医学领域特异性。
挑战
- 确定如何将 TBMIR 任务视为图像检索任务,而非传统信息检索或自然语言处理(NLP)任务,以充分发挥 CNN 在医疗图像检索中的潜力。
- 处理医疗图像和文本数据的语义关系,克服低级视觉特征与高级语义特征之间的差距,提高检索准确性。
创新点
- 提出一种基于深度匹配模型(DMM)和医学相关特征(MDF)的新方法,用于重新排序医疗图像,有效考虑了 TBMIR 任务特性。
- 利用统一医学语言系统(UMLS)构建语义相似性矩阵,通过个性化卷积神经网络(CNN)生成查询和图像元数据的有效表示,以实现更准确的匹配。
贡献
- 提出了一种创新的 SemRank 模型,利用 MDF 和 UMLS 改进医疗图像检索中的排名。
- 通过实验证明了将 MDF 和 UMLS 集成到 DMM 中可显著改善重排序过程,提高检索性能。
提出的方法
- 总体流程:利用相关性反馈整合图像和文本查询信息,将文本查询和图像元数据表示为 MDF,通过 UMLS 构建语义相似性矩阵,使用个性化 CNN 构建查询和文档的良好表示,计算匹配分数,最后结合基线分数进行重新排序。
- 具体步骤
- 初步步骤:将查询和文档表示为 MDF 集合,通过 MetaMap 工具将 MDF 转换为概念,使用 UMLS Similarity 工具计算概念间相似度构建语义相似性矩阵,将每个查询 / 文档转换为语义相似性矩阵。
- 深度匹配模型(DMM)构建
- 查询和文档矩阵提取:将查询和文档转换为 MDF 向量,再转换为语义相似性矩阵,通过与语义相似性矩阵相乘得到新的查询矩阵。
- 个性化 CNN
- 卷积层:设计多种查询和文档过滤器,计算如 MDF 共现、文档排名等特征,通过卷积操作产生输出向量。
- 激活函数:采用 ReLU 函数进行非线性变换。
- 池化层:使用最大池化聚合信息、减少表示并提取全局特征。
- 全连接层:生成最终的查询或文档向量表示。
- 匹配函数:采用基于表示的模型,使用余弦相似度计算查询和文档的相关性得分。
- SemRank 语义重新排序模型:结合 DMM 得分和基线得分(如 BM25),通过线性组合计算 SemRank 分数,对文档进行重新排序。
指标
- 平均准确率(MAP):用于衡量检索系统在多个查询下的平均性能。
- 精确率(P@5、P@10):分别表示在前 5 个和前 10 个检索结果中的精确率。
模型结构
- 输入层:接收以 MDF 表示的查询和文档。
- 隐藏层
- 包含卷积层,应用多种查询和文档过滤器提取特征。
- 激活函数层,使用 ReLU 函数进行非线性变换。
- 池化层,采用最大池化操作。
- 全连接层,生成最终向量表示。
- 输出层:输出查询和文档的相关性得分,用于排序。
结论
- 提出的 SemRank 模型利用外部语义资源(MDF 和 UMLS)改进了医疗图像检索排名。
- 在 Medical ImageCLEF 数据集上的实验表明,该模型在重排序过程中显著提升了性能,与多种现有方法相比具有优势。
剩余挑战和未来工作
- 剩余挑战:数据集的版权限制导致实验数据有限,部分模型(如 Bo1PRF)在处理包含大量非临床图像的数据集时表现较好,凸显了现有模型对图像多样性处理的不足。
- 未来工作
- 增强 CNN 模型,集成更多包含广泛检索属性的过滤器。
- 改进 SemRank 模型,融入视觉特征以提高图像检索精度。
抽象的
1. 简介
2.相关工作
2.1. 用于医学图像检索的 CNN
2.2. 医学图像检索中的语义
3. 我们的方法概述
- 初步步骤:
- 深度匹配模型流程:
4. 深度匹配模型:初步步骤
4.1. 医疗依赖特征
- 放射学= “超声成像”、“磁共振成像”、“计算机断层扫描”、“X 射线”、“2D 射线成像”、“血管造影”、“PET”、“单幅图像中的组合模式”、“冠状动脉造影”、“膀胱造影”、“闪烁显像”、“乳房 X 线摄影”、“骨密度测定”、“放射治疗”、“泌尿道造影”、“盆腔超声”、“脊髓造影”、“FibroScan”
- 显微镜检查= “光学显微镜检查”、“电子显微镜检查”、“透射显微镜检查”、“荧光显微镜检查”、“活检”、“粪便显微镜检查”、“毛细血管镜检查”、“滋养层活检”、“细胞学”
- 可见光摄影=“皮肤科”、“皮肤”、“内窥镜检查”、“其他器官”、“阴道镜检查”、“膀胱镜检查”、“宫腔镜检查”
- 打印信号和波= “脑电图”、“心电图”、“肌电图”、“动态心电图”、“听力测定”、“尿动力学评估”
- 通用生物医学插图= “模态表格和表格”、“程序列表”、“统计数字”、“图形”、“图表”、“屏幕截图”、“流程图”、“系统概述”、“基因序列”、“色谱”、“凝胶”、“化学结构”、“数学公式”、“非临床照片”、“手绘草图”
- 维度= “宏观”、“微观”、“小”、“总体”、“综合维度”
- V-Spec =“棕色”、“黑色”、“白色”、“红色”、“灰色”、“绿色”、“黄色”、“蓝色”、“彩色”
- T-spec = “发现”、“病理学”、“鉴别诊断”、“羊膜穿刺术”、“血象”、“无创产前筛查”、“尿液分析”、“腰椎穿刺”、“精液图”、“三重测试”
- C-spec = “组织学”、“骨折”、“癌症”、“良性”、“恶性”、“肿瘤”、“妊娠”、“抗生素谱”
4.2 语义矩阵构建
- 步骤 1:使用MetaMap 工具 [ 38 ] 将每个 MDF 转换为概念。
- 步骤 2:使用 UMLS相似度工具 [37,39 ]计算每对医学概念之间的相似度。这些语义相似度得分排列在语义矩阵中。更准确地说,我们使用 Resnik 度量来确定提取的概念之间的语义关系,因为根据 [ 40 ],它比基于路径的度量表现更好。
5.深度匹配模型构建
5.1 查询和文档矩阵提取
- 步骤 1:对于每个查询/文档向量,我们根据查询/文档是否包含特征值为每个 MDF 分配一个二进制值。结果向量V的长度等于n,其中n是 MDF 的数量。该向量被转换为𝑛 ∗ 𝑛n∗n矩阵M/ ∀ 𝑖 ∈ 𝑛 , ∀ 𝑗 ∈ 𝑛 , 𝑀 [ 𝑖 ] [ 𝑗 ] = 𝑉[ 𝑖 ]/∀我∈n,∀杰∈n,米[我][杰]=五[我]其中i表示行索引,j表示列索引。
- 第 2 步:将结果矩阵 M 与语义相似度矩阵 SSM 相乘,得到新的查询矩阵 NQM,如下所示:𝑁𝑄 𝑀 [ 𝑖 ] [ 𝑗 ] = 𝑀 [ 𝑖 ] [ 𝑗 ] ∗ 𝑆 𝑆 𝑀 [ 𝑖 ] [ 𝑗 ]否问米[我][杰]=米[我][杰]∗年代年代米[我][杰]计算说明如图3所示。
5.2. 个性化 CNN
5.2.1. 卷积层
- 查询过滤器:
- 置信度查询过滤器 (CoQF):其思想包括计算查询 MDF 与所有 MDF 的共现。𝐶 𝑜 𝑄 𝐹 =∑𝑗 ∈ 𝑄∑𝑖 ∈ 𝐷𝑓𝑟 (𝑓𝑖,𝑓𝑗)∑𝑖 ∈ 𝐷𝑓𝑟 (𝑓𝑖)碳o问F=∑杰∈问∑我∈德fr(f我,f杰)∑我∈德fr(f我)(1)为了考虑文档的长度,我们使用了这个过滤器。仅包含查询 MDF 的文档应该比除查询之外还包含其他 MDF 的文档更相关。事实上,两个文档都是具体的,但第一个文档更详尽。为此,我们建议用文档和查询中的 MDF 数量除以文档 MDF 的数量。如果文档不包含任何查询 MDF,则该值为 0。
- 长度查询过滤器 (LQF):对于每个查询,如果文档包含所有查询 MDF,则我们将文档和查询中的 MDF 数量除以文档 MDF 数量。否则,该值将等于 0。𝐿 𝑄 𝐹 =| 𝑀 𝐷 𝐹 ∈ ( 𝑄 , 𝐷 ) || 𝑀 𝐷 𝐹 ∈ 𝐷 |大号问F=米德F∈(问,德)米德F∈德(2)
- 排名查询过滤器 (RQF):我们计算逆文档排名。如果文档未出现在第一次搜索中,则 RQF 将相等。𝑅 𝑄 𝐹 =1她的母亲R问F=1docr一个n钾(3)
- 邻近查询过滤器 (PQF):如果文档包含查询 MDF,我们将计算文档中这些 MDF 之间的距离的倒数。在这种情况下,两个特征之间的距离由位于它们之间的特征总数表示。𝑃 𝑄 𝐹 =11 + ∑ 𝑑 𝑖 𝑠 𝑡 𝑀 𝐷 𝐹 ∈ 𝐷磷问F=11+∑d我s吨米德F∈德(4)
- PMI 查询过滤器 (PMIQF):PMI(逐点互信息)[ 41 ] 是一种用于查找具有相近含义的特征的度量。事实上,MDF 的 PMI𝑓𝑖f我和𝑓𝑗f杰是使用以下情况定义的𝑓𝑖f我(𝑓𝑟 (𝑓𝑖)fr(f我)) 和𝑓𝑗f杰(𝑓𝑟 (𝑓𝑗)fr(f杰)), 共现𝑓𝑟 (𝑓𝑖,𝑓𝑗)fr(f我,f杰)在特征向量内,N是集合大小。藝術本身𝐹 ( 𝑄 𝐹 ) = 𝑙 𝑜 𝑔𝑁× 𝑓𝑟 (𝑓𝑖,𝑓𝑗)𝑓𝑟 (𝑓𝑖) ×𝑓𝑟 (𝑓𝑗)磷米我F(问F)=升o克否×fr(f我,f杰)fr(f我)×fr(f杰)(5)该方程计算集合中语义上最接近的 MDF𝑓𝑖f我和𝑓𝑗f杰。
- 特征差异查询过滤器 (FDQF):未找到的查询 MDF 越少,文档的相关性越高。对于每个查询,我们计算不在文档 MDF 中的查询 MDF 数量的倒数。𝐹 𝐷 𝑄 𝐹 =11 + | 𝑀 𝐷 𝐹 ∈ { 𝑄 ∩ 𝐷 } |−−−−−−−−−−−−−−−−−−√F德问F=11+米德F∈问∩德(6)
- 文档过滤器:
- 置信度文档过滤器 (CoDF):此文档过滤器确定查询中包含的 MDF 文档总数。文档的相关性将与其包含的查询 MDF 数量成正比增加。𝐶 𝑜 𝐷 𝐹 = ∑ (𝑓𝑖𝑞̲∩𝑓𝑗𝑑̲)碳o德F=∑f我问̲∩f杰d̲(7)
- 长度文档过滤器 (LDF):对于文档,首先我们确定相关查询中包含的文档 MDF 的数量,得到该数量后,我们将其除以文档长度(𝐿 𝐷大号德)。事实上,如果文档的大小适中,并且与正在进行的查询具有几个共同的特征,那么文档的相关性就会增加。𝐿 𝐷 𝐹 =|他是一个强大的恶魔|𝐿 𝐷大号德F=米德Fdoc我n问你埃r是大号德(8)
- 排序文档过滤器 (RDF):𝑅 𝐷 𝐹 =∑𝑖∈𝑞𝑓𝑟 (𝑓𝑖𝑖 𝑛 𝑑 𝑜 𝑐 ) × 𝛾R德F=∑我∈问fr(f我我ndoc)×γ(9)变量𝑓𝑟 (𝑓𝑖)fr(f我)表示文档中查询 MDF 的频率,而𝛾γ表示查询在文档中的组织因子。𝛾γ如果查询在文档中保留其组织,则为 1,否则为 0.5。
- 邻近文档过滤器(PDF):查询中存在的文档特征越接近,其相关性就越高。𝑃 𝐷 𝐹 =1|𝑓𝑖∈𝑄 |磷德F=1f我∈问(10)
- PMI 文档过滤器 (PMIDF):与查询过滤器中的 PMI 类似,文档过滤器中的 PMI 尝试查找具有相近含义的 MDF。它具有相同的公式,只是此过滤器中的N是文档大小。藝術本身𝐹 ( 𝐷𝐹 ) = 𝑙𝑜𝑔𝑁× 𝑓𝑟 (𝑓𝑖,𝑓𝑗)𝑓𝑟 (𝑓𝑖) ×𝑓𝑟 (𝑓𝑗)磷米我F(德F)=升o克否×fr(f我,f杰)fr(f我)×fr(f杰)(11)该方程计算文档中语义最接近的 MDF。
- 特征差异文档过滤器(FDDF):不在查询中的文档MDF数量越少,文档的相关性就越高。𝐹 𝐷 𝐷 𝐹 =11 + | 𝑀 𝐷 𝐹 ∈ 𝐷 − 𝑄 |−−−−−−−−−−−−−−−−√F德德F=11+米德F∈德−问(12)
5.2.2. 激活函数
5.2.3. 池化层
5.2.4. 全连接层
5.3. 匹配函数
6. SemRank:基于DMM的语义重排序模型
7.实验与结果
7.1. 实验数据集
7.2. SemRank 模型在图像重排序中的有效性
7.3. SemRank 模型与文献模型的比较
8. 结论和未来工作
作者贡献
资金
机构审查委员会声明


- McInnes, B.; Liu, Y.; Pedersen, T.; Melton, G.; Pakhomov, S. Umls::Similarity: Measuring the Relatedness and Similarity of Biomedical Concepts; Association for Computational Linguistics: Stroudsburg, PA, USA, 2013. [Google Scholar]
- Torjmen-Khemakhem, M.; Gasmi, K. Document/query expansion based on selecting significant concepts for context based retrieval of medical images. J. Biomed. Inform. 2019, 95, 103210. [Google Scholar] [CrossRef] [PubMed]
- Resnik, P. Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. J. Artif. Intell. Res. 1999, 11, 95–130. [Google Scholar] [CrossRef]
相关文章:
2024.6使用 UMLS 集成的基于 CNN 的文本索引增强医学图像检索
Enhancing Medical Image Retrieval with UMLS-Integrated CNN-Based Text Indexing 问题 医疗图像检索中,图像与相关文本的一致性问题,如患者有病症但影像可能无明显异常,影响图像检索系统准确性。传统的基于文本的医学图像检索࿰…...
力扣刷题--21.合并两个有序链表
I am the best !!! 题目描述 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4] 示例 2…...
Diving into the STM32 HAL-----DAC笔记
根据所使用的系列和封装,STM32微控制器通常只提供一个具有一个或两个专用输出的DAC,除了STM32F3系列中的少数零件编号实现两个DAC,第一个具有两个输出,另一个只有一个输出。STM32G4 系列的一些较新的 MCU 甚至提供多达 5 个独立的…...
每日一题 LCR 078. 合并 K 个升序链表
LCR 078. 合并 K 个升序链表 使用二分法就可以解决 class Solution { public:ListNode* mergeKLists(vector<ListNode*>& lists) {int n lists.size();if(n 0){return nullptr;}ListNode* ans ;ans binMerge(lists,0,n-1);return ans;}ListNode* binMerge(vector…...
如何在分布式环境中实现高可靠性分布式锁
目录 一、简单了解分布式锁 (一)分布式锁:应对分布式环境的同步挑战 (二)分布式锁的实现方式 (三)分布式锁的使用场景 (四)分布式锁需满足的特点 二、Redis 实现分…...
如何利用java爬虫获得淘宝商品评论
在当今数字化时代,数据的价值日益凸显,尤其是对于电商平台而言,商品评论作为用户反馈的重要载体,蕴含着丰富的信息。本文将详细介绍如何利用Java爬虫技术获取淘宝商品评论,包括代码示例和关键步骤解析。 淘宝商品评论的…...
SQLAlchemy,ORM的Python标杆!
嗨,Python的小伙伴们!今天咱们来了解 SQLAlchemy,这可是对象关系映射(ORM)里的超级标杆哦!它就像一座神奇的桥梁,能让我们用 Python 代码轻松地和数据库打交道,不用写复杂的 SQL 语句…...
时序论文23|ICML24谷歌开源零样本时序大模型TimesFM
论文标题:A DECODER - ONLY FOUNDATION MODEL FOR TIME - SERIES FORECASTING 论文链接:https://arxiv.org/abs/2310.10688 论文链接:https://github.com/google-research/timesfm 前言 谷歌这篇时间序列大模型很早之前就在关注ÿ…...
java http body的格式 application/x-www-form-urlencoded不支持文件上传
在Java中,HTTP请求的body部分可以包含多种格式的数据,主要包括以下几种: application/x-www-form-urlencoded:这种格式将数据编码成键值对的形式,键和值都进行了URL编码,键值对之间用&符号连接。…...
【头歌实训:利用kmp算法求子串在主串中不重叠出现的次数】
头歌实训:利用kmp算法求子串在主串中不重叠出现的次数 文章目录 任务描述编程要求测试说明输入格式输出格式样例输入1样例输出1样例输入2样例输出2 源代码: 任务描述 本关任务:编写一个程序,利用kmp算法求子串在主串中不重叠出现…...
WPF动画
在 WPF(Windows Presentation Foundation)中,主要有两种类型的动画:属性动画(Property Animation)和关键帧动画(Key - Frame Animation)。属性动画用于简单地从一个起始值平滑地过渡…...
Kafka 分区分配及再平衡策略深度解析与消费者事务和数据积压的简单介绍
Kafka:分布式消息系统的核心原理与安装部署-CSDN博客 自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例-CSDN博客 Kafka 生产者全面解析:从基础原理到高级实践-CSDN博客 Kafka 生产者优化与数据处理经验-CSDN博客 Kafka 工作流程解析:…...
如何在 UniApp 中实现 iOS 版本更新检测
随着移动应用的不断发展,保持应用程序的更新是必不可少的,这样用户才能获得更好的体验。本文将帮助你在 UniApp 中实现 iOS 版的版本更新检测和提示,适合刚入行的小白。我们将分步骤进行说明,每一步所需的代码及其解释都会一一列出…...
Android 14.0 kenel中修改rom系统内部存储的大小
1. 前言 在14.0的系统rom产品开发定制中,在对一些产品开发中的配置需求方面,由于在产品后续订单中,有些产品是出口的,但是硬件方面已经定板,时间比较仓促,所以 就需要软件方面在rom内部存储的大小方面作假,修改rom真实的大小容量,所以就需要在kenel驱动部分来修改这部分…...
JavaScript 函数
JavaScript中也可以使用函数,但是使用的方法有些不同;需要使用function关键字定义一个函数(或者使用匿名函数或者箭头函数)。但是需要特别注意的是:在类中定义函数时,一定不可以使用箭头函数,因…...
js+new Date()+moment+时区
文章目录 概要一、Date对象基础知识1. 创建Date对象2. 获取日期和时间信息3. 设置日期和时间 二、Date对象的应用1. 日期格式化2. 时间差计算3. 倒计时功能 moment.jsmoment 常见场景应用时区差别亚洲欧洲美洲大洋洲 时区时间说明 概要 一、Date对象基础知识 1. 创建Date对象…...
OpenCV、YOLO、VOC、COCO之间的关系和区别
OpenCV、YOLO、COCO 和 VOC 是计算机视觉和深度学习领域常见的几个名词,它们分别代表不同的工具、算法和数据集,之间有一些联系和区别。下面分别说明它们的定义、用途以及相互关系。 1. OpenCV(Open Source Computer Vision Library…...
迁移学习理论与应用
迁移学习(Transfer Learning)是一种机器学习技术,旨在将一个任务(源任务)上学到的知识迁移到另一个相关但不完全相同的任务(目标任务)上,从而提高目标任务的学习效果。这种方法的核心…...
Python-简单病毒程序合集(一)
前言:简单又有趣的Python恶搞代码,往往能给我们枯燥无味的生活带来一点乐趣,激发我们对编程的最原始的热爱。那么话不多说,我们直接开始今天的编程之路。 编程思路:本次我们将会用到os,paltform,threading,ctypes,sys,…...
AI安全:从现实关切到未来展望
近年来,人工智能技术飞速发展,从简单的图像识别到生成对话,从自动驾驶到医疗诊断,AI技术正深刻改变着我们的生活。然而,伴随着这些进步,AI的安全性和可控性问题也日益凸显。这不仅涉及技术层面的挑战&#…...
集成金蝶云星空数据至MySQL的完整案例解析
金蝶云星空数据集成到MySQL的技术案例分享 在企业信息化系统中,数据的高效流动和准确同步是确保业务连续性和决策支持的重要环节。本文将聚焦于一个具体的系统对接集成案例——金蝶云星空的数据集成到MySQL,方案名称为“2金蝶物料同步到商城中间表”。 …...
C++格式化输入输出【练习版】
一、引言 在 C 编程中,准确地进行输入输出操作是构建功能强大且用户友好程序的关键。格式化输入输出允许我们以特定的格式展示数据,确保数据的可读性和准确性。本文将深入探讨 C 的格式化输入输出,通过丰富的练习例题和详细的答案解析&#x…...
aws服务(二)机密数据存储
在AWS(Amazon Web Services)中存储机密数据时,安全性和合规性是最重要的考虑因素。AWS 提供了多个服务和工具,帮助用户确保数据的安全性、机密性以及合规性。以下是一些推荐的存储机密数据的AWS服务和最佳实践: 一、A…...
CIO40: 回头再看ERP之“4问”
1、在数字化时代的今天,ERP现在的定位是? ERP软件财务化,我觉得是一个趋势,但是短期内(2-3年)ERP依然是企业的核心系统。这要看企业外部系统的建设情况,ERP系统的使用深度(特别是一些…...
数据库类型介绍
1. 关系型数据库(Relational Database, RDBMS): • 定义:基于关系模型(即表格)存储数据,数据之间通过外键等关系相互关联。 • 特点:支持复杂的SQL查询,数据一致性和完整…...
深入理解 Spring Boot 的 CommandLineRunner 原理及使用
引言 在开发 Spring Boot 应用程序时,我们经常需要在应用程序启动后执行一些初始化任务,比如加载初始数据、连接外部服务、执行健康检查等。Spring Boot 提供了 CommandLineRunner 接口,使得这些任务的实现变得非常简单和直观。本文将深入探…...
人工智能深度学习-Torch框架-数学运算
数学的基本操作 1.floor:向下取整 2.celi:向上取整 3.round:四舍五入,这里的四舍五入还要看前面整数的奇偶性,基进偶不进 4.trunc:只保留整数 5.frac:只保留小数部分 6.fix:向…...
操作系统的理解
目录 一、冯伊诺曼体系结构 二、操作系统的概念 三、如何理解“管理”? 四、系统调用和库调用的概念 一、冯伊诺曼体系结构 冯伊诺曼体系结构描述的是计算机硬件结构,相当于计算机的骨架。它大体可以分为4部分: 输入设备:键盘…...
SpringDataNeo4j使用详解
SDN快速入门 Spring Data Neo4j简称SDN,是Spring对Neo4j数据库操作的封装,其底层基于neo4j-java-driver实现。 我们使用的版本为:6.2.3,官方文档: 下面我们将基于项目中的运输路线业务进行学习,例如&#…...
undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12 问题解决
在部署运行opencompass项目时遇到了如下报错: ImportError: /data/conda/envs/opencompass/lib/python3.10/site-packages/torch/lib/../../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12…...
记一次:软著申请
前言:公司每年都有申请软著或者发明,可惜没有我的名字,没关系,我可以按个人的名义去申请一个,于是乎就有了这篇文章。话不多说,展示 之前还犹豫要不要发表一下,经过朋友的劝说,自己的…...
IntelliJ+SpringBoot项目实战(四)--快速上手数据库开发
对于新手学习SpringBoot开发,可能最急迫的事情就是尽快掌握数据库的开发。目前数据库开发主要流行使用Mybatis和Mybatis Plus,不过这2个框架对于新手而言需要一定的时间掌握,如果快速上手数据库开发,可以先按照本文介绍的方式使用JdbcTemplat…...
筑起数字堡垒:解析AWS高防盾(Shield)的全面防护能力
引言 在数字化时代,网络攻击的频率和复杂性持续增加。分布式拒绝服务(DDoS)攻击成为威胁在线业务的主要手段之一。AWS推出的高防盾(AWS Shield)是一项专注于DDoS防护的服务,帮助用户保护其应用程序和数据免…...
python语言基础
1. 基础语法 Q: Python 中的变量与数据类型有哪些? A: Python 支持多种数据类型,包括数字(整数 int、浮点数 float、复数 complex)、字符串 str、列表 list、元组 tuple、字典 dict 和集合 set。每种数据类型都有其特定的用途和…...
vue2 src_Todolist编辑($nextTick)
main.js //引入Vue import Vue from "vue"; //引入App import App from ./App;//关闭Vue的生产提示 Vue.config.productionTip false;new Vue({el: #app,render: h > h(App),beforeCreate() {//事件总线Vue.prototype.$bus this;} });App.vue <template>…...
复习!!!
前言: 今天好像没有复习什么,对了,老师让我们写作业来着 那个乌云漏洞网站真的好啊,虽然很老,但是有思路啊 乌云(WooYun.org)历史漏洞查询---http://WY.ZONE.CI 复习: 今天主要复习了nuclei工具的用法…...
面试题---深入源码理解MQ长轮询优化机制
引言 在分布式系统中,消息队列(MQ)作为一种重要的中间件,广泛应用于解耦、异步处理、流量削峰等场景。其中,延时消息和定时消息作为MQ的高级功能,能够进一步满足复杂的业务需求。为了实现这些功能…...
使用 PyTorch TunableOp 加速 ROCm 上的模型
Accelerating models on ROCm using PyTorch TunableOp — ROCm Blogs (amd.com) 在这篇博客中,我们将展示如何利用 PyTorch TunableOp 在 AMD GPU 上使用 ROCm 加速模型。我们将讨论通用矩阵乘法(GEMM)的基础知识,展示调优单个 G…...
配置Springboot+vue项目在ubuntu20.04
一、jdk1.8环境配置 (1) 安装jdk8: sudo apt-get install openjdk-8-jdk (2) 检查jdk是否安装成功: java -version(3) 设置JAVA_HOME: echo export JAVA_HOME/usr/lib/jvm/java-17-openjdk-amd64 >> ~/.bashrc echo export PATH$J…...
基于SpringBoot的在线教育系统【附源码】
基于SpringBoot的在线教育系统 效果如下: 系统登录页面 系统管理员主页面 课程管理页面 课程分类管理页面 用户主页面 系统主页面 研究背景 随着互联网技术的飞速发展,线上教育已成为现代教育的重要组成部分。在线教育系统以其灵活的学习时间和地点&a…...
国土安全部发布关键基础设施安全人工智能框架
美国国土安全部 (DHS) 发布建议,概述如何在关键基础设施中安全开发和部署人工智能 (AI)。 https://www.dhs.gov/news/2024/11/14/groundbreaking-framework-safe-and-secure-deployment-ai-critical-infrastructure 关键基础设施中人工智能的角色和职责框架 https:/…...
散户持股增厚工具:智能T0算法交易
最近市场很多都说牛市,但是大多数朋友怎么来的又怎么吐出去了。这会儿我们用T0的智能算法交易又可以增厚我们的持仓收益。简单来说,就是基于用户原有的股票持仓,针对同一标的,配合智能T0算法,每天全自动操作࿰…...
28、js基本数据类型
<!DOCTYPE html> <html> <head> <meta charset"UTF-8"> <title></title> </head> <body> </body> <script> //JS是弱语言类型,只有一种var,由隐藏类型 //基本数据类型…...
MacOS下的Opencv3.4.16的编译
前言 MacOS下编译opencv还是有点麻烦的。 1、Opencv3.4.16的下载 注意,我们使用的是Mac,所以ios pack并不能使用。 如何嫌官网上下载比较慢的话,可以考虑在csdn网站上下载,应该也是可以找到的。 2、cmake的下载 官网的链接&…...
[免费]SpringBoot+Vue毕业设计论文管理系统【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的SpringBootVue毕业设计论文管理系统,分享下哈。 项目视频演示 【免费】SpringBootVue毕业设计论文管理系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 现代经济快节奏发展以及不断完善升级的信…...
科研深度学习:如何精选GPU以优化服务器性能
GPU在科研深度学习中的核心价值 在科研深度学习的范畴内,模型训练是核心环节。面对大规模参数的模型训练,这往往是科研过程中最具挑战性的部分。传统CPU的计算模式在处理复杂模型时,训练时间会随着模型复杂度的增加而急剧增长,这…...
嵌入式系统与OpenCV
目录 一、OpenCV 简介 二、嵌入式 OpenCV 的安装方法 1. Ubuntu 系统下的安装 2. 嵌入式 ARM 系统中的安装 3. Windows10 和树莓派系统下的安装 三、嵌入式 OpenCV 的性能优化 1. 介绍嵌入式平台上对 OpenCV 进行优化的必要性。 2. 利用嵌入式开发工具,如优…...
C++学习——编译的过程
编译的过程——预处理 引言预处理包含头文件宏定义指令条件编译 编译、链接 引言 C程序编译的过程:预处理 -> 编译(优化、汇编)-> 链接 编译和链接的内容可以查阅这篇文章(点击查看) 预处理 编译预处理是指&a…...
接口测试和单元测试
🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 接口测试的本质:就是通过数据驱动,测试类里面的函数。 单元测试的本质:通过代码级别,测试函数。 单元测试的框架…...
redis工程实战介绍(含面试题)
文章目录 redis单线程VS多线程面试题**redis是多线程还是单线程,为什么是单线程****聊聊redis的多线程特性和IO多路复用****io多路复用模型****redis如此快的原因** BigKey大批量插入数据测试数据key面试题海量数据里查询某一固定前缀的key如果生产上限值keys * ,fl…...