当前位置: 首页 > news >正文

Kafka 分区分配及再平衡策略深度解析与消费者事务和数据积压的简单介绍

Kafka:分布式消息系统的核心原理与安装部署-CSDN博客

自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例-CSDN博客

Kafka 生产者全面解析:从基础原理到高级实践-CSDN博客

Kafka 生产者优化与数据处理经验-CSDN博客

Kafka 工作流程解析:从 Broker 工作原理、节点的服役、退役、副本的生成到数据存储与读写优化-CSDN博客

Kafka 消费者全面解析:原理、消费者 API 与Offset 位移-CSDN博客

Kafka 分区分配及再平衡策略深度解析与消费者事务和数据积压的简单介绍-CSDN博客

Kafka 数据倾斜:原因、影响与解决方案-CSDN博客

Kafka 核心要点解析_kafka mirrok-CSDN博客

Kafka 核心问题深度解析:全面理解分布式消息队列的关键要点_kafka队列日志-CSDN博客

目录

一、分区分配策略基础

二、Range 分区分配策略

(一)原理

(二)案例

(三)Range 分区分配再平衡案例

三、RoundRobin 分区分配策略

(一)原理

(二)案例

(三)RoundRobin 分区分配再平衡案例

四、Sticky 分区分配策略

(一)原理

(二)案例

(三)Sticky 分区分配再平衡案例

五、CooperativeSticky 分区分配策略

六、消费者事务

七、数据积压(消费者如何提高吞吐量)

八、总结


        在 Kafka 的消费任务处理中,分区的分配以及再平衡是至关重要的环节。合理的分区分配策略能够确保消费者高效地处理消息,而理解再平衡机制则有助于应对消费者组在运行过程中的动态变化。本文将深入探讨 Kafka 中不同的分区分配策略,包括 Range、RoundRobin、Sticky 和 CooperativeSticky,以及它们在各种场景下的再平衡表现,并结合实际案例进行详细分析,并对消费者事务和数据积压进行简单介绍。

一、分区分配策略基础

        在一个 Kafka 消费者组中,包含多个消费者,而一个主题则由多个分区组成。关键问题在于确定哪个消费者来消费哪个分区的数据。Kafka 提供了四种主流的分区分配策略,并且可以通过配置参数 partition.assignment.strategy 来修改分区的分配策略,默认策略是 Range + CooperativeSticky。同时,还有一些相关的重要参数:

参数名称

描述

heartbeat.interval.ms

Kafka 消费者和 coordinator 之间的心跳时间,默认 3s。 该条目的值必须小于session.timeout.ms,也不应该高于 session.timeout.ms 的 1/3。

session.timeout.ms

Kafka 消费者和 coordinator 之间连接超时时间,默认 45s。超 过该值,该消费者被移除,消费者组执行再平衡。

max.poll.interval.ms

消费者处理消息的最大时长,默认是 5 分钟。超过该值,该 消费者被移除,消费者组执行再平衡

partition.assignment.strategy

消 费 者 分 区 分 配 策 略 , 默 认 策 略 是 Range +CooperativeSticky。Kafka 可以同时使用多个分区分配策略。

可 以 选 择 的 策 略 包 括 : Range 、 RoundRobin 、 Sticky 、CooperativeSticky

二、Range 分区分配策略

(一)原理

        Range 分区分配策略是基于主题的分区数量和消费者数量进行分配。它会按照顺序将连续的分区分配给每个消费者,尽可能平均地分配分区,但可能会导致不同消费者分配到的分区数量不一致。

(二)案例

首先,将主题 first 修改为 7 个分区:

bin/kafka-topics.sh --bootstrap-server bigdata01:9092 --alter --topic first --partitions 7

注意,分区数可增加但不能减少,主题的副本数修改需要制定计划执行,不能直接修改。


         由三个消费者 CustomConsumerCustomConsumer1CustomConsumer2 组成消费者组,组名都为 “test”,同时启动这 3 个消费者。


        启动 CustomProducer 生产者,发送 500 条消息,随机发送到不同的分区(修改发送次数为 500 次)。

package com.bigdata.kafka.producer;import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;import java.util.Properties;public class CustomProducerCallback {public static void main(String[] args) throws InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.235.128:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = newKafkaProducer<String, String>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 500; i++) {// 添加回调kafkaProducer.send(new ProducerRecord<>("first","bigdata " + i), new Callback() {// 该方法在 Producer 收到 ack 时调用,为异步调用@Overridepublic void onCompletion(RecordMetadata metadata,Exception exception) {if (exception == null) {// 没有异常,输出信息到控制台System.out.println(" 主题: " +metadata.topic() + "->" + "分区:" + metadata.partition());} else {// 出现异常打印exception.printStackTrace();}}});// 延迟一会会看到数据发往不同分区Thread.sleep(20);}// 5. 关闭资源kafkaProducer.close();}
}

说明:Kafka 默认的分区分配策略就是 Range + CooperativeSticky,所以不需要修改策略。

默认是Range,但是在经过一次升级之后,会自动变为CooperativeSticky。这个是官方给出的解释。

默认的分配器是[RangeAssignor, CooperativeStickyAssignor],默认情况下将使用RangeAssignor,但允许通过一次滚动反弹升级到CooperativeStickyAssignor,该滚动反弹会将RangeAssignor从列表中删除。


        观察消费情况,发现一个消费者消费了 5,6 分区,一个消费了 0,1,2 分区,一个消费了 3,4 分区。这是按照 Range 策略分配的结果。

此时并没有修改分区策略,原因是默认是Range.

(三)Range 分区分配再平衡案例

        停止掉 0 号消费者,快速重新发送消息(45s 以内),此时 1 号消费者消费到 3、4 号分区数据,2 号消费者消费到 5、6 号分区数据,0 号的数据无人消费。

说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。

        再次重新发送消息(45s 以后),1 号消费者消费到 0、1、2、3 号分区数据,2 号消费者消费到 4、5、6 号分区数据。

说明:消费者 0 已经被踢出消费者组,所以重新按照 range 方式分配。

 

三、RoundRobin 分区分配策略

(一)原理

        RoundRobin 分区分配策略以轮询的方式将分区分配给消费者,确保每个消费者尽可能均衡地获取分区,不考虑主题的因素,只要是消费者组内的分区都会按照轮询顺序分配。

(二)案例

        在 CustomConsumerCustomConsumer1CustomConsumer2 三个消费者代码中修改分区分配策略为 RoundRobin(指定 org.apache.kafka.clients.consumer.RoundRobinAssignor),并修改消费者组为 test2

package com.bigdata.kafka.consumer;import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;import java.time.Duration;
import java.util.ArrayList;
import java.util.Properties;public class CustomConsumerWithFenPei {public static void main(String[] args) {Properties properties = new Properties();// 连接kafkaproperties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop11:9092");// 字段反序列化   key 和  valueproperties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());// 配置消费者组(组名任意起名) 必须properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test2");// 指定分区的分配方案properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, "org.apache.kafka.clients.consumer.RoundRobinAssignor");KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties);// 消费者订阅主题,主题有数据就会拉取数据// 指定消费的主题ArrayList<String> topics = new ArrayList<>();topics.add("first");// 一个消费者可以订阅多个主题kafkaConsumer.subscribe(topics);while(true){//1 秒中向kafka拉取一批数据ConsumerRecords<String, String> records = kafkaConsumer.poll(Duration.ofSeconds(1));for (ConsumerRecord<String,String> record :records) {// 打印一条数据System.out.println(record);// 可以打印记录中的很多内容,比如 key  value  offset topic 等信息System.out.println(record.value());}}}
}修改一下消费者组为test2

 

重启 3 个消费者,重复发送消息步骤并观察分区结果。

 

 

(三)RoundRobin 分区分配再平衡案例

        停止掉 0 号消费者,快速重新发送消息(45s 以内),1 号消费者消费到 2、5 号分区数据,2 号消费者消费到 4、1 号分区数据,0 号消费者以前对应的数据无人消费。

说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。

        再次重新发送消息(45s 以后),1 号消费者消费到 0、2、4、6 号分区数据,2 号消费者消费到 1、3、5 号分区数据。

说明:消费者 0 已经被踢出消费者组,所以重新按照 RoundRobin 方式分配。

四、Sticky 分区分配策略

(一)原理

        粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前, 考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。 粘性分区是 Kafka 从 0.11.x 版本开始引入这种分配策略,首先会尽量均衡的放置分区 到消费者上面,在出现同一消费者组内消费者出现问题的时候,会尽量保持原有分配的分区不变化

(二)案例

1)需求

设置主题为 first,7 个分区;准备 3 个消费者,采用粘性分区策略,并进行消费,观察

消费分配情况。然后再停止其中一个消费者,再次观察消费分配情况。

2)步骤

(1)修改分区分配策略为粘性。

注意:3 个消费者都应该注释掉,之后重启 3 个消费者,如果出现报错,全部停止等

会再重启,或者修改为全新的消费者组。

// 修改分区分配策略
ArrayList<String> startegys = new ArrayList<>();
startegys.add("org.apache.kafka.clients.consumer.StickyAssignor");
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, startegys);

(3)使用同样的生产者发送 500 条消息。

可以看到会尽量保持分区的个数近似划分分区。

(三)Sticky 分区分配再平衡案例

        停止掉 0 号消费者,快速重新发送消息(45s 以内),1 号消费者消费到 2、5、3 号分区数据,2 号消费者消费到 4、6 号分区数据,0 号消费者的任务无人顶替。

说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需

要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。

        再次重新发送消息(45s 以后),1 号消费者消费到 2、3、5 号分区数据,2 号消费者消费到 0、1、4、6 号分区数据。

说明:消费者 0 已经被踢出消费者组,所以重新按照粘性方式分配。

五、CooperativeSticky 分区分配策略

        CooperativeSticky 是新添加的策略。在消费过程中,会根据消费的偏移量情况进行重新再平衡,也就是粘性分区,并且在运行过程中还会根据消费的实际情况重新分配消费者,直到平衡为止。其好处是实现负载均衡,但多次平衡会浪费性能,它采用动态平衡,在消费过程中实施再平衡,而不是等到某个消费者退出再平衡。

六、消费者事务

        若要实现 Kafka 消费端的精准一次性消费,需要将消费过程和提交 offset 过程做原子绑定。此时可将 Kafka 的 offset 保存到支持事务的自定义介质(如 MySQL),这部分知识将在后续项目中深入涉及,事务具有 ACID 四大特征,例如转账场景(张三 --> 李四)就需要事务的保障来确保数据的准确性和完整性。

七、数据积压(消费者如何提高吞吐量)

        当面临数据积压问题时,消费者可以采取多种方式提高吞吐量,例如增加消费者数量、优化消费者代码处理逻辑、调整相关参数(如 max.poll.interval.ms 等)以适应更高的处理负载等。后续将深入探讨数据积压场景下的优化策略。

八、总结

        通过对 Kafka 分区分配以及再平衡策略的深入理解和实践,可以更好地构建和优化 Kafka 消费任务处理流程,确保系统的高效稳定运行。在实际应用中,需要根据具体的业务需求和场景特点选择合适的分区分配策略,并合理处理再平衡过程中的各种情况。

        消费者事务方面,为实现精准一次性消费,需将消费与提交 offset 原子绑定,可将 offset 存于支持事务的自定义介质如 MySQL 中。在数据积压场景下,消费者可通过增加数量、优化代码处理逻辑、调整参数等方式提高吞吐量,后续会深入探讨相关优化策略。这些知识对于深入理解和优化 Kafka 消费者的性能、可靠性和数据处理准确性具有极为重要的意义,有助于在实际应用中更好地构建和管理基于 Kafka 的系统架构

相关文章:

Kafka 分区分配及再平衡策略深度解析与消费者事务和数据积压的简单介绍

Kafka&#xff1a;分布式消息系统的核心原理与安装部署-CSDN博客 自定义 Kafka 脚本 kf-use.sh 的解析与功能与应用示例-CSDN博客 Kafka 生产者全面解析&#xff1a;从基础原理到高级实践-CSDN博客 Kafka 生产者优化与数据处理经验-CSDN博客 Kafka 工作流程解析&#xff1a…...

如何在 UniApp 中实现 iOS 版本更新检测

随着移动应用的不断发展&#xff0c;保持应用程序的更新是必不可少的&#xff0c;这样用户才能获得更好的体验。本文将帮助你在 UniApp 中实现 iOS 版的版本更新检测和提示&#xff0c;适合刚入行的小白。我们将分步骤进行说明&#xff0c;每一步所需的代码及其解释都会一一列出…...

Android 14.0 kenel中修改rom系统内部存储的大小

1. 前言 在14.0的系统rom产品开发定制中,在对一些产品开发中的配置需求方面,由于在产品后续订单中,有些产品是出口的,但是硬件方面已经定板,时间比较仓促,所以 就需要软件方面在rom内部存储的大小方面作假,修改rom真实的大小容量,所以就需要在kenel驱动部分来修改这部分…...

JavaScript 函数

JavaScript中也可以使用函数&#xff0c;但是使用的方法有些不同&#xff1b;需要使用function关键字定义一个函数&#xff08;或者使用匿名函数或者箭头函数&#xff09;。但是需要特别注意的是&#xff1a;在类中定义函数时&#xff0c;一定不可以使用箭头函数&#xff0c;因…...

js+new Date()+moment+时区

文章目录 概要一、Date对象基础知识1. 创建Date对象2. 获取日期和时间信息3. 设置日期和时间 二、Date对象的应用1. 日期格式化2. 时间差计算3. 倒计时功能 moment.jsmoment 常见场景应用时区差别亚洲欧洲美洲大洋洲 时区时间说明 概要 一、Date对象基础知识 1. 创建Date对象…...

OpenCV、YOLO、VOC、COCO之间的关系和区别

OpenCV、YOLO、COCO 和 VOC 是计算机视觉和深度学习领域常见的几个名词&#xff0c;它们分别代表不同的工具、算法和数据集&#xff0c;之间有一些联系和区别。下面分别说明它们的定义、用途以及相互关系。 1. OpenCV&#xff08;Open Source Computer Vision Library&#xf…...

迁移学习理论与应用

迁移学习&#xff08;Transfer Learning&#xff09;是一种机器学习技术&#xff0c;旨在将一个任务&#xff08;源任务&#xff09;上学到的知识迁移到另一个相关但不完全相同的任务&#xff08;目标任务&#xff09;上&#xff0c;从而提高目标任务的学习效果。这种方法的核心…...

Python-简单病毒程序合集(一)

前言&#xff1a;简单又有趣的Python恶搞代码&#xff0c;往往能给我们枯燥无味的生活带来一点乐趣&#xff0c;激发我们对编程的最原始的热爱。那么话不多说&#xff0c;我们直接开始今天的编程之路。 编程思路&#xff1a;本次我们将会用到os,paltform,threading,ctypes,sys,…...

AI安全:从现实关切到未来展望

近年来&#xff0c;人工智能技术飞速发展&#xff0c;从简单的图像识别到生成对话&#xff0c;从自动驾驶到医疗诊断&#xff0c;AI技术正深刻改变着我们的生活。然而&#xff0c;伴随着这些进步&#xff0c;AI的安全性和可控性问题也日益凸显。这不仅涉及技术层面的挑战&#…...

集成金蝶云星空数据至MySQL的完整案例解析

金蝶云星空数据集成到MySQL的技术案例分享 在企业信息化系统中&#xff0c;数据的高效流动和准确同步是确保业务连续性和决策支持的重要环节。本文将聚焦于一个具体的系统对接集成案例——金蝶云星空的数据集成到MySQL&#xff0c;方案名称为“2金蝶物料同步到商城中间表”。 …...

C++格式化输入输出【练习版】

一、引言 在 C 编程中&#xff0c;准确地进行输入输出操作是构建功能强大且用户友好程序的关键。格式化输入输出允许我们以特定的格式展示数据&#xff0c;确保数据的可读性和准确性。本文将深入探讨 C 的格式化输入输出&#xff0c;通过丰富的练习例题和详细的答案解析&#x…...

aws服务(二)机密数据存储

在AWS&#xff08;Amazon Web Services&#xff09;中存储机密数据时&#xff0c;安全性和合规性是最重要的考虑因素。AWS 提供了多个服务和工具&#xff0c;帮助用户确保数据的安全性、机密性以及合规性。以下是一些推荐的存储机密数据的AWS服务和最佳实践&#xff1a; 一、A…...

CIO40: 回头再看ERP之“4问”

1、在数字化时代的今天&#xff0c;ERP现在的定位是&#xff1f; ERP软件财务化&#xff0c;我觉得是一个趋势&#xff0c;但是短期内&#xff08;2-3年&#xff09;ERP依然是企业的核心系统。这要看企业外部系统的建设情况&#xff0c;ERP系统的使用深度&#xff08;特别是一些…...

数据库类型介绍

1. 关系型数据库&#xff08;Relational Database, RDBMS&#xff09;&#xff1a; • 定义&#xff1a;基于关系模型&#xff08;即表格&#xff09;存储数据&#xff0c;数据之间通过外键等关系相互关联。 • 特点&#xff1a;支持复杂的SQL查询&#xff0c;数据一致性和完整…...

深入理解 Spring Boot 的 CommandLineRunner 原理及使用

引言 在开发 Spring Boot 应用程序时&#xff0c;我们经常需要在应用程序启动后执行一些初始化任务&#xff0c;比如加载初始数据、连接外部服务、执行健康检查等。Spring Boot 提供了 CommandLineRunner 接口&#xff0c;使得这些任务的实现变得非常简单和直观。本文将深入探…...

人工智能深度学习-Torch框架-数学运算

数学的基本操作 1.floor&#xff1a;向下取整 2.celi&#xff1a;向上取整 3.round&#xff1a;四舍五入&#xff0c;这里的四舍五入还要看前面整数的奇偶性&#xff0c;基进偶不进 4.trunc&#xff1a;只保留整数 5.frac&#xff1a;只保留小数部分 6.fix&#xff1a;向…...

操作系统的理解

目录 一、冯伊诺曼体系结构 二、操作系统的概念 三、如何理解“管理”&#xff1f; 四、系统调用和库调用的概念 一、冯伊诺曼体系结构 冯伊诺曼体系结构描述的是计算机硬件结构&#xff0c;相当于计算机的骨架。它大体可以分为4部分&#xff1a; 输入设备&#xff1a;键盘…...

SpringDataNeo4j使用详解

SDN快速入门 Spring Data Neo4j简称SDN&#xff0c;是Spring对Neo4j数据库操作的封装&#xff0c;其底层基于neo4j-java-driver实现。 我们使用的版本为&#xff1a;6.2.3&#xff0c;官方文档&#xff1a; 下面我们将基于项目中的运输路线业务进行学习&#xff0c;例如&#…...

undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12 问题解决

​ 在部署运行opencompass项目时遇到了如下报错&#xff1a; ImportError: /data/conda/envs/opencompass/lib/python3.10/site-packages/torch/lib/../../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkComplete_12_4, version libnvJitLink.so.12​…...

记一次:软著申请

前言&#xff1a;公司每年都有申请软著或者发明&#xff0c;可惜没有我的名字&#xff0c;没关系&#xff0c;我可以按个人的名义去申请一个&#xff0c;于是乎就有了这篇文章。话不多说&#xff0c;展示 之前还犹豫要不要发表一下&#xff0c;经过朋友的劝说&#xff0c;自己的…...

IntelliJ+SpringBoot项目实战(四)--快速上手数据库开发

对于新手学习SpringBoot开发&#xff0c;可能最急迫的事情就是尽快掌握数据库的开发。目前数据库开发主要流行使用Mybatis和Mybatis Plus,不过这2个框架对于新手而言需要一定的时间掌握&#xff0c;如果快速上手数据库开发&#xff0c;可以先按照本文介绍的方式使用JdbcTemplat…...

筑起数字堡垒:解析AWS高防盾(Shield)的全面防护能力

引言 在数字化时代&#xff0c;网络攻击的频率和复杂性持续增加。分布式拒绝服务&#xff08;DDoS&#xff09;攻击成为威胁在线业务的主要手段之一。AWS推出的高防盾&#xff08;AWS Shield&#xff09;是一项专注于DDoS防护的服务&#xff0c;帮助用户保护其应用程序和数据免…...

python语言基础

1. 基础语法 Q: Python 中的变量与数据类型有哪些&#xff1f; A: Python 支持多种数据类型&#xff0c;包括数字&#xff08;整数 int、浮点数 float、复数 complex&#xff09;、字符串 str、列表 list、元组 tuple、字典 dict 和集合 set。每种数据类型都有其特定的用途和…...

vue2 src_Todolist编辑($nextTick)

main.js //引入Vue import Vue from "vue"; //引入App import App from ./App;//关闭Vue的生产提示 Vue.config.productionTip false;new Vue({el: #app,render: h > h(App),beforeCreate() {//事件总线Vue.prototype.$bus this;} });App.vue <template>…...

复习!!!

前言&#xff1a; 今天好像没有复习什么&#xff0c;对了&#xff0c;老师让我们写作业来着 那个乌云漏洞网站真的好啊&#xff0c;虽然很老&#xff0c;但是有思路啊 乌云(WooYun.org)历史漏洞查询---http://WY.ZONE.CI 复习&#xff1a; 今天主要复习了nuclei工具的用法…...

面试题---深入源码理解MQ长轮询优化机制

引言 在分布式系统中&#xff0c;消息队列&#xff08;MQ&#xff09;作为一种重要的中间件&#xff0c;广泛应用于解耦、异步处理、流量削峰等场景。其中&#xff0c;延时消息和定时消息作为MQ的高级功能&#xff0c;能够进一步满足复杂的业务需求。为了实现这些功能&#xf…...

使用 PyTorch TunableOp 加速 ROCm 上的模型

Accelerating models on ROCm using PyTorch TunableOp — ROCm Blogs (amd.com) 在这篇博客中&#xff0c;我们将展示如何利用 PyTorch TunableOp 在 AMD GPU 上使用 ROCm 加速模型。我们将讨论通用矩阵乘法&#xff08;GEMM&#xff09;的基础知识&#xff0c;展示调优单个 G…...

配置Springboot+vue项目在ubuntu20.04

一、jdk1.8环境配置 (1) 安装jdk8&#xff1a; sudo apt-get install openjdk-8-jdk (2) 检查jdk是否安装成功&#xff1a; java -version(3) 设置JAVA_HOME&#xff1a; echo export JAVA_HOME/usr/lib/jvm/java-17-openjdk-amd64 >> ~/.bashrc echo export PATH$J…...

基于SpringBoot的在线教育系统【附源码】

基于SpringBoot的在线教育系统 效果如下&#xff1a; 系统登录页面 系统管理员主页面 课程管理页面 课程分类管理页面 用户主页面 系统主页面 研究背景 随着互联网技术的飞速发展&#xff0c;线上教育已成为现代教育的重要组成部分。在线教育系统以其灵活的学习时间和地点&a…...

国土安全部发布关键基础设施安全人工智能框架

美国国土安全部 (DHS) 发布建议&#xff0c;概述如何在关键基础设施中安全开发和部署人工智能 (AI)。 https://www.dhs.gov/news/2024/11/14/groundbreaking-framework-safe-and-secure-deployment-ai-critical-infrastructure 关键基础设施中人工智能的角色和职责框架 https:/…...

散户持股增厚工具:智能T0算法交易

最近市场很多都说牛市&#xff0c;但是大多数朋友怎么来的又怎么吐出去了。这会儿我们用T0的智能算法交易又可以增厚我们的持仓收益。简单来说&#xff0c;就是基于用户原有的股票持仓&#xff0c;针对同一标的&#xff0c;配合智能T0算法&#xff0c;每天全自动操作&#xff0…...

28、js基本数据类型

<!DOCTYPE html> <html> <head> <meta charset"UTF-8"> <title></title> </head> <body> </body> <script> //JS是弱语言类型,只有一种var,由隐藏类型 //基本数据类型…...

MacOS下的Opencv3.4.16的编译

前言 MacOS下编译opencv还是有点麻烦的。 1、Opencv3.4.16的下载 注意&#xff0c;我们使用的是Mac&#xff0c;所以ios pack并不能使用。 如何嫌官网上下载比较慢的话&#xff0c;可以考虑在csdn网站上下载&#xff0c;应该也是可以找到的。 2、cmake的下载 官网的链接&…...

[免费]SpringBoot+Vue毕业设计论文管理系统【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的SpringBootVue毕业设计论文管理系统&#xff0c;分享下哈。 项目视频演示 【免费】SpringBootVue毕业设计论文管理系统 Java毕业设计_哔哩哔哩_bilibili 项目介绍 现代经济快节奏发展以及不断完善升级的信…...

科研深度学习:如何精选GPU以优化服务器性能

GPU在科研深度学习中的核心价值 在科研深度学习的范畴内&#xff0c;模型训练是核心环节。面对大规模参数的模型训练&#xff0c;这往往是科研过程中最具挑战性的部分。传统CPU的计算模式在处理复杂模型时&#xff0c;训练时间会随着模型复杂度的增加而急剧增长&#xff0c;这…...

嵌入式系统与OpenCV

目录 一、OpenCV 简介 二、嵌入式 OpenCV 的安装方法 1. Ubuntu 系统下的安装 2. 嵌入式 ARM 系统中的安装 3. Windows10 和树莓派系统下的安装 三、嵌入式 OpenCV 的性能优化 1. 介绍嵌入式平台上对 OpenCV 进行优化的必要性。 2. 利用嵌入式开发工具&#xff0c;如优…...

C++学习——编译的过程

编译的过程——预处理 引言预处理包含头文件宏定义指令条件编译 编译、链接 引言 C程序编译的过程&#xff1a;预处理 -> 编译&#xff08;优化、汇编&#xff09;-> 链接 编译和链接的内容可以查阅这篇文章&#xff08;点击查看&#xff09; 预处理 编译预处理是指&a…...

接口测试和单元测试

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 接口测试的本质&#xff1a;就是通过数据驱动&#xff0c;测试类里面的函数。 单元测试的本质&#xff1a;通过代码级别&#xff0c;测试函数。 单元测试的框架…...

redis工程实战介绍(含面试题)

文章目录 redis单线程VS多线程面试题**redis是多线程还是单线程,为什么是单线程****聊聊redis的多线程特性和IO多路复用****io多路复用模型****redis如此快的原因** BigKey大批量插入数据测试数据key面试题海量数据里查询某一固定前缀的key如果生产上限值keys * &#xff0c;fl…...

深度学习:GPT-1的MindSpore实践

GPT-1简介 GPT-1&#xff08;Generative Pre-trained Transformer&#xff09;是2018年由Open AI提出的一个结合预训练和微调的用于解决文本理解和文本生成任务的模型。它的基础是Transformer架构&#xff0c;具有如下创新点&#xff1a; NLP领域的迁移学习&#xff1a;通过最…...

内嵌编辑器+AI助手,Wave Terminal打造终端新体验

作为新一代终端工具的佼佼者&#xff0c;Wave Terminal 突破性地将传统命令行与现代图形界面相结合&#xff0c;为开发者带来全新的操作体验。这款创新的开源终端工具跨越了操作系统的界限&#xff0c;完美支持 macOS、Windows 和 Linux 平台&#xff0c;特别适合需要频繁处理远…...

《Object类》

目录 一、Object类 1.1 定义与地位 1.2 toString()方法 1.3 equals()方法 1.4 hashcode()方法 一、Object类 1.1 定义与地位 Object类是Java语言中的根类&#xff0c;所有的类&#xff08;除了Object类&#xff09;都直接或间接继承自Object。这就意味着在Java中&#xf…...

GPTZero:高效识别AI生成文本,保障学术诚信与内容原创性

产品描述 GPTZero 是一款先进的AI文本检测工具&#xff0c;专为识别由大型语言模型&#xff08;如ChatGPT、GPT-4、Bard等&#xff09;生成的文本而设计。它通过分析文本的复杂性和一致性&#xff0c;判断文本是否可能由人类编写。GPTZero 已经得到了超过100家媒体机构的报道&…...

2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略 完整参考论文(1)

摘要 近年来,中国宠物食品行业迅速增长,但面临复杂的国际形势和多变的市场环境,因此科学地分析和预测该行业的发展趋势至关重要。本研究通过构建多个机器学习与统计回归模型,量化分析中国宠物食品行业的关键驱动因素,预测未来宠物食品总产值和出口值。 在数据处理部分,…...

深入实践 Shell 脚本编程:高效自动化操作指南

一、什么是 Shell 脚本&#xff1f; Shell 脚本是一种用 Shell 编写的脚本程序&#xff0c;用于执行一系列的命令。它是 Linux/Unix 系统中自动化管理任务的利器&#xff0c;能够显著提升工作效率&#xff0c;特别适合批量处理文件、监控系统状态、自动部署等任务。 二、Shell…...

用代码如何创建Python代理池

1. 导入所需库 这里使用requests库来发送HTTP请求获取网页内容和测试代理是否可用&#xff0c;BeautifulSoup用于解析网页&#xff08;比如从提供代理列表的网页提取代理信息&#xff09;&#xff0c;random用于随机选择代理&#xff0c;time用于设置请求间隔等操作。 2. 获取…...

python蓝桥杯刷题2

1.最短路 题解&#xff1a;这个采用暴力枚举&#xff0c;自己数一下就好了 2.门牌制作 题解&#xff1a;门牌号从1到2020&#xff0c;使用for循环遍历一遍&#xff0c;因为range函数无法调用最后一个数字&#xff0c;所以设置成1到2021即可&#xff0c;然后每一次for循环&…...

跨境出海安全:如何防止PayPal账户被风控?

今天咱们聊聊那些让人头疼的事儿——PayPal账户被风控。不少跨境电商商家反馈&#xff0c;我们只是想要安安静静地在网上做个小生意&#xff0c;结果不知道为什么&#xff0c;莫名其妙账户就被冻结了。 但其实每个封禁都是有原因的&#xff0c;今天就来给大家分享分享可能的原…...

学习与理解LabVIEW中多列列表框项名和项首字符串属性

多列列表框控件在如下的位置&#xff1a; 可以对该控件右击&#xff0c;如下位置&#xff0c;即可设置该控件的显示项&#xff1a; 垂直线和水平线指的是上图中组成单元格的竖线和横线&#xff08;不包括行首列首&#xff09; 现在介绍该多列列表框的两个属性&#xff0c;分别…...

多摩川编码器协议及单片机使用

参考&#xff1a; https://blog.csdn.net/qq_28149763/article/details/132718177 https://mp.weixin.qq.com/s/H4XoR1LZSMH6AxsjZuOw6g 1、多摩川编码器协议 多摩川数据通讯是基于485 硬件接口标准NRZ 协议&#xff0c;通讯波特率为2.5Mbps 的串行通讯&#xff0c;采用差分两…...