当前位置: 首页 > news >正文

C++STL之vector(超详细)

C++STL之vector

  • 1.vector基本介绍
  • 2.vector重要接口
    • 2.1.构造函数
    • 2.2.迭代器
    • 2.3.空间
      • 2.3.1.resize
      • 2.3.2.capacity
    • 2.4.增删查找
  • 3.迭代器失效
  • 4.迭代器分类

🌟🌟hello,各位读者大大们你们好呀🌟🌟
🚀🚀系列专栏:【C++的学习】
📝📝本篇内容:vector基本介绍;vector重要接口:构造函数;迭代器;空间;增删查改;迭代器失效;迭代器分类
⬆⬆⬆⬆上一篇:C++IO流
💖💖作者简介:轩情吖,请多多指教(> •̀֊•́ ) ̖́-

1.vector基本介绍

① 在我们C语言中有数组,C++中因此也设计了array来代替C语言中的数组,但是它有一个缺点,就是array是静态空间,一旦配置了空间就无法改变,这就让使用者非常麻烦。但是vector就不一样,它是动态空间,一旦底层空间不足,就会自动扩容,压根不需要担心空间不足而造成问题。
②vector扩容:当新元素插入进来时,发现内存不足,这个时候就会先扩容开辟新的空间(并不是原地扩容,因为可能后面没有内存),然后把原来的数据拷贝过去,再进行插入,然后把旧的空间给释放掉。并且我们扩容的空间基本上是以倍数来增长的,保证后续再有元素插入时,不需要扩容,导致效率低下。
③vector支持随机访问,即像数组一样[ ]来访问,非常高效,同时在末尾删除和末尾插入元素非常高效,这得益于它的结构。但是其他的位置进行操作效率就会比较低下,没有list好

2.vector重要接口

☞vector参考文档

2.1.构造函数

对于任何容器,首先看的肯定是构造函数
在这里插入图片描述
讲一下其中比较重要的

vector构造函数
vector()默认构造函数
vector(const vector&)拷贝构造
vector(size_type n,const value_type&val)构造n个val
vector(InputIterator first, InputIterator last)使用迭代器构造
#include <vector>
#include <iostream>
using namespace std;
int main()
{vector<int> v1;//默认构造int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };vector<int> v2(arr, arr + 10);//使用迭代器来构造for (auto& e : v2){cout << e << " ";}cout << endl;vector<int> v3(2, 10);//构造2个为10的元素for (auto& e : v3){cout << e <<" ";}vector<int> v4(v3);//拷贝构造return 0;
}

在这里插入图片描述

2.2.迭代器

我们来看一下迭代器,迭代器就是迭代器是一种访问容器内元素的对象,它提供了一种方法来顺序访问容器中的各个元素,而不需要了解容器的内部工作原理。

vector迭代器iterator/reverse_iterator
begin+end正向迭代器
rbegin+rend反向迭代器
#include <iostream>
#include <vector>
using namespace std;
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };vector<int> v(arr, arr + 10);//使用迭代器//正向迭代器vector<int>::iterator it = v.begin();while (it != v.end())//end是最后一个元素的下一个位置{cout << *it <<' ';//像指针一样使用it++;}cout << endl;//反向迭代器vector<int>::reverse_iterator rit = v.rbegin();while (rit != v.rend()){cout << *rit << ' ';//像指针一样使用rit++;//这里是++,而不是--,因为已经说明是反向迭代器,就该使用++}return 0;
}

在这里插入图片描述

2.3.空间

vector空间
size_type size() const;获取数据个数
size_type capacity() const;获取vector的容量大小
bool empty() const;vector是否为空
void reserve (size_type n);提前开辟空间,只会改变vector的capacity,能够缓解vector增容代价问题
void resize (size_type n, value_type val = value_type());改变vector的size,可以变大也可以变小
#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v;//emptyif (v.empty()){cout << "empty" << endl;}cout << "------------------" << endl;//sizev.push_back(10);v.push_back(10);v.push_back(10);cout << v.size() << endl;cout << "------------------" << endl;//capacitycout << v.capacity() << endl;cout << "------------------" << endl;//reversev.reserve(10);//提前扩容到能存放10个元素的空间cout << v.size() << endl;//3,不会改变cout << v.capacity() << endl;//10cout << "------------------" << endl;//resizev.resize(20);cout << v.size() << endl;//20,改变size,元素为默认值cout << v.capacity() << endl;//20return 0;
}

在这里插入图片描述

2.3.1.resize

其中我们的resize还有其他的功能,可以缩小空间以及设定自己想要的元素,resize在开空间的同时还会进行初始化,影响size
具体演示见下面

#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v;v.push_back(10);v.push_back(11);v.push_back(12);v.push_back(13);v.push_back(14);cout <<"size:"<<v.size() << endl;for (auto& e : v){cout << e << " ";}cout << endl;cout << "---------------------" << endl;v.resize(3);cout << "size:" << v.size() << endl;for (auto& e : v){cout << e << " ";}cout << endl;cout << "---------------------" << endl;v.resize(10,33);//把7个元素都设置为33cout << "size:" << v.size() << endl;for (auto& e : v){cout << e << " ";}cout << endl;cout << "---------------------" << endl;return 0;
}

在这里插入图片描述

2.3.2.capacity

我们这边再详细讨论一下capacity这个成员函数,我们想一下,我们的vector的扩容是按照什么来的呢?需要空间就扩容?一个个扩容?我们来看一下下面的一段代码,分别在windows和Linux下展示

#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v;size_t cap = v.capacity();cout <<"initital capacity:"<< cap << endl;for (int i = 0; i < 100; i++){v.push_back(i);if (cap != v.capacity()){cap = v.capacity();cout << "capacity changed:" << cap << endl;}} return 0;
}

windows:
在这里插入图片描述

Linux:
在这里插入图片描述

capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。

我们还要注意下它的效率问题,如果我们提前知道需要多少空间,就可以提前扩容来保证一次的开辟空间,来避免多次扩容的效率低下

#include <iostream>
#include  <vector>
using namespace std;
int main()
{vector<int> v;v.reserve(100);//提前开辟好空间,防止一遍遍的扩容造成效率低下for (int i = 0; i < 100; i++){v.push_back(i);}cout << v.capacity() << endl;//100return 0;
}

2.4.增删查找

vector增删查改
void push_back (const value_type& val);尾插
void pop_back();尾删
InputIterator find (InputIterator first, InputIterator last, const T& val);这是算法中的,查找
iterator insert (iterator position, const value_type& val);在position前插入元素
void insert (iterator position, size_type n, const value_type& val);在position位置前插入n个val
iterator erase (iterator position);删除position位置的元素
iterator erase (const_iterator first, const_iterator last);删除迭代器范围的元素
void swap (vector& x);交换两个vector
reference operator[] (size_type n);像数组一样的访问
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{vector<int> v(2, 10);v.push_back(11);//尾插v.push_back(12);v.push_back(13);v.push_back(14);cout << "initiatl element:";for (auto& e : v){cout << e << " ";}cout << endl;cout << "------------------------------------------------------" << endl;v.pop_back();//尾删cout << "after pop_back():";for (auto& e : v){cout << e << " ";}cout << endl;cout << "------------------------------------------------------" << endl;v.insert(v.begin(), 9);//在第一个元素前的位置插入一个9cout << "after insert(v.begin(),9):";for (auto& e : v){cout << e << " ";}cout << endl;cout << "------------------------------------------------------" << endl;//find && erasevector<int>::iterator it=find(v.begin(), v.end(),12);//查找元素为12的位置if (it != v.end()){//如果返回的迭代器为end()说明没找到v.erase(it);}cout << "after erase(it):";for (auto& e : v){cout << e << " ";}cout << endl;cout << "------------------------------------------------------" << endl;//operator[]for (int i = 0; i < v.size(); i++){v[i] = i;//operator[]的返回值是引用}cout << "after change element through operator[]:";for (auto& e : v){cout << e << " ";}cout << endl;cout << "------------------------------------------------------" << endl;return 0;
}

在这里插入图片描述

3.迭代器失效

接下来我们要谈谈迭代器失效的问题了,这个如果不了解底层的话就会很容易掉进坑里面
首先我们先讲insert导致的迭代器失效
在这里插入图片描述
在我们使用insert的时候,如果空间不足了,那我们的vector就会自动帮我们扩容,但是扩容常常需要经历三个步骤:开辟新的空间;移动元素到新空间;释放原来的空间。我们vector底层的实现的迭代器本身就是指针,只不过是typedef了一下。仔细想想,问题就来了,当我们插入后,有概率空间不足,扩容后,原本的迭代器(指针)就是野指针了,没有指向新空间

//!!!!error code
#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v;v.push_back(11);v.push_back(12);v.push_back(13);v.push_back(14);cout << v.capacity() << endl;//接下来再插入就会扩容	vector<int>::iterator it = v.begin();v.insert(it, 10);cout << v.capacity() << endl;cout << *it << endl;return 0;
}

上述代码就演示了这个情况,使用一块已经被释放的空间,造成的后果是程序崩溃,我们仅仅演示了一下insert造成的结果,其实其他会造成扩容的函数如resize,reverse,push_back都会造成迭代器失效,同时从另一个角度来说,我们所传入的迭代器position所指向的内容已经不是我们想要的了,这也是迭代器失效的一种情况,因此insert以后我们认为迭代器已经失效,不能再使用

下一种情况是erase,思考一下?erase会扩容吗?答案是并不会,只是删除元素,所以说就没问题了?不不不,仔细思考一下,我的迭代器此时指向最后一个元素,如果我erase了一个元素呢,我们底层的_finish指针就会–,那此时的迭代器就相等于是指向无效空间

//!!!!!error code
#include <iostream>
using namespace std;
#include <vector>
int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}

在这里插入图片描述

可以运行一下上面的代码分别在Linux和Windows下,在Windows下会崩溃,但是在Linux可以运行,这不得不说VS的检查非常严,erase后的迭代器是不允许使用的,但是g++的就会宽很多,当删除3后,元素4会往前移动,pos的位置还是有效的
接下来就看一下下面这个代码

#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v{1,2,3,4,5};//删除偶数vector<int>::iterator it = v.begin();while (it != v.end()){if ((*it) % 2 == 0){v.erase(it);}it++;}for (auto& e : v){cout << e << " ";}cout << endl;return 0;
}

首先对于环境而言是一样的,在VS下会崩溃,而Linux下能正常运行
在这里插入图片描述
在这里插入图片描述
我们来分析一下这个代码
在这里插入图片描述
可以发现,我们的it很巧合的把偶数元素删除了,同时也正好落到了_finish使用空间的尾end(),也判断循环结束了,我们接下里对代码稍作修改如下

#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v{ 1,2,3,4};//删除偶数vector<int>::iterator it = v.begin();while (it != v.end()){if ((*it) % 2 == 0){v.erase(it);}it++;}for (auto& e : v){cout << e << " ";}cout << endl;return 0;
}

我们的元素的数量变为只有四个,接下来再看一下它的执行逻辑
在这里插入图片描述
通过上面的图可以发现,我们的it直接和_finish(end())直接错过了,这样即使是Linux也无能为力了
在这里插入图片描述
直接发生段错误

从上述的例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的。
因此我们的insert和erase函数都会返回一个迭代器来供我们使用,我们修正一下上面的代码

#include <iostream>
#include <vector>
using namespace std;
int main()
{vector<int> v{ 1,2,3,4};//删除偶数vector<int>::iterator it = v.begin();while (it != v.end()){if ((*it) % 2 == 0){it=v.erase(it);//接受迭代器,返回的迭代器是it传入时的位置}else{it++;}}for (auto& e : v){cout << e << " ";}cout << endl;return 0;
}

我们的string其实也是一样的道理,只是对于string我们很少用迭代器
在这里插入图片描述
我们对str进行了提前扩容,造成了野指针问题,我们的string使用失效的迭代器也会崩溃

4.迭代器分类

在我们使用算法函数时,有些函数需要特定的迭代器,像我们的vector的迭代器本质就是原生指针,因此它是一个随机迭代器,我们可以看一下侯捷大佬的《STL源码剖析》里对迭代器的分类
在这里插入图片描述
在这里插入图片描述我们Forward迭代器就是单向迭代器,它是只支持重载++的迭代器,Bidrectional迭代器是双向迭代器,它支持++和–,而我们的Random是随机迭代器,它支持++和–,也支持+和-,同样支持[ ]
理论上来讲,模板语法上可以传任何类型参数,但是内部使用迭代器是有要求

🌸🌸C++STL之vector的知识大概就讲到这里啦,博主后续会继续更新更多C++的相关知识,干货满满,如果觉得博主写的还不错的话,希望各位小伙伴不要吝啬手中的三连哦!你们的支持是博主坚持创作的动力!💪💪

相关文章:

C++STL之vector(超详细)

CSTL之vector 1.vector基本介绍2.vector重要接口2.1.构造函数2.2.迭代器2.3.空间2.3.1.resize2.3.2.capacity 2.4.增删查找 3.迭代器失效4.迭代器分类 &#x1f31f;&#x1f31f;hello&#xff0c;各位读者大大们你们好呀&#x1f31f;&#x1f31f; &#x1f680;&#x1f68…...

RabbitMQ消息可靠性保证机制5--消息幂等性处理

RabbitMQ层面有实现“去重机制”来保证“恰好一次”吗&#xff1f;答案是没并没有&#xff0c;而且现在主流的消息中间件都没有实现。 一般解决重复消息的办法是&#xff1a;在消费端让我们消费消息操作具有幂等性。 幂等性问题并不是消息系统独有&#xff0c;而是&#xff0…...

24/12/1 算法笔记<强化学习> 创建Maze交互

我们今天制作一个栅格的游戏。 我们直接上代码教学。 1.载入库和查找相应的函数版本 import numpy as np import time import sysif sys.version_info.major 2:import Tkinter as tk else:import tkinter as tk 2.设置长宽和单元格大小 UNIT 40 MAZE_H 4 MAZE_W 4 3.初始…...

c++:模版 template

一、模版 1.格式&#xff1a; template <typname T> 2.实现 2.1自动推导 模板只对紧跟在后面的第一行代码有效&#xff0c;如果后面还想定义模板函数需要重新定义模板 #include <iostream> #include <string>template <typename T> void Print(T v…...

javascript切换类、删除类、修改类以及增加类

在JavaScript中&#xff0c;操作DOM元素的类&#xff08;class&#xff09;是一个常见的操作。以下是一些基本的方法来切换类、删除类、修改类以及增加内联样式&#xff1a; 切换类&#xff08;Toggle Class&#xff09; 切换类意味着如果类存在则移除它&#xff0c;如果不存…...

区块链学习笔记(2)--区块链的交易模型part1

模型基础 区块链的tx分为两种模型&#xff0c;分别是比特币为代表的UTXO&#xff08;Unspent Transaction Output&#xff09;模型&#xff0c;和以太坊为代表的Account模型。前者适用于货币记账&#xff0c;后者适用于链上应用。 UTXO模型 类似于现金的交易模型 一个tx包含…...

反射知识总结

狂神说 反射的功能&#xff1a; 类加载内存分析 类加载的时候&#xff0c;class对象就形成了。 类无论有多少对象&#xff0c;class对象只有一个。 获取类对象三种方式 反射&#xff0c;就是通过api获取一个类的类对象&#xff1a; 有三种方式&#xff1a; 方法一&#xf…...

selenium部署分布式 UI 自动化测试环境-Docker

一、根据selenium/hub官网的配置信息&#xff0c;进行配置。 How to run this image The Hub and Nodes will be created in the same network and they will recognize each other by their container name. A Docker network⁠ needs to be created as a first step.Create …...

算法刷题Day5: BM52 数组中只出现一次的两个数字

描述&#xff1a; 一个整型数组里除了两个数字只出现一次&#xff0c;其他的数字都出现了两次。请写程序找出这两个只出现一次的数字。 要求&#xff1a;空间复杂度 O(1)&#xff0c;时间复杂度O(n)。 题目传送门 is here 思路&#xff1a; 方法一&#xff1a;最简单的思路就…...

使用docker-compose部署搜索引擎ElasticSearch6.8.10

背景 Elasticsearch 是一个开源的分布式搜索和分析引擎&#xff0c;基于 Apache Lucene 构建。它被广泛用于实时数据搜索、日志分析、全文检索等应用场景。 Elasticsearch 支持高效的全文搜索&#xff0c;并提供了强大的聚合功能&#xff0c;可以处理大规模的数据集并进行快速…...

多线程篇-5--线程分类(线程类型,springboot中常见线程类型,异步任务线程)

常见的线程类型包括用户线程&#xff08;User Threads&#xff09;、守护线程&#xff08;Daemon Threads&#xff09;、主线程&#xff08;Main Thread&#xff09;、工作线程&#xff08;Worker Threads&#xff09;和线程池中的线程。 一、用户线程&#xff08;User Thread…...

详解高斯消元

详解高斯消元 好东西,可以求所有一次方程组的解。 \color {red} 好东西,可以求所有一次方程组的解。 好东西,可以求所有一次方程组的解。 前置知识 一般消元法的公理: 两方程互换,解不变; 一方程乘以非零数 k k k,解不变; 一方程乘以数 k k k加上另一方程,解不变。 …...

【Python网络爬虫笔记】5-(Request 带参数的get请求) 爬取豆瓣电影排行信息

目录 1.抓包工具查看网站信息2.代码实现3.运行结果 1.抓包工具查看网站信息 请求路径 url:https://movie.douban.com/typerank请求参数 页面往下拉&#xff0c;出现新的请求结果&#xff0c;参数start更新&#xff0c;每次刷新出20条新的电影数据 2.代码实现 # 使用网络爬…...

泷羽sec- shell编程(8) until循环以及函数基本创建调用 学习笔记

声明&#xff01; 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以及泷羽sec团队无关&a…...

Apache Flink从Kafka中消费商品数据,并进行商品分类的数量统计题

使用Apache Flink从Kafka中消费商品数据&#xff0c;并进行商品分类的数量统计是一个典型的流处理任务。以下是一个详细的步骤指南和示例代码&#xff0c;帮助你实现这一功能。 ### 前提条件 1. **安装Flink**&#xff1a;确保你的环境中已经安装了 Apache Flink。 2. **安装…...

Ubuntu 安装 MariaDB

安装 MariaDB具体步骤 1、更新软件包索引&#xff1a; sudo apt update2、安装 MariaDB 服务器&#xff1a; sudo apt install mariadb-server3、启动 MariaDB 服务&#xff08;如果未自动启动&#xff09;&#xff1a; sudo systemctl start mariadb4、设置 MariaDB 开机启…...

GPT打字机效果—— fetchEventSouce进行sse流式请求

EventStream基本用法 与 WebSocket 不同的是&#xff0c;服务器发送事件是单向的。数据消息只能从服务端到发送到客户端&#xff08;如用户的浏览器&#xff09;。这使其成为不需要从客户端往服务器发送消息的情况下的最佳选择。 const evtSource new EventSource(“/api/v1/…...

Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II

Leetcode 3373. Maximize the Number of Target Nodes After Connecting Trees II 1. 接替思路2. 代码实现 题目链接&#xff1a;3373. Maximize the Number of Target Nodes After Connecting Trees II 1. 接替思路 这一题和前一题Leetcode 3372其实整体思路上并没有啥太大…...

JS的魔法三角:constructor、prototype与__proto__

在JavaScript中&#xff0c;constructor、prototype和__proto__是与对象创建和继承机制紧密相关的三个概念。理解它们之间的关系对于掌握JavaScript的面向对象编程至关重要。下面将详细介绍这个魔法三角&#xff1a; 1. constructor 定义&#xff1a;constructor是一个函数&am…...

用c语言完成俄罗斯方块小游戏

用c语言完成俄罗斯方块小游戏 这估计是你在编程学习过程中的第一个小游戏开发&#xff0c;怎么说呢&#xff0c;在这里只针对刚学程序设计的学生&#xff0c;就是说刚接触C语言没多久&#xff0c;有一点功底的学生看看&#xff0c;简陋的代码&#xff0c;简陋的实现&#xff0…...

Leetcode打卡:N皇后

执行结果&#xff1a;通过 题目&#xff1a;51 N皇后 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#…...

位运算在嵌入式系统开发中的应用

目录 一、数据存储与节省 “绝技” 1.1. 传感器数据存储挑战 1.2. 位运算解决方案 1.2.1. 数据整合 1.2.2. 数据提取 1.3. 收益分析 二、硬件控制 “精准操纵术” 2.1. 位运算操控硬件寄存器的实例 2.2. 位运算在硬件控制中的优势 2.3. 电机驱动芯片寄存器控制示例 …...

livekit 服务部署

本地起 1. 拉取生成文件镜像 sudo docker pull livekit/generate 2. 生成配置文件 sudo docker run --rm -v $PWD:/output livekit/generate --local (记住输出信息) 3. 拉取livekit/livekit-server sudo docker pull livekit/livekit-server 4. 开始运行服务 sudo docker run…...

笔记:visual studio2022编译 和 运行 VTK9.4.0

一、下载源码 VTK官网下载对应源码。 Download | VTKhttps://vtk.org/download/ 二、编译动态库&#xff08;基于Win11 24h&#xff09; 1. 用VS打开VTK源码的CMakeLists.txt&#xff0c;等待项目配置完成。 生成完毕如图 2.生成动态库&#xff0c;点击全部生成&#xff0c…...

【Linux | 计网】TCP协议深度解析:从连接管理到流量控制与滑动窗口

目录 前言&#xff1a; 1、三次握手和四次挥手的联系&#xff1a; 为什么挥手必须要将ACK和FIN分开呢&#xff1f; 2.理解 CLOSE_WAIT 状态 CLOSE_WAIT状态的特点 3.FIN_WAIT状态讲解 3.1、FIN_WAIT_1状态 3.2、FIN_WAIT_2状态 3.3、FIN_WAIT状态的作用与意义 4.理解…...

Qt Sensors 传感器控制介绍篇

文章目录 Qt Sensors 模块介绍前言 什么是 Qt Sensors&#xff1f;主要特点&#xff1a; 支持的传感器类型Qt Sensors 的核心组件应用场景优势总结 Qt Sensors 模块介绍 前言 随着现代硬件设备的不断发展&#xff0c;传感器已成为许多设备&#xff08;如智能手机、平板电脑和…...

探索3D世界:使用 lib3ds 读取和解析 3DS 文件

在3D图形开发中&#xff0c;读取和解析3DS文件是创建和渲染3D场景的第一步。3DS&#xff08;3D Studio&#xff09;文件格式是一种广泛使用的3D模型文件格式&#xff0c;它包含了多种类型的数据&#xff0c;用于描述3D场景中的物体、材质、相机、灯光和动画等。lib3ds 是一个开…...

【开源免费】基于SpringBoot+Vue.JS服装生产管理系统(JAVA毕业设计)

博主说明&#xff1a;本文项目编号 T 066 &#xff0c;文末自助获取源码 \color{red}{T066&#xff0c;文末自助获取源码} T066&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...

计算机技术:冯·诺伊曼架构

冯诺伊曼架构&#xff08;Von Neumann Architecture&#xff09;是由著名数学家和计算机科学家约翰冯诺伊曼&#xff08;John von Neumann&#xff09;在20世纪40年代提出的一种计算机设计模型。它奠定了现代通用计算机设计的基础。 1. 核心思想 冯诺伊曼架构的核心思想是存储…...

在Window10或11系统中同时安装 JDK8 和 JDK11

在Window10或11系统中同时安装 JDK8 和 JDK11 最近写项目&#xff0c;之前的项目是用Java8环境开发的&#xff0c;在二次迭代中&#xff0c;但是新开发的项目采用Java11环境来开发&#xff0c;所以需要同时安装JDK8和JDK11环境&#xff0c;但是两个环境是不能同时使用的&#…...

Hbase2.2.7集群部署

环境说明 准备三台服务器&#xff0c;分别为&#xff1a;bigdata141&#xff08;作为Hbase主节点&#xff09;、bigdata142、bigdata143确保hadoop和zookeeper集群都先启动好我这边的hadoop版本为3.2.0&#xff0c;zookeeper版本为3.5.8 下载安装包 下载链接&#xff1a;In…...

Java学习,数据结构

Java 提供了丰富的数据结构来处理和组织数据&#xff0c;Java的 java.util 包中提供了许多这些数据结构的实现&#xff0c;可以根据需要选择合适的类。 List&#xff08;列表&#xff09; ArrayList&#xff1a;基于动态数组的数据结构&#xff0c;允许包含重复元素和 null。 …...

微众银行前端面试题及参考答案

使用的协议是 HTTP 还是 HTTPS&#xff0c;为什么没用 HTTPS&#xff1f; 在前端开发中&#xff0c;有些网站使用 HTTP 协议&#xff0c;有些使用 HTTPS 协议。 使用 HTTP 协议的情况可能是因为网站对安全性的要求不是极高&#xff0c;或者处于开发的早期阶段&#xff0c;还没有…...

spark同步mysql数据到sqlserver

使用Apache Spark将数据从MySQL同步到SQL Server是一个常见的ETL&#xff08;Extract, Transform, Load&#xff09;任务。这里提供一个基本的步骤指南&#xff0c;以及一些代码示例来帮助你完成这项工作。 ### 前提条件 1. **安装Spark**&#xff1a;确保你的环境中已经安装了…...

使用 useMemo 和 React.memo 优化 React 组件渲染

在 React 中&#xff0c;性能优化是一个重要的主题&#xff0c;特别是在复杂的组件树中。本文将演示如何在同一个父组件中使用 useMemo 和 React.memo 来优化子组件的渲染。 1. 组件结构 创建一个父组件&#xff0c;包含两个子组件&#xff1a; MemoChild&#xff1a;使用 R…...

像素流送api ue多人访问需要什么显卡服务器

关于像素流送UE推流&#xff0c;在之前的文章里其实小芹和大家聊过很多&#xff0c;不过今天偶然搜索发现还是有很多小伙伴&#xff0c;在搜索像素流送相关的问题&#xff0c;搜索引擎给的提示有这些。当然这些都是比较短的词汇&#xff0c;可能每个人真正遇到的问题和想获取的…...

Bert+CRF的NER实战

CRF&#xff08;条件随机场-Conditional Random Field&#xff09; 原始本文&#xff1a;我在北京吃炸酱面 标注示例&#xff1a; 我O在O北B-PLA京I-PLA吃O炸B-FOOD酱I-FOOD面I-FOOD CRF&#xff1a; 目的&#xff1a;提出一些不可能出现的预测组合&#xff08;例如I-PLA不能…...

python学习笔记8-函数2

参数传递 传不可变对象 & 传可变对象 def func(b):print(id(a), a) #140737041872600 234print(id(b), b) #140737041872600 234a 234 func(a)def func(b):print(id(a), a) #1413554098560 [343]print(id(b), b) #1413554098560 [343]a [343] func(a)def func(b):b.appe…...

【linux学习指南】详解Linux进程信号保存

文章目录 &#x1f4dd;保存信号&#x1f320; 信号其他相关常⻅概念&#x1f309;在内核中的表⽰ &#x1f320; sigset_t&#x1f320;信号集操作函数&#x1f309;sigprocmask&#x1f309;sigpending &#x1f6a9;总结 &#x1f4dd;保存信号 &#x1f320; 信号其他相关常…...

Postman设置接口关联,实现参数化

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 postman设置接口关联 在实际的接口测试中&#xff0c;后一个接口经常需要用到前一个接口返回的结果&#xff0c; 从而让后一个接口能正常执行&#xff0c;这…...

ORACLE之DBA常用数据库查询

数据库信息 数据库概要select a.name "DB Name", e.global_name "Global Name", c.host_name "Host Name", c.instance_name "Instance Name" , DECODE(c.logins,RESTRICTED,YES,NO) "Restricted Mo…...

C++之C++11新特性(三)--- 智能指针

目录 一、智能指针 1.1 为什么需要智能指针 1.2 内存泄漏 1.2.1 内存泄漏的基本概念 1.2.2 内存泄漏的分类 1.2.3 如何避免内存泄漏 1.3 智能指针的使用及其原理 1.3.1 RAII 1.3.2 智能指针的基本原理 1.3.3 auto_ptr 1.3.4 unique_ptr 1.3.5 shared_ptr 1.3.6 sha…...

12 设计模式之工厂方法模式

一、什么是工厂方法模式&#xff1f; 1.定义 在软件开发中&#xff0c;设计模式 是解决常见软件设计问题的最佳实践。而 工厂方法模式&#xff08;Factory Method Pattern&#xff09; 作为创建型设计模式之一&#xff0c;常常被用来解决对象创建问题。它通过将对象的创建交给…...

Python 自动化办公的 10 大脚本

大家好&#xff0c;我是你们的 Python 讲师&#xff01;今天我们将讨论 10 个实用的 Python 自动化办公脚本。这些脚本可以帮助你简化日常工作&#xff0c;提高效率。无论是处理 Excel 文件、发送邮件&#xff0c;还是自动化网页操作&#xff0c;Python 都能派上用场。 1. 批量…...

十一、快速入门go语言之接口和反射

文章目录 接口:one: 接口基础:two: 接口类型断言和空接口:star2: 空接口实现存储不同数据类型的切片/数组:star2: 复制切片到空接口切片:star2: 类型断言 反射 &#x1f4c5; 2024年5月9日 &#x1f4e6; 使用版本为1.21.5 接口 十、Java类的封装和继承、多态 - 七点半的菜市…...

Python中字符串和正则表达式

Python中字符串和正则表达式 在Python编程中&#xff0c;字符串是最常用的数据类型之一。字符串用于表示文本数据&#xff0c;而正则表达式则是一种强大的工具&#xff0c;用于处理和匹配字符串中的模式。本文将介绍Python中的字符串操作、字符串格式化以及如何使用正则表达式…...

力扣刷题TOP101:8.BM10 两个链表的第一个公共结点

目录&#xff1a; 目的 思路 复杂度 记忆秘诀 python代码 目的 两个无环的单向链表&#xff0c;它们的第一个公共结点{{6,7}。 思路 这个任务是找到两个链表的第一个公共结点。可以看作两个心机boy偷偷补课翻车事件。平时嘴上说自己在家玩游戏&#xff0c;实际上背地里都偷…...

⽂件操作详解

⽬录 一 文件操作的引入 1 为什么使⽤⽂件&#xff1f; 2 什么是⽂件&#xff1f; 3 文件分类&#xff08;1 从⽂件功能的⻆度来分类&#xff1a;程序⽂件/数据⽂件 2根据数据的组织形式&#xff1a;为⽂本⽂件/⼆进制⽂件&#xff09; 二 ⽂件的打开和关闭 1 …...

UR开始打中国牌,重磅发布国产化协作机器人UR7e 和 UR12e

近日&#xff0c;优傲&#xff08;UR&#xff09;机器人公司立足中国市场需求&#xff0c;重磅推出UR7e和UR12e 两款本地化协作机器人。它们延续优傲&#xff08;UR&#xff09;一以贯之的高品质与性能特质&#xff0c;着重优化负载自重比&#xff0c;且在价格层面具竞争力&…...

PostgreSQL实现透视表查询

PostgreSQL 8.3版本发布时&#xff0c;引入了一个名为tablefunc的新扩展。这个扩展提供了一组非常有趣的函数。其中之一是交叉表函数&#xff0c;用于创建数据透视表。这就是我们将在本文中讨论的内容。 需求说明 解释此函数如何工作的最简单方法是使用带有数据透视表的示例…...