k8s架构及服务详解
目录
- 1.1.容器是什么
- 1.2.Namespace
- 1.3.rootfs
- 5.1.Service介绍
- 5.1.1.Serice简介
- 5.1.1.1什么是Service
- 5.1.1.2.Service的创建
- 5.1.1.3.检测服务
- 5.1.1.4.在运行的容器中远程执行命令
- 5.2.连接集群外部的服务
- 5.2.1.介绍服务endpoint
- 5.2.2.手动配置服务的endpoint
- 5.2.3.为外部服务创建别名
- 5.3.将服务暴露给外部客户端
- 5.3.1.使用nodeport类型的服务
- 5.3.2.通过Loadbalance将服务暴露出来
- 5.4.通过Ingress暴露服务
- 5.4.1.创建Ingress资源
- 5.4.2.通过Ingress访问服务
- 5.4.3.通过相同的Ingress暴露多少服务
- 5.4.4.配置Ingress处理TLS传输
- 5.5.pod就绪后发出信号
- 5.5.1.介绍就绪探针
- 5.5.2.向pod添加就绪探针
- 5.6.使用headless服务发现独立的pod
- 5.6.1.创建headless服务
- 6.1.介绍卷
- 6.1.1.卷的类型
- 6.2.通过卷在容器间共享数据
- 6.2.1.使用emptyDir卷
- 6.3.访问工作节点文件系统上的文件
- 6.3.1.hostPath卷
- 6.4.使用持久化存储
- 怎样保证pod重新启动后调度到任意一个节点都有相同的数据可用,这就需要做到持久化存储。
- 6.4.1.使用NFS存储
- 6.4.2.configmap和secert
- 6.5.从底层存储技术解耦pod
- 6.5.1.介绍持久卷和持久卷声明
- 6.5.2.创建持久卷
- 6.5.3.通过持久卷声明来获取持久卷
- 6.5.4.在pod中使用持久卷声明
- 6.5.5.回收持久卷
- 6.6.持久卷的动态配置
- 6.6.1.通过StorageClass资源定义可用存储类型
- 6.6.2.PV&&PVC在应用在mysql的持久化存储
- 7.1.配置容器化应用程序
- 7.2.向容器传递命令行参数
- 7.2.1.待Docker中定义命令与参数
- 7.2.2.在kubernetes中覆盖命令行和参数
- 7.3.为容器设置环境变量
- 7.3.1.在容器定义中指定环境变量
- 7.3.2.在环境变量值中引用其他环境变量
- 7.4.利用ConfigMap解耦配置
- 7.4.1.ConfigMap介绍
- 7.4.2.创建ConfigMap
- 7.4.3.给容器传递ConfigMap条目作为环境变量
- 7.4.4.一次性传递ConfigMap的所有条目作为环境变量
- 7.4.5.使用ConfigMap卷将条目暴露为文件
- 7.5.使用Secert给容器传递敏感数据
- 7.5.1.介绍Secert
- 7.5.2.默认令牌Secret
- 7.5.3.创建Secret
- 7.5.4.对比ConfigMap与Secret
- 7.5.5.在pod中使用Secret
- 9.1.使用RC实现滚动升级
- 9.2.使用Deployment声明式的升级应用
- 9.3.触发deployment升级
- 9.4.回滚deployment
- 9.5.控制滚动升级的速率
- 9.6.金丝雀发布和蓝绿发布
- 10.1.什么是Statefulset
- 10.2.statefulset的创建
- 10.3.statefulset中发现伙伴的节点
- 10.4.更新statefulset
- 10.5.statefulset如何处理节点失效
- 11.1.了解架构
- 11.2.k8s组件分布式特性
- 11.3.k8s如何使用etcd
- 11.4.API服务器
- 11.5.了解调度器
- 11.6.介绍控制器管理器中运行的控制器
- 11.7.kubelet做了什么
- 12.1.了解认证机制
- 12.1.1.用户和组
- 12.1.2 ServiceAccount介绍
- 12.1.3创建ServiceAccount
- 12.1.4将ServiceAccount分配给pod
- 12.2通过基于角色的权限控制加强集群安全
- 12.2.1.介绍RBAC授权插件
- 12.2.2介绍RBAC授权资源
- 12.2.3使用Role和RoleBinding
- 12.2.4使用ClusterRole和ClusterRoleBinding
- 12.2.5了解默认的ClusterRole和ClusterRoleBinding
- 13.1.在pod中使用宿主节点的Linux命名空间
- 13.1.1.在pod中使用宿主节点的网络命名空间
- 13.1.2.绑定宿主节点上的端口而不使用宿主节点的网络命名空间
- 13.1.3.使用宿主节点的PID与IPC
- 13.2.配置节点的安全上下文
- 13.2.1.使用指定用户运行容器
- 13.2.2.阻止容器以root用户运行
- 13.2.3.使用特权模式运行pod
- 13.2.4.为容器单独添加内核功能
- 13.2.5.在容器中禁止使用内核功能
- 13.2.6.阻止对容器根文件系统的写入
- 13.3.限制pod使用安全相关的特性
- 13.3.1.PodSecurityPolicy资源介绍
- 13.3.2.了解runAsUser、fsGroups和supplementalGroup策略
- 13.3.3.配置允许、默认添加、禁止使用的内核功能
- 13.4.隔离pod网络
- 13.4.1.在一个命名空间中使用网络隔离
- 13.4.2.在 不同的kubernetes命名空间之间进行网络隔离
- 13.4.3.使用CIDR网络隔离
- 13.4.4.限制pod对外访问流量
正文
1.容器及其三要素
1.1.容器是什么
容器的本质是一种特殊的进程。
在linux容器中有三个重要的概念:Namespace、Cgroups、rootfs。
Namespace做隔离,让进程只能看到Namespace中的世界;
Cgroups 做限制,让这个“世界”围着一个看不见的墙。
rootfs 做文件系统,rootfs 只是一个操作系统所包含的文件、配置和目录,并不包括操作系统内核。
这样就实现了进程在我们所看到的一个与世隔绝的房间,这个房间就是Pass项目赖以生存的"沙盒"。
1.2.Namespace
进入容器后,ps命令看到的容器的应用进程都是1号进程,这个其实是pid namespace导致,他其实就是个障眼法,
让你看到的是类似于一个新的虚拟机新环境,其实是不一样的,容器就是一个运行的进程,而容器中的其他进程则是pid为1的子进程。
除了刚刚pid namespace,还有其它的namespace如下:
容器是怎么新建namespace的?
docker创建容器,其实就是linux系统的一次fork的调用,
在进行fork调用时,会传入一些flag参数,这个参数可以控制对linux内核调用新的namespace。
1.3.rootfs
挂载在容器根目录上、用来为容器进程提供隔离后执行环境的文件系统,就是所谓的“容器镜像”。它还有一个更为专业的名字,叫作:rootfs(根文件系统)。
容器的rootfs由三部分组成,1:只读层、2:可读写层、3:init层
1.只读层:都以增量的方式分别包含了 操作系统的一部分。
2.可读写:就是专门用来存放你修改 rootfs 后产生的增量,无论是增、删、改,都发生在这里。而当我们使用完了这个被修改过的容器之后,还可以使用 docker commit 和 push 指令,保存这个被修改过的可读写层,并上传到 Docker Hub 上,供其他人使用;而与此同时,原先的只读层里的内容则不会有任何变化。这,就是增量 rootfs 的好处。
3.Init 层:是 Docker 项目单独生成的一个内部层,专门用来存放 /etc/hosts、/etc/resolv.conf 等信息。
5.kubernetes Service:让客户端发现pod并与之通信
5.1.Service介绍
5.1.1.Serice简介
5.1.1.1什么是Service
service是k8s中的一个重要概念,主要是提供负载均衡和服务自动发现。
Service 是由 kube-proxy 组件,加上 iptables 来共同实现的。
5.1.1.2.Service的创建
创建Service的方法有两种:
1.通过kubectl expose创建
1 2 3 4 5 6 7 |
|
2.通过yaml文件创建
创建一个名为hostnames-yaohong的服务,将在端口80接收请求并将链接路由到具有标签选择器是app=hostnames的pod的9376端口上。
使用kubectl creat来创建serivice
1 2 3 4 5 6 7 8 9 10 11 12 |
|
5.1.1.3.检测服务
使用如下命令来检查服务:
1 2 3 |
|
5.1.1.4.在运行的容器中远程执行命令
使用kubectl exec 命令来远程执行容器中命令
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
5.2.连接集群外部的服务
5.2.1.介绍服务endpoint
服务并不是和pod直接相连的,介于他们之间的就是Endpoint资源。
Endpoint资源就是暴露一个服务的IP地址和端口列表。
通过service查看endpoint方法如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|
直接查看endpoint信息方法如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
5.2.2.手动配置服务的endpoint
如果创建pod时不包含选择器,则k8s将不会创建endpoint资源。这样就需要创建endpoint来指的服务的对应的endpoint列表。
service中创建endpoint资源,其中一个作用就是用于service知道包含哪些pod。
5.2.3.为外部服务创建别名
除了手动配置来访问外部服务外,还可以使用完全限定域名(FQDN)访问外部服务。
1 2 3 4 5 6 |
|
服务创建完成后,pod可以通过external-service.default.svc.cluster.local域名(甚至是external-service)连接外部服务。
5.3.将服务暴露给外部客户端
有3种方式在外部访问服务:
1.将服务的类型设置成NodePort;
2.将服务的类型设置成LoadBalance;
3.创建一个Ingress资源。
5.3.1.使用nodeport类型的服务
NodePort 服务是引导外部流量到你的服务的最原始方式。NodePort,正如这个名字所示,在所有节点(虚拟机)上开放一个特定端口,任何发送到该端口的流量都被转发到对应服务。
YAML 文件类似如下:
1 2 3 4 5 6 7 8 9 10 11 12 |
|
这种方法有许多缺点:
1.每个端口只能是一种服务
2.端口范围只能是 30000-32767
如果节点/VM 的 IP 地址发生变化,你需要能处理这种情况
基于以上原因,我不建议在生产环境上用这种方式暴露服务。如果你运行的服务不要求一直可用,或者对成本比较敏感,你可以使用这种方法。这样的应用的最佳例子是 demo 应用,或者某些临时应用。
5.3.2.通过Loadbalance将服务暴露出来
LoadBalancer 服务是暴露服务到 internet 的标准方式。在 GKE 上,这种方式会启动一个 Network Load Balancer[2],它将给你一个单独的 IP 地址,转发所有流量到你的服务。
通过如下方法来定义服务使用负载均衡
1 2 3 4 5 6 7 8 9 10 11 |
|
何时使用这种方式?
如果你想要直接暴露服务,这就是默认方式。所有通往你指定的端口的流量都会被转发到对应的服务。它没有过滤条件,没有路由等。这意味着你几乎可以发送任何种类的流量到该服务,像 HTTP,TCP,UDP,Websocket,gRPC 或其它任意种类。
这个方式的最大缺点是每一个用 LoadBalancer 暴露的服务都会有它自己的 IP 地址,每个用到的 LoadBalancer 都需要付费,这将是非常昂贵的。
5.4.通过Ingress暴露服务
为什么使用Ingress,一个重要的原因是LoadBalancer服务都需要创建自己的负载均衡器,以及独有的公有Ip地址,而Ingress只需要一个公网Ip就能为许多服务提供访问。
5.4.1.创建Ingress资源
Ingress 事实上不是一种服务类型。相反,它处于多个服务的前端,扮演着“智能路由”或者集群入口的角色。
你可以用 Ingress 来做许多不同的事情,各种不同类型的 Ingress 控制器也有不同的能力。
编写如下ingress.yml文件
1 2 3 4 5 6 7 8 9 10 11 12 |
|
通过如下命令进行查看ingress
1 |
|
5.4.2.通过Ingress访问服务
通过kubectl get ing命令进行查看ingress
1 2 3 |
|
了解Ingress的工作原理
何时使用这种方式?
Ingress 可能是暴露服务的最强大方式,但同时也是最复杂的。Ingress 控制器有各种类型,包括 Google Cloud Load Balancer, Nginx,Contour,Istio,等等。它还有各种插件,比如 cert-manager[5],它可以为你的服务自动提供 SSL 证书。
如果你想要使用同一个 IP 暴露多个服务,这些服务都是使用相同的七层协议(典型如 HTTP),那么Ingress 就是最有用的。如果你使用本地的 GCP 集成,你只需要为一个负载均衡器付费,且由于 Ingress是“智能”的,你还可以获取各种开箱即用的特性(比如 SSL、认证、路由等等)。
5.4.3.通过相同的Ingress暴露多少服务
1.将不同的服务映射到相同的主机不同的路径
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
2.将不同的服务映射到不同的主机上
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
5.4.4.配置Ingress处理TLS传输
客户端和控制器之间的通信是加密的,而控制器和后端pod之间的通信则不是。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
5.5.pod就绪后发出信号
5.5.1.介绍就绪探针
就绪探针有三种类型:
1.Exec探针,执行进程的地方。容器的状态由进程的退出状态代码确定。
2.HTTP GET探针,向容器发送HTTP GET请求,通过响应http状态码判断容器是否准备好。
3.TCP socket探针,它打开一个TCP连接到容器的指定端口,如果连接建立,则认为容器已经准备就绪。
启动容器时,k8s设置了一个等待时间,等待时间后才会执行一次准备就绪检查。之后就会周期性的进行调用探针,并根据就绪探针的结果采取行动。
如果某个pod未就绪成功,则会从该服务中删除该pod,如果pod再次就绪成功,则从新添加pod。
与存活探针区别:
就绪探针如果容器未准备就绪,则不会终止或者重启启动。
存活探针通过杀死异常容器,并用新的正常的容器来替代他保证pod正常工作。
就绪探针只有准备好处理请求pod才会接收他的请求。
重要性;
确保客户端只与正常的pod进行交互,并且永远不会知道系统存在问题。
5.5.2.向pod添加就绪探针
添加的yml文件如下
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
相关参数解释如下:
- initialDelaySeconds:容器启动和探针启动之间的秒数。
- periodSeconds:检查的频率(以秒为单位)。默认为10秒。最小值为1。
- timeoutSeconds:检查超时的秒数。默认为1秒。最小值为1。
- successThreshold:失败后检查成功的最小连续成功次数。默认为1.活跃度必须为1。最小值为1。
- failureThreshold:当Pod成功启动且检查失败时,Kubernetes将在放弃之前尝试failureThreshold次。放弃生存检查意味着重新启动Pod。而放弃就绪检查,Pod将被标记为未就绪。默认为3.最小值为1。
HTTP探针在httpGet上的配置项:
- host:主机名,默认为pod的IP。
- scheme:用于连接主机的方案(HTTP或HTTPS)。默认为HTTP。
- path:探针的路径。
- httpHeaders:在HTTP请求中设置的自定义标头。 HTTP允许重复的请求头。
- port:端口的名称或编号。数字必须在1到65535的范围内
模拟就绪探针
1 2 3 4 |
|
5.6.使用headless服务发现独立的pod
5.6.1.创建headless服务
Headless Service
也是一种Service
,但不同的是会定义spec:clusterIP: None
,也就是不需要Cluster IP
的Service
。
顾名思义,Headless Service
就是没头的Service
。有什么使用场景呢?
-
第一种:自主选择权,有时候
client
想自己来决定使用哪个Real Server
,可以通过查询DNS
来获取Real Server
的信息。 -
第二种:
Headless Services
还有一个用处(PS:也就是我们需要的那个特性)。Headless Service
的对应的每一个Endpoints
,即每一个Pod
,都会有对应的DNS
域名;这样Pod
之间就可以互相访问。
6.kubernetes 磁盘、PV、PVC
6.1.介绍卷
6.1.1.卷的类型
emptyDir-用于存储临时数据的简单空目录
hostPath-用于将目录从工作节点的文件系统挂载到pod
nfs-挂载到pod中的NFS共享卷。
还有其他的如gitRepo、gcepersistenDisk
6.2.通过卷在容器间共享数据
6.2.1.使用emptyDir卷
卷的生命周期与pod的生命周期项关联,所以当删除pod时,卷的内容就会丢失。
使用empty示例代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
6.3.访问工作节点文件系统上的文件
6.3.1.hostPath卷
hostPath是持久性存储,emptyDir卷的内容随着pod的删除而删除。
使用hostPath会发现当删除一个pod,并且下一个pod使用了指向主机上相同路径的hostPath卷,则新pod将会发现上一个pod留下的数据,但前提是必须将其调度到与第一个pod相同的节点上。
所以当你使用hostPath时请务必考虑清楚,当重新起一个pod时候,必须要保证pod的节点与之前相同。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
6.4.使用持久化存储
怎样保证pod重新启动后调度到任意一个节点都有相同的数据可用,这就需要做到持久化存储。
因此必须要将数据存储在某种类型的网络存储(NAS)中。
各种支持的方式不尽相同,例如 GlusterFS 需要创建 Endpoint,Ceph/NFS 之流就没这么麻烦了。
6.4.1.使用NFS存储
以NFS为例,yml代码如下:
6.4.2.configmap和secert
secret和configmap可以理解为特殊的存储卷,但是它们不是给Pod提供存储功能的,而是提供了从集群外部向集群内部的应用注入配置信息的功能。ConfigMap扮演了K8S集群中配置中心的角色。ConfigMap定义了Pod的配置信息,可以以存储卷的形式挂载至Pod中的应用程序配置文件目录,从configmap中读取配置信息;也可以基于环境变量的形式,从ConfigMap中获取变量注入到Pod容器中使用。但是ConfigMap是明文保存的,如果用来保存数据库账号密码这样敏感信息,就非常不安全。一般这样的敏感信息配置是通过secret
来保存。secret
的功能和ConfigMap一样,不过secret是通过Base64的编码机制保存配置信息。
从ConfigMap中获取配置信息的方法有两种:
- 一种是利用环境变量将配置信息注入Pod容器中的方式,这种方式只在Pod创建的时候生效,这就意味着在ConfigMap中的修改配置信息后,更新的配置不能被已经创建Pod容器所应用。
- 另一种是将ConfigMap做为存储卷挂载至Pod容器内,这样在修改ConfigMap配置信息后,Pod容器中的配置也会随之更新,不过这个过程会有稍微的延迟。
ConfigMap当作存储卷挂载至Pod中的用法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
secert的方法类似,只是secert对数据进行了加密
6.5.从底层存储技术解耦pod
6.5.1.介绍持久卷和持久卷声明
当集群用户需要在其pod中使用持久化存储时,他们首先创建持久化声明(PVC)清单,指定所需要的最低容量要求,和访问模式,然后用户将持久卷声明清单提交给kubernetes API服务器,kubernetes将找到可以匹配的持久卷并将其绑定到持久卷声明。
持久卷声明可以当做pod中的一个卷来使用,其他用户不能使用相同的持久卷,除非先通过删除持久卷声明绑定来释放。
6.5.2.创建持久卷
下面创建一个 PV mypv1
,配置文件pv1.yml
如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1.accessModes
指定访问模式为 ReadWriteOnce
,支持的访问模式有:
ReadWriteOnce – PV 能以 read-write 模式 mount 到单个节点。
ReadOnlyMany – PV 能以 read-only 模式 mount 到多个节点。
ReadWriteMany – PV 能以 read-write 模式 mount 到多个节点。
2.persistentVolumeReclaimPolicy
指定当 PV 的回收策略为 Recycle
,支持的策略有:
Retain – 需要管理员手工回收。
Recycle – 清除 PV 中的数据,效果相当于执行 rm -rf /thevolume/*
。
Delete – 删除 Storage Provider 上的对应存储资源,例如 AWS EBS、GCE PD、Azure Disk、OpenStack Cinder Volume 等。
创建 pv
:
1 2 |
|
查看pv:
1 2 3 |
|
STATUS
为 Available
,表示 yh-pv1就绪,可以被 PVC 申请。
6.5.3.通过持久卷声明来获取持久卷
接下来创建 PVC mypvc1
,配置文件 pvc1.yml
如下:
1 2 3 4 5 6 7 8 9 10 11 |
|
PVC 就很简单了,只需要指定 PV 的容量,访问模式和 class。
执行命令创建 mypvc1
:
1 2 |
|
查看pvc
1 2 3 |
|
从 kubectl get pvc
和 kubectl get pv
的输出可以看到 yh-pvc1
已经 Bound 到yh- pv1
,申请成功。
1 2 3 |
|
6.5.4.在pod中使用持久卷声明
上面已经创建好了pv和pvc,pod中直接使用这个pvc即可
与使用普通 Volume 的格式类似,在 volumes
中通过 persistentVolumeClaim
指定使用 mypvc1
申请的 Volume。
通过命令创建mypod1
:
可见,在 Pod 中创建的文件 /mydata/hello
确实已经保存到了 NFS 服务器目录 /nfsdata
中。
如果不再需要使用 PV,可用删除 PVC 回收 PV。
6.5.5.回收持久卷
当 PV 不再需要时,可通过删除 PVC 回收。
未删除pvc之前 pv的状态是Bound
删除pvc之后pv的状态变为Available,,此时解除绑定后则可以被新的 PVC 申请。
/nfsdata文件中的文件被删除了
因为 PV 的回收策略设置为 Recycle
,所以数据会被清除,但这可能不是我们想要的结果。如果我们希望保留数据,可以将策略设置为 Retain
。
通过 kubectl apply
更新 PV:
回收策略已经变为 Retain
,通过下面步骤验证其效果:
① 重新创建 mypvc1
。
② 在 mypv1
中创建文件 hello
。
③ mypv1
状态变为 Released
。
④ PV 中的数据被完整保留。
虽然 mypv1
中的数据得到了保留,但其 PV 状态会一直处于 Released
,不能被其他 PVC 申请。为了重新使用存储资源,可以删除并重新创建 mypv1
。删除操作只是删除了 PV 对象,存储空间中的数据并不会被删除。
新建的 mypv1
状态为 Available
,已经可以被 PVC 申请。
PV 还支持 Delete
的回收策略,会删除 PV 在 Storage Provider 上对应存储空间。NFS 的 PV 不支持 Delete
,支持 Delete
的 Provider 有 AWS EBS、GCE PD、Azure Disk、OpenStack Cinder Volume 等。
6.6.持久卷的动态配置
6.6.1.通过StorageClass资源定义可用存储类型
前面的例子中,我们提前创建了 PV,然后通过 PVC 申请 PV 并在 Pod 中使用,这种方式叫做静态供给(Static Provision)。
与之对应的是动态供给(Dynamical Provision),即如果没有满足 PVC 条件的 PV,会动态创建 PV。相比静态供给,动态供给有明显的优势:不需要提前创建 PV,减少了管理员的工作量,效率高。
动态供给是通过 StorageClass 实现的,StorageClass 定义了如何创建 PV,下面是两个例子。
StorageClass standard
:
StorageClass slow
:
这两个 StorageClass 都会动态创建 AWS EBS,不同在于 standard
创建的是 gp2
类型的 EBS,而 slow
创建的是 io1
类型的 EBS。不同类型的 EBS 支持的参数可参考 AWS 官方文档。
StorageClass 支持 Delete
和 Retain
两种 reclaimPolicy
,默认是 Delete
。
与之前一样,PVC 在申请 PV 时,只需要指定 StorageClass 和容量以及访问模式,比如:
除了 AWS EBS,Kubernetes 支持其他多种动态供给 PV 的 Provisioner,完整列表请参考 Storage Classes | Kubernetes
6.6.2.PV&&PVC在应用在mysql的持久化存储
下面演示如何为 MySQL 数据库提供持久化存储,步骤为:
-
创建 PV 和 PVC。
-
部署 MySQL。
-
向 MySQL 添加数据。
-
模拟节点宕机故障,Kubernetes 将 MySQL 自动迁移到其他节点。
-
验证数据一致性。
首先创建 PV 和 PVC,配置如下:
mysql-pv.yml
mysql-pvc.yml
创建 mysql-pv
和 mysql-pvc
:
接下来部署 MySQL,配置文件如下:
PVC mysql-pvc
Bound 的 PV mysql-pv
将被 mount 到 MySQL 的数据目录 var/lib/mysql
。
MySQL 被部署到 k8s-node2
,下面通过客户端访问 Service mysql
:
kubectl run -it --rm --image=mysql:5.6 --restart=Never mysql-client -- mysql -h mysql -ppassword
更新数据库:
① 切换到数据库 mysql。
② 创建数据库表 my_id。
③ 插入一条数据。
④ 确认数据已经写入。
关闭 k8s-node2
,模拟节点宕机故障。
验证数据的一致性:
由于node2节点已经宕机,node1节点接管了这个任务。
通过kubectl run 命令 进入node1的这个pod里,查看数据是否依旧存在
MySQL 服务恢复,数据也完好无损。
7.kubernetes ConfigMap和Secret:配置应用程序
7.1.配置容器化应用程序
7.2.向容器传递命令行参数
7.2.1.待Docker中定义命令与参数
1.了解ENTRYPOINT与CMD
ENTRYPOINT定义容器启动时被调用的可以执行程序
CMD指定传递给ENTRYP的参数
dockerfile 内容如下
1 2 3 4 5 6 |
|
当启动镜像时,容器启动时执行如下命令:tail -f /var/log/aa.log
或者在docker run <images> <arguments> 中指定,arguments会覆盖CMD中内容
7.2.2.在kubernetes中覆盖命令行和参数
在k8s中定义容器时,镜像的ENTRYPOINT和CMD都可以被覆盖,仅需在容器定义中设置熟悉command和args的值
对应参数如下:
Docker | kubernetes | 描述 |
ENTRYPOINT | command | 容器中运行的可执行文件 |
CMD | args | 传给可执行文件的参数 |
相关yml代码如下:
1 2 3 4 5 6 |
|
7.3.为容器设置环境变量
7.3.1.在容器定义中指定环境变量
与容器的命令和参数设置相同,环境变量列表无法在pod创建后被修改。
在pod的yml文件中设置容器环境变量代码如下:
1 2 3 4 5 6 7 8 |
|
7.3.2.在环境变量值中引用其他环境变量
使用$( VAR )引用环境变量,
相关ym代码如下:
1 2 3 4 5 |
|
7.4.利用ConfigMap解耦配置
7.4.1.ConfigMap介绍
kubernetes允许将配置选项分离到独立的资源对象ConfigMap中,本质上就是一个键/值对映射,值可以是短字面变量,也可以是完整的配置文件。
应用无须直接读取ConfigMap,甚至根本不需要知道其是否存在。
映射的内容通过环境变量或者卷文件的形式传递给容器,而并非直接传递给容器,命令行参数的定义中也是通过$(ENV_VAR)语法变量
7.4.2.创建ConfigMap
使用kubectl creat configmap创建ConfigMap中间不用加-f。
1.使用指令创建ConfigMap
1 |
|
2.从文件内容创建ConfigMap条目
1 |
|
使用如下命令,会将文件内容存储在自定义的条目下。与字面量使用相同
1 |
|
3.从文件夹创建ConfigMap
1 |
|
4.合并不同选项
1 2 3 4 |
|
5.获取ConfigMap
1 |
|
7.4.3.给容器传递ConfigMap条目作为环境变量
引用环境变量中的参数值给当前变量
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
7.4.4.一次性传递ConfigMap的所有条目作为环境变量
1 2 3 4 5 6 7 8 9 10 11 |
|
7.4.5.使用ConfigMap卷将条目暴露为文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
可以使用如下命令查看到/etc/nginx/conf.d文件下面包含fortune-config
1 |
|
7.5.使用Secert给容器传递敏感数据
7.5.1.介绍Secert
Secret结构和ConfigMap类似,均是键/值对的映射。
使用方法也和ConfigMap一样,可以:
1.将Secret条目作为环境变量传递给容器,
2.将Secret条目暴露为卷中文件
ConfigMap存储非敏感的文本配置数据,采用Secret存储天生敏感的数据
7.5.2.默认令牌Secret
1.查看secret
1 2 3 |
|
2.描述secret
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
7.5.3.创建Secret
1.创建一个名为https-yh的generic secret
1 |
|
2.创建一个secret.yaml文件,内容用base64编码
$ echo -n 'admin' | base64 YWRtaW4= $ echo -n '1f2d1e2e67df' | base64 MWYyZDFlMmU2N2Rm
yaml文件内容:
apiVersion: v1 kind: Secret metadata:name: mysecret type: Opaque data:username: YWRtaW4=password: MWYyZDFlMmU2N2Rm
创建:
$ kubectl create -f ./secret.yaml secret "mysecret" created
解析Secret中内容
$ kubectl get secret mysecret -o yaml apiVersion: v1 data:username: YWRtaW4=password: MWYyZDFlMmU2N2Rm kind: Secret metadata:creationTimestamp: 2016-01-22T18:41:56Zname: mysecretnamespace: defaultresourceVersion: "164619"selfLink: /api/v1/namespaces/default/secrets/mysecretuid: cfee02d6-c137-11e5-8d73-42010af00002 type: Opaque
base64解码:
$ echo 'MWYyZDFlMmU2N2Rm' | base64 --decode 1f2d1e2e67df
7.5.4.对比ConfigMap与Secret
Secret的条目内容会进行Base64格式编码,而ConfigMap直接以纯文本展示。
1.为二进制数据创建Secret
Base64可以将二进制数据转换为纯文本,并以YAML或Json格式进行展示
但要注意Secret的大小限制是1MB
2.stringDate字段介绍
Secret可以通过StringDate字段设置条目的纯文本
1 2 3 4 5 6 7 |
|
7.5.5.在pod中使用Secret
secret可以作为数据卷挂载或者作为环境变量暴露给Pod中的容器使用,也可以被系统中的其他资源使用。比如可以用secret导入与外部系统交互需要的证书文件等。
在Pod中以文件的形式使用secret
- 创建一个Secret,多个Pod可以引用同一个Secret
- 修改Pod的定义,在
spec.volumes[]
加一个volume,给这个volume起个名字,spec.volumes[].secret.secretName
记录的是要引用的Secret名字 - 在每个需要使用Secret的容器中添加一项
spec.containers[].volumeMounts[]
,指定spec.containers[].volumeMounts[].readOnly = true
,spec.containers[].volumeMounts[].mountPath
要指向一个未被使用的系统路径。 - 修改镜像或者命令行使系统可以找到上一步指定的路径。此时Secret中
data
字段的每一个key都是指定路径下面的一个文件名
下面是一个Pod中引用Secret的列子:
apiVersion: v1 kind: Pod metadata:name: mypod spec:containers:- name: mypodimage: redisvolumeMounts:- name: foomountPath: "/etc/foo"readOnly: truevolumes:- name: foosecret:secretName: mysecret
每一个被引用的Secret都要在spec.volumes
中定义
如果Pod中的多个容器都要引用这个Secret那么每一个容器定义中都要指定自己的volumeMounts
,但是Pod定义中声明一次spec.volumes
就好了。
映射secret key到指定的路径
可以控制secret key被映射到容器内的路径,利用spec.volumes[].secret.items
来修改被映射的具体路径
apiVersion: v1 kind: Pod metadata:name: mypod spec:containers:- name: mypodimage: redisvolumeMounts:- name: foomountPath: "/etc/foo"readOnly: truevolumes:- name: foosecret:secretName: mysecretitems:- key: usernamepath: my-group/my-username
发生了什么呢?
- username被映射到了文件
/etc/foo/my-group/my-username
而不是/etc/foo/username
- password没有变
Secret文件权限
可以指定secret文件的权限,类似linux系统文件权限,如果不指定默认权限是0644
,等同于linux文件的-rw-r--r--
权限
设置默认权限位
apiVersion: v1 kind: Pod metadata:name: mypod spec:containers:- name: mypodimage: redisvolumeMounts:- name: foomountPath: "/etc/foo"volumes:- name: foosecret:secretName: mysecretdefaultMode: 256
上述文件表示将secret挂载到容器的/etc/foo
路径,每一个key衍生出的文件,权限位都将是0400
由于JSON不支持八进制数字,因此用十进制数256表示0400,如果用yaml格式的文件那么就很自然的使用八进制了
同理可以单独指定某个key的权限
apiVersion: v1 kind: Pod metadata:name: mypod spec:containers:- name: mypodimage: redisvolumeMounts:- name: foomountPath: "/etc/foo"volumes:- name: foosecret:secretName: mysecretitems:- key: usernamepath: my-group/my-usernamemode: 511
从volume中读取secret的值
值得注意的一点是,以文件的形式挂载到容器中的secret,他们的值已经是经过base64解码的了,可以直接读出来使用。
$ ls /etc/foo/ username password $ cat /etc/foo/username admin $ cat /etc/foo/password 1f2d1e2e67df
被挂载的secret内容自动更新
也就是如果修改一个Secret的内容,那么挂载了该Secret的容器中也将会取到更新后的值,但是这个时间间隔是由kubelet的同步时间决定的。最长的时间将是一个同步周期加上缓存生命周期(period+ttl)
特例:以subPath形式挂载到容器中的secret将不会自动更新
以环境变量的形式使用Secret
- 创建一个Secret,多个Pod可以引用同一个Secret
- 修改pod的定义,定义环境变量并使用
env[].valueFrom.secretKeyRef
指定secret和相应的key - 修改镜像或命令行,让它们可以读到环境变量
apiVersion: v1 kind: Pod metadata:name: secret-env-pod spec:containers:- name: mycontainerimage: redisenv:- name: SECRET_USERNAMEvalueFrom:secretKeyRef:name: mysecretkey: username- name: SECRET_PASSWORDvalueFrom:secretKeyRef:name: mysecretkey: passwordrestartPolicy: Never
容器中读取环境变量,已经是base64解码后的值了:
$ echo $SECRET_USERNAME admin $ echo $SECRET_PASSWORD 1f2d1e2e67df
使用imagePullSecrets
创建一个专门用来访问镜像仓库的secret,当创建Pod的时候由kubelet访问镜像仓库并拉取镜像,具体描述文档在 这里
设置自动导入的imagePullSecrets
可以手动创建一个,然后在serviceAccount中引用它。所有经过这个serviceAccount创建的Pod都会默认使用关联的imagePullSecrets来拉取镜像,
9.deployment:声明式的升级应用
Deployment 的控制器,实际上控制的是 ReplicaSet 的数目,以及每个 ReplicaSet 的属性。
而一个应用的版本,对应的正是一个 ReplicaSet;这个版本应用的 Pod 数量,则由 ReplicaSet 通过它自己的控制器(ReplicaSet Controller)来保证。
通过这样的多个 ReplicaSet 对象,Kubernetes 项目就实现了对多个“应用版本”的描述。
9.1.使用RC实现滚动升级
1 |
|
使用kubia-v2版本应用来替换运行着kubia-v1的RC,将新的复制控制器命名为kubia-v2,并使用luksa/kubia:v2最为镜像。
升级完成后使kubectl describe rc kubia-v2查看升级后的状态。
为什么现在不再使用rolling-update?
1.直接更新pod和RC的标签并不是一个很的方案;
2.kubectl只是执行升级中的客户端,但如果执行kubectl过程中是去了网络连接,升级将会被中断,pod和RC将会处于一个中间的状态,所以才有了Deployment资源的引入。
9.2.使用Deployment声明式的升级应用
Rs替代Rc来复制个管理pod。
创建Deployment前确保删除所有的RC和pod,但是暂时保留Service,
kubectl delete rc --all
创建Deployment
1 2 3 4 5 6 7 8 |
|
9.3.触发deployment升级
1 2 3 4 |
|
修改configmap并不会触发升级,如果想要触发,可以创建新的configmap并修改pod模板引用新的configmap。
9.4.回滚deployment
在上述升级deployment过程中可以使用如下命令来观察升级的过程
1 |
|
如果出现报错,如何进行停止?可以使用如下命令进行回滚到先前部署的版本
1 |
|
如何显示deployment的历史版本?
1 |
|
如何回滚到特定的版本?
1 |
|
9.5.控制滚动升级的速率
在deployment的滚动升级过程中,有两个属性决定一次替换多少个pod:maxSurge、maxUnavailable,可以通过strategy字段下的rollingUpdate的属性来配置,
maxSurge:决定期望的副本数,默认值为25%,如果副本数设置为4个,则在滚动升级过程中,不会运行超过5个pod。
maxUnavaliable: 决定允许多少个pod处于不可用状态,默认值为25%,如果副本数为4,那么只能有一个pod处于不可用状态,
默认情况下如果10分钟内没有升级完成,将被视为失败,如果要修改这个参数可以使用kubectl describe deploy kubia 查看到一条ProgressDeadline-Exceeded的记录,可以修改此项参数修改判断时间。
9.6.金丝雀发布和蓝绿发布
金丝雀部署:优先发布一台或少量机器升级,等验证无误后再更新其他机器。优点是用户影响范围小,不足之处是要额外控制如何做自动更新。
蓝绿部署:2组机器,蓝代表当前的V1版本,绿代表已经升级完成的V2版本。通过LB将流量全部导入V2完成升级部署。优点是切换快速,缺点是影响全部用户。
10.Statefulset:部署有状态的多副本应用
10.1.什么是Statefulset
StatefulSet是Kubernetes提供的管理有状态应用的负载管理控制器API。
特点:
1.具有固定的网络标记(主机名)
2.具有持久化存储
3.需要按顺序部署和扩展
4.需要按顺序终止和删除
5.需要按顺序滚动和更新
有状态应用:这种实例之间有不对等关系,以及实例对外部数据有依赖关系的应用,就被称为“有状态应用”(Stateful Application)。
10.2.statefulset的创建
statefulset的创建顺序从0到N-1,终止顺序则相反,如果需要对satateful扩容,则之前的n个pod必须存在,如果要终止一个pod,则他的后续pod必须全部终止。
创建statefulset
1 |
|
查看statefulset
1 |
|
statefulset会使用一个完全一致的pod来替换被删除的pod。
statefulset扩容和缩容时,都会删除最高索引的pod,当这个pod完全被删除后,才回删除拥有次高索引的pod。
10.3.statefulset中发现伙伴的节点
通过DNS中SRV互相发现。
10.4.更新statefulset
1 |
|
但修改后pod不会自动 被更新,需要手动delete pod后会重新调度更新。
10.5.statefulset如何处理节点失效
11.Kubernetes架构及相关服务详解
11.1.了解架构
K8s分为两部分:
1.Master节点
2.node节点
Master节点组件:
1.etcd分布式持久化存储
2.api服务器
3.scheduler
4.controller
Node节点:
1.kubelet
2.kube-proxy
3.容器运行时(docker、rkt及其它)
附加组件:
1.Dns服务器
2.仪表板
3.ingress控制器
4.Heapster控制器
5.网络容器接口插件
11.2.k8s组件分布式特性
k8s系统组件之间通信只能通过API服务器通信,他们之间不会之间进行通信。
API服务器是和etcd通信的唯一组件,其他组件不会直接和etcd进行通信。
API服务器与其他组件之间的通信基本上是由其他组件发起的,
1 2 |
|
11.3.k8s如何使用etcd
etcd是一个响应快,分布式,一致的key-value存储。
是k8s存储集群状态和元数据唯一的地方,具有乐观锁特性,
1 2 3 |
|
资源如何存储在etcd中
flannel操作etcd使用的是v2的API,而kubernetes操作etcd使用的v3的API,所以在下面我们执行etcdctl
的时候需要设置ETCDCTL_API
环境变量,该变量默认值为2。
etcd是使用raft一致性算法实现的,是一款分布式的一致性KV存储,主要用于共享配置和服务发现。
Etcd V2和V3之间的数据结构完全不同,互不兼容。
确保etcd集群一致性
一致性算法要求大部分节点参与,才能进行到下一个状态,需要有过半的节点参与状态的更新,所以导致etcd的节点必须为奇数个。
11.4.API服务器
Kubernetes API服务器为API对象验证和配置数据,这些对象包含Pod,Service,ReplicationController等等。API Server提供REST操作以及前端到集群的共享状态,所有其它组件可以通过这些共享状态交互。
1.API提供RESTful API的形式,进行CRUD(增删查改)集群状态
2.进行校验
3.处理乐观锁,用于处理并发问题,
4.认证客户端
(1)通过认证插件认证客户端
(2)通过授权插件认证客户端
(3)通过准入插件验证AND/OR修改资源请求
API服务器如何通知客户端资源变更
API服务器不会去创建pod,同时他不会去管理服务的端点,
它做的是,启动控制器,以及一些其他的组件来监控一键部署的资源变更,是得组件可以再集群元数据变化时候执行任何需要做的任务,
11.5.了解调度器
调度器指定pod运行在哪个集群节点上。
调度器不会命令选中节点取运行pod,调度器做的就是通过api服务器更新pod的定义。然后api服务器再去通知kubelet该pod已经被调用。当目标节点的kubelet发现该pod被调度到本节点,就会创建并运行pod容器。
调度方法:
1.通过算法过滤所有节点,找到最优节点
2.查找可用节点
(1)是否满足对硬件的资源要求
(2)节点是否资源耗尽
(3)pod是否要求被调度到指定的节点、
(4)是否和要求的lable一致
(5)需求端口是否被占用
(6)是否有符合要求的存储卷
(7)是否容忍节点的污染
11.6.介绍控制器管理器中运行的控制器
(1)RC控制器
启动RC资源的控制器叫做Replication管理器。
RC的操作可以理解为一个无限的循环,每次循环,控制器都会查找符合其pod选择器的pod数量,并且将该数值和期望的复制集数量做比较。
(2)RS控制器
与RC类似
(3)DaemonSet以及job控制器
从他们各自资源集中定义pod模板创建pod资源,
(4)Deployment控制器
Deployment控制器负责使deployment的实际状态与对应的Deployment API对象期望状态同步。
每次Deployment对象修改后,Deployment控制器会滚动升级到新的版本。通过创建ReplicaSet,然后按照Deployment中定义的策略同时伸缩新、旧RelicaSet,直到旧pod被新的替代。
(5)StatefulSet控制器
StatefulSet控制器会初始化并管理每个pod实例的持久声明字段。
(6)Node控制器
Node控制器管理Node资源,描述了集群的工作节点。
(7)Service控制器
Service控制器就是用来在loadBalancer类型服务被创建或删除,从基础设施服务请求,释放负载均衡器的。
当Endpoints监听到API服务器中Aervice资源和pod资源发生变化时,会对应修改、创建、删除Endpoints资源。
(8)Endpoint资源控制器
Service不会直接连接到pod,而是通过一个ip和端口的列表,EedPoint管理器就是监听service和pod的变化,将ip和端口更新endpoint资源。
(9)Namespace控制器
当收到删除namespace对象的通知时,控制器通过API服务群删除后所有属于该命名空间的资源。
(10)PV控制器
创建一个持久卷声明时,就找到一个合适的持久卷进行绑定到声明。
11.7.kubelet做了什么
了解kubelet的工作内容
简单来说,就是负责所有运行在工作节点上的全部内容。
第一个任务,在api服务器中创建一个node资源来注册该节点;第二任务,持续监控api服务器是否把该节点分配给pod;第三任务,启动pod;第四任务,持续监控运行的容器,向api服务器报告他们的状态,事件和资源消耗。
第五任务,kubelet也是运行容器的存活探针的组件,当探针报错时,他会重启容器;第六任务,当pod从api服务器删除时,kubelet终止容器,并通知服务器pod已经终止。
11.1.7.kube-proxy的作用
service是一组pod的服务抽象,相当于一组pod的LB,负责将请求分发给对应的pod。service会为这个LB提供一个IP,一般称为cluster IP。
kube-proxy的作用主要是负责service的实现,具体来说,就是实现了内部从pod到service和外部的从node port向service的访问。
kube-proxy有两种代理模式,userspace和iptables,目前都是使用iptables。
12.kubernetes API服务器的安全防护
12.1.了解认证机制
启动API服务器时,通过命令行选项可以开启认证插件。
12.1.1.用户和组
了解用户:
分为两种连接到api服务器的客户端:
1.真实的人
2.pod,使用一种称为ServiceAccount的机制
了解组:
认证插件会连同用户名,和用户id返回组,组可以一次性给用户服务多个权限,不用单次赋予,
system:unauthenticated组:用于所有认证插件都不会认证客户端身份的请求。
system:authenticated组:会自动分配给一个成功通过认证的用户。
system:serviceaccount组:包含 所有在系统中的serviceaccount。
system:serviceaccount:<namespace>组:包含了所有在特定命名空间中的serviceAccount。
12.1.2 ServiceAccount介绍
每个pod中都包含/var/run/secrets/kubernetes.io/serviceaccount/token文件,如下图所示,文件内容用于对身份进行验证,token文件持有serviceaccount的认证token。
应用程序使用token去连接api服务器时,认证插件会对serviceaccount进行身份认证,并将serviceaccount的用户名传回到api服务器内部。
serviceaccount的用户名格式如下:
system:serviceaccount:<namespace>:<service account name>
ServiceAccount是运行在pod中的应用程序,和api服务器身份认证的一中方式。
了解ServiceAccount资源
ServiceAcount作用在单一命名空间,为每个命名空间创建默认的ServiceAccount。
多个pod可以使用相同命名空间下的同一的ServiceAccount,
ServiceAccount如何与授权文件绑定
在pod的manifest文件中,可以指定账户名称的方式,将一个serviceAccount赋值给一个pod,如果不指定,将使用该命名空间下默认的ServiceAccount.
可以 将不同的ServiceAccount赋值给pod,让pod访问不同的资源。
12.1.3创建ServiceAccount
为了集群的安全性,可以手动创建ServiceAccount,可以限制只有允许的pod访问对应的资源。
创建方法如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
使用describe来查看ServiceAccount。
1 2 3 4 5 6 7 8 9 |
|
查看该token,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
12.1.4将ServiceAccount分配给pod
在pod中定义的spec.serviceAccountName字段上设置,此字段必须在pod创建时设置后续不能被修改。
自定义pod的ServiceAccount的方法如下图
12.2通过基于角色的权限控制加强集群安全
12.2.1.介绍RBAC授权插件
RBAC授权插件将用户角色作为决定用户能否执行操作的关机因素。
12.2.2介绍RBAC授权资源
RBAC授权规则通过四种资源来进行配置的,他们可以分为两组:
Role和ClusterRole,他们决定资源上可执行哪些动词。
RoleBinding和ClusterRoleBinding,他们将上述角色绑定到特定的用户,组或者ServiceAccounts上。
Role和RoleBinding是namespace级别资源
ClusterRole和ClusterRoleBinding是集群级别资源
12.2.3使用Role和RoleBinding
Role资源定义了哪些操作可以在哪些资源上执行,
创建Role
service-reader.yml
1 2 3 4 5 6 7 8 9 |
|
在kube-system中创建Role
1 |
|
查看该namespace下的role
1 2 3 4 5 6 7 8 9 10 |
|
绑定角色到ServiceAccount
将service-reader角色绑定到default ServiceAccount
1 2 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
12.2.4使用ClusterRole和ClusterRoleBinding
查看集群ClusterRole
1 2 3 4 5 6 7 8 9 |
|
创建ClusterRole
1 |
|
查看yaml文件
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
|
创建clusterRoleBinding
1 2 |
|
12.2.5了解默认的ClusterRole和ClusterRoleBinding
如下所示使用kubectl get clusterroles和kubectl get clusterrolesbinding可以获取k8s默认资源。
用edit ClusterRole允许对资源进行修改
用admin ClusterRole赋予一个命名空间全部的权限
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
13.Kubernetes-保障集群内节点和网络安全
13.1.在pod中使用宿主节点的Linux命名空间
13.1.1.在pod中使用宿主节点的网络命名空间
在pod的yaml文件中就设置spec.hostNetwork: true
这个时候pod使用宿主机的网络,如果设置了端口,则使用宿主机的端口。
1 2 3 4 5 6 7 8 9 |
|
13.1.2.绑定宿主节点上的端口而不使用宿主节点的网络命名空间
在pod的yaml文件中就设置spec.containers.ports字段来设置
在ports字段中可以使用
containerPorts设置通过pod 的ip访问的端口
container.hostPort设置通过所在节点的端口访问
1 2 3 4 5 6 7 8 9 10 11 12 |
|
13.1.3.使用宿主节点的PID与IPC
PID是进程ID,PPID是父进程ID。
在linux下的多个进程间的通信机制叫做IPC(Inter-Process Communication),它是多个进程之间相互沟通的一种方法。
1 2 3 4 5 6 7 8 9 10 11 |
|
13.2.配置节点的安全上下文
13.2.1.使用指定用户运行容器
查看某个pod运行的用户
1 2 |
|
容器的运行用户再DockerFile中指定,如果没有指定则为root
指定pod的运行的用户方法如下
1 2 3 4 5 6 7 8 9 10 11 |
|
13.2.2.阻止容器以root用户运行
runAsNonRoot来设置
1 2 3 4 5 6 7 8 9 10 11 |
|
13.2.3.使用特权模式运行pod
为了获得宿主机内核完整的权限,该pod需要在特权模式下运行。需要添加privileged参数为true。
1 2 3 4 5 6 7 8 9 10 11 |
|
13.2.4.为容器单独添加内核功能
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
13.2.5.在容器中禁止使用内核功能
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
13.2.6.阻止对容器根文件系统的写入
securityContext.readyOnlyFilesystem设置为true来实现阻止对容器根文件系统的写入。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
13.3.限制pod使用安全相关的特性
13.3.1.PodSecurityPolicy资源介绍
PodSecurityPolicy是一种集群级别(无命名空间)的资源,它定义了用户能否在pod中使用各种安全相关的特性。
13.3.2.了解runAsUser、fsGroups和supplementalGroup策略
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
13.3.3.配置允许、默认添加、禁止使用的内核功能
三个字段会影响容器的使用
allowedCapabilities:指定容器可以添加的内核功能
defaultAddCapabilities:为所有容器添加的内核功能
requiredDropCapabilities:禁止容器中的内核功能
1 2 3 4 5 6 7 8 9 |
|
13.4.隔离pod网络
13.4.1.在一个命名空间中使用网络隔离
podSelector进行对一个命名空间下的pod进行隔离
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
13.4.2.在 不同的kubernetes命名空间之间进行网络隔离
namespaceSelector进行对不同命名空间间进行网络隔离
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
13.4.3.使用CIDR网络隔离
1 2 3 4 |
|
13.4.4.限制pod对外访问流量
使用egress进行限制
1 2 3 4 5 6 7 8 9 |
|
相关文章:
k8s架构及服务详解
目录 1.1.容器是什么1.2.Namespace1.3.rootfs5.1.Service介绍5.1.1.Serice简介 5.1.1.1什么是Service5.1.1.2.Service的创建5.1.1.3.检测服务5.1.1.4.在运行的容器中远程执行命令 5.2.连接集群外部的服务 5.2.1.介绍服务endpoint5.2.2.手动配置服务的endpoint5.2.3.为外部服务…...
Unity中动态切换光照贴图LightProbe的方法
关键代码:LightmapSettings.lightmaps lightmapDatas; LightmapData中操作三张图:lightmapColor,lightmapDir,以及一张ShadowMap 这里只操作前两张: using UnityEngine; using UnityEngine.EventSystems; using UnityEngine.UI;public cl…...
基于Matlab的多目标粒子群优化
在复杂系统的设计、决策与优化问题中,常常需要同时兼顾多个相互冲突的目标,多目标粒子群优化(MOPSO)算法应运而生,作为群体智能优化算法家族中的重要成员,它为解决此类棘手难题提供了高效且富有创新性的解决…...
Android Studio 新版本Gradle发布本地Maven仓库示例
发布代码到JitPack示例:https://blog.csdn.net/loutengyuan/article/details/145938967 以下是基于 Android Studio 24.2.2(Gradle 8.10.2 AGP 8.8.0 JDK17) 的本地 Maven 仓库发布示例,包含aar和jar的不同配置: 1.…...
Langchain解锁LLM大语言模型的结构化输出能力(多种实现方案)
在 LangChain解锁LLM大语言模型的结构化输出能力:调用 with_structured_output() 方法 这篇博客中,我们了解了格式化LLM输出内容的必要性以及如何通过调用langchain框架中提供的 with_structured_output() 方法对LLM输出进行格式化(三种可选方…...
深入理解Spring @Async:异步编程的利器与实战指南
一、为什么需要异步编程? 在现代高并发系统中,同步阻塞式编程会带来两大核心问题: // 同步处理示例 public void processOrder(Order order) {// 1. 保存订单(耗时50ms)orderRepository.save(order); // 2. 发送短信…...
让Word插上AI的翅膀:如何把DeepSeek装进Word
在日常办公中,微软的Word无疑是我们最常用的文字处理工具。无论是撰写报告、编辑文档,还是整理笔记,Word都能胜任。然而,随着AI技术的飞速发展,尤其是DeepSeek的出现,我们的文字编辑方式正在发生革命性的变…...
清华DeepSeek深度探索与进阶指南
「清华北大-Deepseek使用手册」 链接:https://pan.quark.cn/s/98782f7d61dc 「清华大学Deepseek整理) 1-6版本链接:https://pan.quark.cn/s/72194e32428a AI学术工具公测链接:https://pan.baidu.com/s/104w_uBB2F42Da0qnk78_ew …...
迁移学习策略全景解析:从理论到产业落地的技术跃迁
(2025年最新技术实践指南) 一、迁移学习的范式革命与核心价值 在人工智能进入"大模型时代"的今天,迁移学习已成为突破数据瓶颈、降低训练成本的关键技术。本文基于2025年最新技术进展,系统梳理六大核心策略及其在产业实…...
WireGuard搭建网络,供整个公司使用
一、清理现有配置(如已有失败尝试) # 停止并删除现有 WireGuard 接口 sudo wg-quick down wg0 sudo rm -rf /etc/wireguard/wg0.conf# 验证接口已删除 (执行后应该看不到 wg0) ifconfig二、服务器端完整配置流程 1. 安装 WireGuard sudo apt update &…...
MyAgent:用AI开发AI,开启智能编程的产业革命
在人工智能技术爆发的2025年,MyAgent智能体平台凭借其独特的“AI开发AI”模式,正在重构全球软件开发行业的底层逻辑。这一创新范式不仅将自然语言处理、机器学习、RPA(机器人流程自动化)等技术深度融合,更通过“…...
Cherno C++ P60 为什么不用using namespace std
这篇文章我们讲一下之前写代码的时候的一个习惯,也就是不使用using namespace std。如果我们接触过最早的C教程,那么第一节课都会让我们写如下的代码: #include<iostream>using namespace std;int main() {cout << "Hello …...
el-select的下拉选择框插入el-checkbox
el-check注意这里要使用model-value绑定数据 <el-selectv-model"selectDevice"multiplecollapse-tags:multiple-limit"5"style"width: 200px"popper-class"select-popover-class" ><el-optionv-for"item in deviceList…...
M系列芯片 MacOS 在 Conda 环境中安装 TensorFlow 2 和 Keras 3 完整指南
目录 1. 引言2. 环境准备3. 安装 TensorFlow 和必要依赖4. 结语Reference 1. 引言 Keras 是搞深度学习很可爱的工具,其友好的接口让我总是将其作为搭建模型原型的首选。然而,当我希望在 M 系列芯片的MacBook Pro上使用 Keras时,使用Conda和P…...
GitHub教程
目录 1.是什么?2.安装3.创建库3.增删改查4.远程仓库5.分支6.标签7.使用流程8.总结 1.是什么? Git 是一个命令行工具,但也有许多图形用户界面可用。本地仓库,安装包下载到本地。Git 的一个流行 GUI 是 GitHub,它可以方便地管理存储库、推送…...
《JavaScript解题秘籍:力扣队列与栈的高效解题策略》
232.用栈实现队列 力扣题目链接(opens new window) 使用栈实现队列的下列操作: push(x) -- 将一个元素放入队列的尾部。 pop() -- 从队列首部移除元素。 peek() -- 返回队列首部的元素。 empty() -- 返回队列是否为空。 示例: MyQueue queue new MyQueue(); queue…...
Supra软件更新:AGRV2K CPLD支持无源晶体做时钟输入
Supra软件更新:AGRV2K CPLD支持无源晶体做时钟输入 AGRV2K CPLD支持无源晶体做时钟输入,和AG32一样接入OSC_IN和OSC_OUT管脚。 VE管脚文件设为PIN_HSE,如: clk PIN_HSE ledout[0] PIN_31 ledout[1] PIN_32 ...... 在下载烧录文…...
简易的微信聊天网页版【项目测试报告】
文章目录 一、项目背景二、项目简介登录功能好友列表页面好友会话页面 三、测试工具和环境四、测试计划测试用例部分人工手动测试截图web自动化测试测试用例代码框架配置内容代码文件(Utils.py)登录页面代码文件(WeChatLogin.py)好…...
nio使用
NIO : new Input/Output,,在java1.4中引入的一套新的IO操作API,,,旨在替代传统的IO(即BIO:Blocking IO),,,nio提供了更高效的 文件和网络IO的 操作…...
【蓝桥杯单片机】第十二届省赛
一、真题 二、模块构建 1.编写初始化函数(init.c) void Cls_Peripheral(void); 关闭led led对应的锁存器由Y4C控制关闭蜂鸣器和继电器 由Y5C控制 2.编写LED函数(led.c) void Led_Disp(unsigned char ucLed); 将ucLed取反的值赋给P0 开启锁存器…...
Jenkins与Flutter项目持续集成实战指南
一、环境准备 1. 基础环境要求 Jenkins Server:已安装JDK 11,建议使用Linux服务器(Ubuntu/CentOS)Flutter SDK:全局安装或通过工具动态管理构建代理节点: Android构建:需Android SDK、Gradle、…...
linux常见操作命令
查看目录和文件 ls:列出目录内容。 常用选项: -l:以长格式显示,显示文件的权限、所有者、大小、修改时间等详细信息。-a:显示所有文件和目录,包括隐藏文件(以 . 开头的文件)。-h&…...
6.人工智能与机器学习
一、人工智能基本原理 1. 人工智能(AI)定义与范畴 核心目标:模拟人类智能行为(如推理、学习、决策)分类: 弱人工智能(Narrow AI):专精单一任务(如AlphaGo、…...
GPU架构分类
一、NVIDIA的GPU架构 NVIDIA是全球领先的GPU生产商,其GPU架构在图形渲染、高性能计算和人工智能等领域具有广泛应用。NVIDIA的GPU架构经历了多次迭代,以下是一些重要的架构: 1. Tesla(特斯拉)架构(2006年…...
23种设计模式之单例模式(Singleton Pattern)【设计模式】
文章目录 一、简介二、关键点三、实现单例模式的步骤四、C#示例4.1 简单的单例模式4.2 线程安全的单例模式(双重检查锁定)4.3 静态初始化单例模式 五、单例模式优缺点5.1 优点5.2 缺点 六、适用场景七、示例的现实应用 一、简介 单例模式(Si…...
MAX232数据手册:搭建电平转换桥梁,助力串口稳定通信
在现代电子设备的通信领域,串口通信因其简单可靠而被广泛应用。MAX232 芯片作为串口通信中的关键角色,发挥着不可或缺的作用。下面,我们将依据提供的资料,深入解读 MAX232 芯片的各项特性、参数以及应用要点。 一、引脚说明 MAX2…...
Day 55 卡玛笔记
这是基于代码随想录的每日打卡 所有可达路径 题目描述 给定一个有 n 个节点的有向无环图,节点编号从 1 到 n。请编写一个函数,找出并返回所有从节点 1 到节点 n 的路径。每条路径应以节点编号的列表形式表示。 输入描述 第一行包含两个整数…...
python量化交易——金融数据管理最佳实践——使用qteasy管理本地数据源
文章目录 统一定义的金融历史数据表最重要的数据表数据表的定义交易日历表的定义:交易日历表: trade_calendar qteasy是一个功能全面且易用的量化交易策略框架, Github地址在这里。使用它,能轻松地获取历史数据,创建交易策略并完…...
AVM 环视拼接 鱼眼相机
https://zhuanlan.zhihu.com/p/651306620 AVM 环视拼接方法介绍 从内外参推导IPM变换方程及代码实现(生成AVM环视拼接图)_avm拼接-CSDN博客 经典文献阅读之--Extrinsic Self-calibration of the Surround-view System: A Weakly... (环视系统的外参自…...
计算机基础面试(数据库)
1. 事务的ACID特性?如何通过日志保证原子性和持久性? 专业解答: ACID:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Dura…...
Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks
Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks #paper/GFM/GNN-BASED# #paper/⭐⭐⭐# 注意:这篇文章是每个图一个GCN模型,而不是所有图一个GCN 模型 算是最早的涉及异配图的prompt了 贡献和动机: 非对…...
Spring Boot 与 MyBatis 版本兼容性
初接触Spring Boot,本次使用Spring Boot版本为3.4.3,mybatis的起步依赖版本为3.0.0,在启动时报错,报错代码如下 org.springframework.beans.factory.BeanDefinitionStoreException: Invalid bean definition with name userMapper…...
WPF 如何使文本显示控件支持显示内容滚动显示
WPF中如何使文本显示控件支持显示内容滚动显示 在WPF中,TextBlock 控件本身并不直接支持滚动功能,因为它的设计初衷是用于静态文本展示。但是,你可以通过一些技巧和自定义控件来实现 TextBlock 的滚动效果。以下是几种常见的方法:…...
1208. 尽可能使字符串相等
目录 一、题目二、思路2.1 解题思路2.2 代码尝试2.3 疑难问题 三、解法四、收获4.1 心得4.2 举一反三 一、题目 二、思路 2.1 解题思路 2.2 代码尝试 class Solution { public:int equalSubstring(string s, string t, int maxCost) {int curcost0;//统计当前开销int left0;…...
Linux系统管理操作
一、关闭防火墙 默认端口号是22,其他端口用不了,这时候就引出关闭防火墙 1.1、systemctl 1.1.1、基本语法 systemctl start | stop | restart | status 服务名 //启动、关闭、重启、查看状态 1.1.2、查看服务的方法 查看/usr/lib/systemd/syst…...
【STM32H743IIT6】将外部SDRAM作为内部SRAM使用的方法及需要解决的问题
前言 STM32H743的片上随机存取存储器(RAM)容量最大约为1KB。对于简单项目而言,这一容量尚可满足需求。但在处理更为复杂的应用程序时,尤其是在随机存取存储器方面,“空间不足”的问题就会不可避免地出现。此时&#x…...
AMD RDNA3 GPU架构解析
本文会通过把AMD的RDNA3架构为例比喻为**“施工公司”**工作模式,深入理解GPU如何高效处理顶点着色、像素计算等任务。 一、施工公司的组织架构 1. 施工公司(WGP)与施工队(CU) WGP(Work Group Processor&…...
博客系统--测试报告
博客系统--测试报告 项目背景项目功能功能测试①登录功能测试②发布博客功能测试③删除文章功能测试④功能测试总结: 自动化测试自动化脚本执行界面: 性能测试 本博文主要针对个人实现的项目《博客系统》去进行功能测试、自动化测试、性能测试࿰…...
打造个人知识库(Page Assist版)- 私人专属AI-本地化部署deepseek
上篇介绍了实现浏览器交互Ai Web Ui - chrome浏览器插件-Page Assist,安装即可使用,实现最简单的本地化部署AI使用。 实现浏览器交互Ai Web Ui-本地化部署的deepseek Ollama Page Assist 本编介绍使用 Page Assist 构建个人知识库,利用个…...
7zip安装与使用
在 Linux 上安装 7zip(7z) 取决于你的操作系统发行版。以下是不同系统的安装方法: 📌 1. Ubuntu / Debian 直接使用 p7zip: sudo apt update sudo apt install -y p7zip-full p7zip-rarp7zip-full → 支持 .7z 压缩和…...
蓝桥杯第15届真题解析
由硬件框图可以知道我们要配置LED 和按键、lcd,解决lcd引脚冲突 LED 先配置LED的八个引脚为GPIO_OutPut,锁存器PD2也是,然后都设置为起始高电平,生成代码时还要去解决引脚冲突问题 按键 按键配置,由原理图按键所对引…...
springboot gradle 多项目创建
1.背景2.创建父项目3.配置gradlew4.创建子项目 1.背景 1.用IDE创建一个父项目(school_project),两个子项目(student_project,teacher_project)。子项目是两个springboot工程 2.使用gradle kotlin进行管理,…...
Protocol Buffers在MCU上的nanopb介绍及使用详解
在嵌入式系统和资源受限的环境中,传统的Protocol Buffers 可能显得过于庞大。因此,nanopb 应运而生,它是一个轻量级的 Protocol Buffers 生成器,专为嵌入式系统设计c语言设计。本文将介绍如何安装和使用 nanopb,以及通…...
leetcode日记(74)扰乱字符串
很有难度的一题,一开始真的绕了很多思维上的弯路。 最开始的想法是递归,看到题目的时候想到动态规划但是完全没有思路应该怎么用,结果确实是递归动态规划。 最开始的想法是构建树,每一层包含这一步划分的方法(实际会…...
Blazor-根级别级联值
根级别级联值注册 using Microsoft.AspNetCore.Components.Web; using Microsoft.AspNetCore.Components.WebAssembly.Hosting;namespace BlazorApp1 {public class Program{public static async Task Main(string[] args){var builder WebAssemblyHostBuilder.CreateDefault…...
懒加载能够解决Spring循环依赖吗
懒加载本身并不能直接解决 Spring 循环依赖问题,但它可以在一定程度上缓解或绕过循环依赖带来的问题,下面详细分析: 1. 什么是 Spring 循环依赖 循环依赖指的是两个或多个 Bean 之间相互依赖,形成一个闭环。例如,Bea…...
Matlab中使用GUIDE工具开发图形用户界面(GUI)
文章目录 1. 初识GUIDE工具1.1 .m 和 .fig的区别和联系1.2 GUIDE工具的详细介绍1.3 GUI控件的属性1.4 自动生成的 .m 文件1.5 回调函数 2. GUI中常见的函数2.1 get 和 set 函数2.2 handles.Tag2.3 OpeningFcn 和 OutputFcn2.4 Callback2.5 CreateFcn 和 DeleteFcn2.6 ButtonDow…...
[通俗易懂C++]:引用返回和地址返回
在之前的文章中已经提到过,当使用按值传递时会创建参数的一个副本到函数中。对于基本类型(复制成本较低),这是可以的。但对于类类型(如 std::string ),复制通常成本较高。我们可以通过使用(const)引用传递(或按地址传递)来避免进行昂贵的复制。 这篇文章主要介绍一些…...
基于 MySQL 数据库对三级视图(用户视图、DBA视图、内部视图)的详细解释
基于 MySQL 数据库对三级视图(用户视图、DBA视图、内部视图)的详细解释,结合理论与实际操作说明: 一、三级视图核心概念 数据库的三级视图是 ANSI/SPARC 体系结构的核心思想,MySQL 的实现逻辑如下: …...
LLM - Attention Is All You Need 的理解
一:概述 当前主流的序列转换(sequence transduction)模型主要基于复杂的循环神经网络(Recurrent Neural Networks, RNNs)或卷积神经网络(Convolutional Neural Networks, CNNs),这些模型通常包含编码器(encoder)和解码器(decoder)。 性能最优的模型通常通过“ 注意…...