当前位置: 首页 > news >正文

M系列芯片 MacOS 在 Conda 环境中安装 TensorFlow 2 和 Keras 3 完整指南

目录

      • 1. 引言
      • 2. 环境准备
      • 3. 安装 TensorFlow 和必要依赖
      • 4. 结语
      • Reference

1. 引言

Keras 是搞深度学习很可爱的工具,其友好的接口让我总是将其作为搭建模型原型的首选。然而,当我希望在 M 系列芯片的MacBook Pro上使用 Keras时,使用Conda和Pip进行丝滑配置的方法并不直接适用,问题主要源于 conda 环境配置的架构不匹配,M 系列芯片使用 ARM64 架构,而conda默认的环境架构编译方式为x86_64,所以从源拉取tensorflow库的时候也就自动安装了不兼容的x86_64版本。本文将分享我在M系列芯片 MacOS上建立Conda环境并安装Tensorflow2(自带Keras3)的过程,可以让后来人少走弯路。

TensorFlow PluggableDevice 介绍
自 TensorFlow 2.5 起,苹果引入了基于 PluggableDevice 机制的 Metal 插件,使 TensorFlow 能够利用 Apple 的 Metal API 在 GPU 上加速计算。通过 tensorflow-metal 插件,TensorFlow 能够在 Metal Performance Shaders (MPS) 设备上执行计算,为 M 系列芯片上的深度学习训练和推理提供显著的性能提升。

2. 环境准备

在开始前,请确保自己的电脑满足如下基本要求:

Requirements:
• 搭载 Apple 芯片(M1/M2/M3系列)或 AMD GPU 的 Mac 电脑
• macOS 12.0 或更高版本
• Python 3.9 或更高版本
• Xcode 命令行工具(可通过 xcode-select --install 安装)

确保已安装 Xcode 命令行工具,执行如下命令,如果提示"已安装请求的软件",表示已安装过,可以直接进入下一步。

xcode-select --install

如果没有安装 Conda,要先安装 Miniforge,安装命令如下:

# 使用 Homebrew 安装 Miniforge
brew install miniforge# 初始化 shell 环境
conda init zsh  # 或 conda init bash(取决于所使用的 shell)

如果已有 Anaconda是可以使用的,只是需要特别注意架构问题,推荐做法是在创建环境时指定环境的架构,保持默认环境架构为x86,因为很多Python包仍主要支持x86架构。执行如下命令,创建一个纯 ARM64 架构的 Conda 环境并激活。

# 创建 arm64 架构的环境,指定 Python 版本为 3.10
CONDA_SUBDIR=osx-arm64 conda create -n tensorflow2 python=3.10 -c conda-forge# 激活环境
conda activate tensorflow2

3. 安装 TensorFlow 和必要依赖

确认环境已正确设置为ARM64架构后,就可以开始安装TensorFlow了。从TensorFlow 2.13版本开始,官方已经提供了对Apple Silicon的原生支持,不再需要特殊的tensorflow-macos包,可以按照以下步骤直接安装。

# 安装 libffi(解决动态链接问题)
conda install -c conda-forge libffi# 安装 Apple 提供的 TensorFlow 依赖包
conda install -c apple tensorflow-deps# 安装 TensorFlow
python -m pip install tensorflow -i https://pypi.org/simple# 安装 Metal 插件(启用 GPU 加速)
python -m pip install tensorflow-metal -i https://pypi.org/simple

安装完成后,使用Apple官方文档提供的脚本(代码如下)进行测试,如果看到程序运行中数据集能正常加载、模型编译无错误、训练过程中能看到进度条和指标正常更新,则表明tensorflow2已经成功安装。

import tensorflow as tf# 加载 CIFAR-100 数据集
cifar = tf.keras.datasets.cifar100
(x_train, y_train), (x_test, y_test) = cifar.load_data()# 创建 ResNet50 模型
model = tf.keras.applications.ResNet50(include_top=True,weights=None,input_shape=(32, 32, 3),classes=100,)# 编译模型
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)
model.compile(optimizer="adam", loss=loss_fn, metrics=["accuracy"])# 训练模型
model.fit(x_train, y_train, epochs=5, batch_size=64)

4. 结语

在 M 系列芯片的 Mac 上安装 TensorFlow 2 和 Keras3 的关键在于确保架构一致性,所有组件都应该使用 ARM64 架构。通过利用 PluggableDevice 机制和 tensorflow-metal 插件,可以充分发挥 Apple Silicon 的性能优势,无需外接 GPU 即可进行模型训练和实验。当遇到架构不匹配错误(如mach-o file, but is an incompatible architecture或The TensorFlow library was compiled to use AVX instructions)时,请首先检查环境架构并确保使用ARM64。如果问题仍然存在,创建全新的ARM64环境通常是最干净有效的解决方案。

Reference

Tensorflow Plugin - Metal - Apple Developer

相关文章:

M系列芯片 MacOS 在 Conda 环境中安装 TensorFlow 2 和 Keras 3 完整指南

目录 1. 引言2. 环境准备3. 安装 TensorFlow 和必要依赖4. 结语Reference 1. 引言 Keras 是搞深度学习很可爱的工具,其友好的接口让我总是将其作为搭建模型原型的首选。然而,当我希望在 M 系列芯片的MacBook Pro上使用 Keras时,使用Conda和P…...

GitHub教程

目录 1.是什么?2.安装3.创建库3.增删改查4.远程仓库5.分支6.标签7.使用流程8.总结 1.是什么? Git 是一个命令行工具,但也有许多图形用户界面可用。本地仓库,安装包下载到本地。Git 的一个流行 GUI 是 GitHub,它可以方便地管理存储库、推送…...

《JavaScript解题秘籍:力扣队列与栈的高效解题策略》

232.用栈实现队列 力扣题目链接(opens new window) 使用栈实现队列的下列操作: push(x) -- 将一个元素放入队列的尾部。 pop() -- 从队列首部移除元素。 peek() -- 返回队列首部的元素。 empty() -- 返回队列是否为空。 示例: MyQueue queue new MyQueue(); queue…...

Supra软件更新:AGRV2K CPLD支持无源晶体做时钟输入

Supra软件更新:AGRV2K CPLD支持无源晶体做时钟输入 AGRV2K CPLD支持无源晶体做时钟输入,和AG32一样接入OSC_IN和OSC_OUT管脚。 VE管脚文件设为PIN_HSE,如: clk PIN_HSE ledout[0] PIN_31 ledout[1] PIN_32 ...... 在下载烧录文…...

简易的微信聊天网页版【项目测试报告】

文章目录 一、项目背景二、项目简介登录功能好友列表页面好友会话页面 三、测试工具和环境四、测试计划测试用例部分人工手动测试截图web自动化测试测试用例代码框架配置内容代码文件(Utils.py)登录页面代码文件(WeChatLogin.py)好…...

nio使用

NIO : new Input/Output,,在java1.4中引入的一套新的IO操作API,,,旨在替代传统的IO(即BIO:Blocking IO),,,nio提供了更高效的 文件和网络IO的 操作…...

【蓝桥杯单片机】第十二届省赛

一、真题 二、模块构建 1.编写初始化函数(init.c) void Cls_Peripheral(void); 关闭led led对应的锁存器由Y4C控制关闭蜂鸣器和继电器 由Y5C控制 2.编写LED函数(led.c) void Led_Disp(unsigned char ucLed); 将ucLed取反的值赋给P0 开启锁存器…...

Jenkins与Flutter项目持续集成实战指南

一、环境准备 1. 基础环境要求 Jenkins Server:已安装JDK 11,建议使用Linux服务器(Ubuntu/CentOS)Flutter SDK:全局安装或通过工具动态管理构建代理节点: Android构建:需Android SDK、Gradle、…...

linux常见操作命令

查看目录和文件 ls:列出目录内容。 常用选项: -l:以长格式显示,显示文件的权限、所有者、大小、修改时间等详细信息。-a:显示所有文件和目录,包括隐藏文件(以 . 开头的文件)。-h&…...

6.人工智能与机器学习

一、人工智能基本原理 1. 人工智能(AI)定义与范畴 核心目标:模拟人类智能行为(如推理、学习、决策)分类: 弱人工智能(Narrow AI):专精单一任务(如AlphaGo、…...

GPU架构分类

一、NVIDIA的GPU架构 NVIDIA是全球领先的GPU生产商,其GPU架构在图形渲染、高性能计算和人工智能等领域具有广泛应用。NVIDIA的GPU架构经历了多次迭代,以下是一些重要的架构: 1. Tesla(特斯拉)架构(2006年…...

23种设计模式之单例模式(Singleton Pattern)【设计模式】

文章目录 一、简介二、关键点三、实现单例模式的步骤四、C#示例4.1 简单的单例模式4.2 线程安全的单例模式(双重检查锁定)4.3 静态初始化单例模式 五、单例模式优缺点5.1 优点5.2 缺点 六、适用场景七、示例的现实应用 一、简介 单例模式(Si…...

MAX232数据手册:搭建电平转换桥梁,助力串口稳定通信

在现代电子设备的通信领域,串口通信因其简单可靠而被广泛应用。MAX232 芯片作为串口通信中的关键角色,发挥着不可或缺的作用。下面,我们将依据提供的资料,深入解读 MAX232 芯片的各项特性、参数以及应用要点。 一、引脚说明 MAX2…...

Day 55 卡玛笔记

这是基于代码随想录的每日打卡 所有可达路径 题目描述 ​ 给定一个有 n 个节点的有向无环图,节点编号从 1 到 n。请编写一个函数,找出并返回所有从节点 1 到节点 n 的路径。每条路径应以节点编号的列表形式表示。 输入描述 ​ 第一行包含两个整数…...

python量化交易——金融数据管理最佳实践——使用qteasy管理本地数据源

文章目录 统一定义的金融历史数据表最重要的数据表数据表的定义交易日历表的定义:交易日历表: trade_calendar qteasy是一个功能全面且易用的量化交易策略框架, Github地址在这里。使用它,能轻松地获取历史数据,创建交易策略并完…...

AVM 环视拼接 鱼眼相机

https://zhuanlan.zhihu.com/p/651306620 AVM 环视拼接方法介绍 从内外参推导IPM变换方程及代码实现(生成AVM环视拼接图)_avm拼接-CSDN博客 经典文献阅读之--Extrinsic Self-calibration of the Surround-view System: A Weakly... (环视系统的外参自…...

计算机基础面试(数据库)

1. 事务的ACID特性?如何通过日志保证原子性和持久性? 专业解答: ACID:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Dura…...

Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks

Self-Pro: A Self-Prompt and Tuning Framework for Graph Neural Networks ​#paper/GFM/GNN-BASED#​ #paper/⭐⭐⭐#​ 注意:这篇文章是每个图一个GCN模型,而不是所有图一个GCN 模型 算是最早的涉及异配图的prompt了 贡献和动机: 非对…...

Spring Boot 与 MyBatis 版本兼容性

初接触Spring Boot,本次使用Spring Boot版本为3.4.3,mybatis的起步依赖版本为3.0.0,在启动时报错,报错代码如下 org.springframework.beans.factory.BeanDefinitionStoreException: Invalid bean definition with name userMapper…...

WPF 如何使文本显示控件支持显示内容滚动显示

WPF中如何使文本显示控件支持显示内容滚动显示 在WPF中,TextBlock 控件本身并不直接支持滚动功能,因为它的设计初衷是用于静态文本展示。但是,你可以通过一些技巧和自定义控件来实现 TextBlock 的滚动效果。以下是几种常见的方法:…...

1208. 尽可能使字符串相等

目录 一、题目二、思路2.1 解题思路2.2 代码尝试2.3 疑难问题 三、解法四、收获4.1 心得4.2 举一反三 一、题目 二、思路 2.1 解题思路 2.2 代码尝试 class Solution { public:int equalSubstring(string s, string t, int maxCost) {int curcost0;//统计当前开销int left0;…...

Linux系统管理操作

一、关闭防火墙 默认端口号是22,其他端口用不了,这时候就引出关闭防火墙 1.1、systemctl 1.1.1、基本语法 systemctl start | stop | restart | status 服务名 //启动、关闭、重启、查看状态 1.1.2、查看服务的方法 查看/usr/lib/systemd/syst…...

【STM32H743IIT6】将外部SDRAM作为内部SRAM使用的方法及需要解决的问题

前言 STM32H743的片上随机存取存储器(RAM)容量最大约为1KB。对于简单项目而言,这一容量尚可满足需求。但在处理更为复杂的应用程序时,尤其是在随机存取存储器方面,“空间不足”的问题就会不可避免地出现。此时&#x…...

AMD RDNA3 GPU架构解析

本文会通过把AMD的RDNA3架构为例比喻为**“施工公司”**工作模式,深入理解GPU如何高效处理顶点着色、像素计算等任务。 一、施工公司的组织架构 1. 施工公司(WGP)与施工队(CU) WGP(Work Group Processor&…...

博客系统--测试报告

博客系统--测试报告 项目背景项目功能功能测试①登录功能测试②发布博客功能测试③删除文章功能测试④功能测试总结: 自动化测试自动化脚本执行界面: 性能测试 本博文主要针对个人实现的项目《博客系统》去进行功能测试、自动化测试、性能测试&#xff0…...

打造个人知识库(Page Assist版)- 私人专属AI-本地化部署deepseek

上篇介绍了实现浏览器交互Ai Web Ui - chrome浏览器插件-Page Assist,安装即可使用,实现最简单的本地化部署AI使用。 实现浏览器交互Ai Web Ui-本地化部署的deepseek Ollama Page Assist 本编介绍使用 Page Assist 构建个人知识库,利用个…...

7zip安装与使用

在 Linux 上安装 7zip(7z) 取决于你的操作系统发行版。以下是不同系统的安装方法: 📌 1. Ubuntu / Debian 直接使用 p7zip: sudo apt update sudo apt install -y p7zip-full p7zip-rarp7zip-full → 支持 .7z 压缩和…...

蓝桥杯第15届真题解析

由硬件框图可以知道我们要配置LED 和按键、lcd,解决lcd引脚冲突 LED 先配置LED的八个引脚为GPIO_OutPut,锁存器PD2也是,然后都设置为起始高电平,生成代码时还要去解决引脚冲突问题 按键 按键配置,由原理图按键所对引…...

springboot gradle 多项目创建

1.背景2.创建父项目3.配置gradlew4.创建子项目 1.背景 1.用IDE创建一个父项目(school_project),两个子项目(student_project,teacher_project)。子项目是两个springboot工程 2.使用gradle kotlin进行管理,…...

Protocol Buffers在MCU上的nanopb介绍及使用详解

在嵌入式系统和资源受限的环境中,传统的Protocol Buffers 可能显得过于庞大。因此,nanopb 应运而生,它是一个轻量级的 Protocol Buffers 生成器,专为嵌入式系统设计c语言设计。本文将介绍如何安装和使用 nanopb,以及通…...

leetcode日记(74)扰乱字符串

很有难度的一题,一开始真的绕了很多思维上的弯路。 最开始的想法是递归,看到题目的时候想到动态规划但是完全没有思路应该怎么用,结果确实是递归动态规划。 最开始的想法是构建树,每一层包含这一步划分的方法(实际会…...

Blazor-根级别级联值

根级别级联值注册 using Microsoft.AspNetCore.Components.Web; using Microsoft.AspNetCore.Components.WebAssembly.Hosting;namespace BlazorApp1 {public class Program{public static async Task Main(string[] args){var builder WebAssemblyHostBuilder.CreateDefault…...

懒加载能够解决Spring循环依赖吗

懒加载本身并不能直接解决 Spring 循环依赖问题,但它可以在一定程度上缓解或绕过循环依赖带来的问题,下面详细分析: 1. 什么是 Spring 循环依赖 循环依赖指的是两个或多个 Bean 之间相互依赖,形成一个闭环。例如,Bea…...

Matlab中使用GUIDE工具开发图形用户界面(GUI)

文章目录 1. 初识GUIDE工具1.1 .m 和 .fig的区别和联系1.2 GUIDE工具的详细介绍1.3 GUI控件的属性1.4 自动生成的 .m 文件1.5 回调函数 2. GUI中常见的函数2.1 get 和 set 函数2.2 handles.Tag2.3 OpeningFcn 和 OutputFcn2.4 Callback2.5 CreateFcn 和 DeleteFcn2.6 ButtonDow…...

[通俗易懂C++]:引用返回和地址返回

在之前的文章中已经提到过,当使用按值传递时会创建参数的一个副本到函数中。对于基本类型(复制成本较低),这是可以的。但对于类类型(如 std::string ),复制通常成本较高。我们可以通过使用(const)引用传递(或按地址传递)来避免进行昂贵的复制。 这篇文章主要介绍一些…...

基于 ‌MySQL 数据库‌对三级视图(用户视图、DBA视图、内部视图)的详细解释

基于 ‌MySQL 数据库‌对三级视图(用户视图、DBA视图、内部视图)的详细解释,结合理论与实际操作说明: 一、三级视图核心概念 数据库的三级视图是 ANSI/SPARC 体系结构的核心思想,MySQL 的实现逻辑如下: …...

LLM - Attention Is All You Need 的理解

一:概述 当前主流的序列转换(sequence transduction)模型主要基于复杂的循环神经网络(Recurrent Neural Networks, RNNs)或卷积神经网络(Convolutional Neural Networks, CNNs),这些模型通常包含编码器(encoder)和解码器(decoder)。 性能最优的模型通常通过“ 注意…...

究竟什么是AI提示词?深入解析与实战应用

随着人工智能技术的飞速发展,AI提示词(AI Prompt)逐渐成为自然语言处理(NLP)领域的热门话题。无论是GPT-3、ChatGPT还是其他大型语言模型,提示词都扮演着至关重要的角色。那么,究竟什么是AI提示…...

deep-research开源框架 Agentic Reasoning

Agentic-Reasoning是由牛津大学团队开源的推理框架. 该框架在GPQA博士级科学题库上准确率提升35%,生物学问题得分从62%跃升至79%,显著优于DeepSeek-R1等闭源模型。 特色:Agentic-Reasoning在定义和实现code agent上做的非常出色。可以借鉴。…...

解锁智能变革密码:浙江大学2025年DeepSeek行业应用案例集深度解析

引言:AI技术驱动的时代浪潮 2025年,人工智能技术已从实验室走向千行百业,成为推动社会经济发展的核心引擎。在这一背景下,浙江大学联合DeepSeek团队推出的《2025年DeepSeek行业应用案例集》(以下简称“案例集”&#…...

C# Unity 唐老狮 No.5 模拟面试题

本文章不作任何商业用途 仅作学习与交流 安利唐老狮与其他老师合作的网站,内有大量免费资源和优质付费资源,我入门就是看唐老师的课程 打好坚实的基础非常非常重要: 全部 - 游习堂 - 唐老狮创立的游戏开发在线学习平台 - Powered By EduSoho 如果你发现了文章内特殊的字体格式,…...

《2025软件测试工程师面试》功能测试篇

什么是功能测试? 功能测试是通过验证产品功能是否满足用户需求的过程,主要关注软件的功能是否符合需求规格说明,包括软件的各种功能、特性、性能、安全性和易用性等。 功能测试的流程包括哪些步骤? 需求分析:明确软件需求,确定测试范围。测试计划:制定详细的测试计划,…...

DeepSeek如何快速开发PDF转Word软件

一、引言 如今,在线工具的普及让PDF转Word成为了一个常见需求,常见的PDF转Word工具有收费的WPS,免费的有PDFGear,以及在线工具SmallPDF、iLovePDF、24PDF等。然而,大多数免费在线转换工具存在严重隐私风险——文件需上…...

ROS环境搭建

ROS首次搭建环境 注:以下内容都是在已经安装好ros的情况下如何搭建workplace 一、创建工作空间二、创建ROS包三、注意 注:以下内容都是在已经安装好ros的情况下如何搭建workplace 如果没有安装好,建议鱼香ros一步到位:鱼香ROS 我也是装了好久…...

深入探索DeepSeek开源之旅:开源Week全程解析

摘要 在农历新年刚刚结束之际,DeepSeek以卓越的开源精神,连续六天举办了开源Week活动。这一系列活动不仅展示了DeepSeek在技术领域的活跃度和影响力,还彰显了其对开源社区的贡献。通过这次活动,DeepSeek吸引了众多开发者和技术爱好…...

Redis是什么?如何使用Redis进行缓存操作?

Redis(Remote Dictionary Server)是一款高性能的内存键值存储系统,广泛用于缓存、消息队列、会话存储和实时数据处理等场景。它基于内存存储,支持多种数据结构,如字符串、列表、集合、有序集合和哈希表等,具…...

Unity学习笔记之——ugui的性能优化

在Unity中UI优化的核心问题就是重绘和批处理之间的平衡 一、Canvas优化要点 1.优化原因: (1)Unity为了性能优化,会合并Canvas下的所有元素; (2)如果把所有面板放到一个Canvas下,会…...

【三.大模型实战应用篇】【2.智能学员辅导系统:与大模型的深度交互】

早上七点半,初三学生小林打开数学辅导APP,发现AI老师准确指出了他昨晚作业中三次跳步计算的坏习惯——这比他亲妈观察得还细致。这背后是一场发生在代码深处的"脑力风暴",让我们潜入智能辅导系统与大模型深度交互的"暗室",看看那些让教育产生化学反应的…...

【vue-echarts】——04.配置项---legend

文章目录 一、配置项-legend图例二、显示结果一、配置项-legend图例 图例组件展现了不同系列的标记,颜色和名字。可以通过点击图例控制哪些系列不显示。 代码如下 Demo4View.vue <template><div class="about">...

面试题02.02.返回倒数第k个节点

实现一种算法&#xff0c;找出单向链表中倒数第 k 个节点。返回该节点的值。 注意&#xff1a;本题相对原题稍作改动 示例&#xff1a; 输入&#xff1a; 1->2->3->4->5 和 k 2 输出&#xff1a; 4 说明&#xff1a; 给定的 k 保证是有效的。 题解&#xff…...