当前位置: 首页 > news >正文

基于Linux系统的物联网智能终端

背景

        产品研发和项目研发有什么区别?一个令人发指的问题,刚开始工作时项目开发居多,认为项目开发和产品开发区别不大,待后来随着自身能力的提升,逐步感到要开发一个好产品还是比较难的,我认为项目开发的目的是满足项目需求,只要满足了需求就达到了目的。产品开发就不太一样,产品开发更像是终身制的项目,要解决随时在不同项目中使用时出现的问题,也要能满足不同应用场景下的使用。

        嵌入式软件基本分为了两个流派,从技术层面来讲,一个是基于MCU来开发的,一个是基于MPU来开发的,当年我有很多同事都不理解你一个搞MCU的开发个产品有什么难的,还一个团队十来个人搞这么长时间,有这种想法的人一般都是搞项目开发的高手,不管是基于MCU还是基于MPU,只要是开发产品,都不是个很简单的事情。

        早些年都是基于MCU来开发产品,资源有限,处理能力有限,经常会有很多需求无法实现,或者实现起来太麻烦,没法站在开源的巨人肩膀上走的更远。正好在搞项目开发时,公司提出来一个看似不太明确的产品需求,却有明确的项目交期,在这种情况下,只能用最保险的方式,最大的扩展方式来实现产品的开发。

需求

  • 宽电压供电,DC9~35V;
  • 支持两路百兆以太网;
  • 支持4G/5G/Wifi通讯;
  • 可外接北斗2/3进行卫星通讯;
  • 支持LoRa本地组网;
  • 支持继电器控制/数字量采集/CAN总线/RS232总线/RS485总线;
  • 支持MQTT标准协议;
  • 支持Onenet,阿里云等物联网平台;
  • 支持外接TF卡;
  • 支持网络摄像头;

技术难点

  • 最大的难点是需求不明确,不清楚使用场景;
  • 宽电压范围这个还好说,国产电源芯片可以满足;
  • 基于新唐的NUC980来实现,内置DDR,减少了硬件工程师的一个风险,官方提供Linux 4.4的内核;
  • 基于Linux系统这些外设的驱动实现也是个问题,好在疫情期间跟原厂的工程师建立了微信群,全部协调解决了;
  • 软件的扩展性,在这里很重要,用它来应对多变的需求。

        设计时没有急于开工,首先通过分析,来将功能进行了划分,拆分架构时参考了冯·诺依曼架构是现代计算机的基础的理论,对设备采集数据,处理数据,存储数据,上传数据等进行类拆分。再加上一些现在开发软件时微服务的概念,将设备内部分成了多个小程序,然后利用TCP协议,在设备内部进行交互。

       大体功能模块的划分如下:

  • Linux系统,为各个小程序的执行提供运行基础;
  • 采集程序,负责前端传感器数据采集,支持周期性采集,触发采集;
  • 数据处理程序,负责将采集到数据转化为标准数据;
  • 协议处理程序,负责将上下行的数据解析处理,并周期性打包数据上传,接收服务的下行指令的解析处理;
  • 中心调度程序,负责将各个子任务的数据进行转发,监控各个子任务的执行情况,并负责维护各个子任务的执行状态;
  • 数据管理程序,负责启用数据库,将历史数据存入数据库,并对其它程序提供数据查询服务;
  • 通讯程序,负责建立对应的通讯链路,并维护链路的链接;
  • 配置程序,负责对外提供web页面,用户可通过web页面对系统的参数,应用程序的参数等进行配置,并对运行过程的数据进行查看;

        内部的小程序之间通讯都是基于TCP进行的,设备可以实现集群部署,可以单台设备实现其中的部分功能,来增加整个系统的性能。

        产品对外接口有各种灵活性,具体配置如下:

产品内置web服务器,配置界面如下所示:

        配置界面如下所示:

        内部应用程序如下图所示:

关于架构层面的设计,以后慢慢逐步展开。

相关文章:

基于Linux系统的物联网智能终端

背景 产品研发和项目研发有什么区别?一个令人发指的问题,刚开始工作时项目开发居多,认为项目开发和产品开发区别不大,待后来随着自身能力的提升,逐步感到要开发一个好产品还是比较难的,我认为项目开发的目的…...

文字描边实现内黄外绿效果

网页使用 <!DOCTYPE html> <html> <head> <style> .text-effect {color: #ffd700; /* 黄色文字 */-webkit-text-stroke: 2px #008000; /* 绿色描边&#xff08;兼容Webkit内核&#xff09; */text-stroke: 2px #008000; /* 标准语法 *…...

next实现原理

Next.js 是一个基于 React 的 服务器端渲染&#xff08;SSR&#xff09; 和 静态生成&#xff08;SSG&#xff09; 框架&#xff0c;它的实现原理涉及多个关键技术点&#xff0c;包括 服务端渲染&#xff08;SSR&#xff09;、静态生成&#xff08;SSG&#xff09;、客户端渲染…...

什么是 jQuery

一、jQuery 基础入门 &#xff08;一&#xff09;什么是 jQuery jQuery 本质上是一个快速、小巧且功能丰富的 JavaScript 库。它将 JavaScript 中常用的功能代码进行了封装&#xff0c;为开发者提供了一套简洁、高效的 API&#xff0c;涵盖了 HTML 文档遍历与操作、事件处理、…...

014 rocketmq角色介绍

文章目录 NameServer1 服务发现机制2 为什么要使⽤NameServer3 NameServer如何保证数据的最终⼀致&#xff1f;4 特点 BrokerProducerConsumerTopicQueueProducer GroupConsumer GroupMessageTagOffset 同一消费者组下&#xff0c;队列只能由一个消费者消费 广播模式&#xff1…...

如何防止Python网络爬虫爬取网站内容

要防止Python网络爬虫爬取网站内容&#xff0c;可以从以下几个方面入手&#xff1a; 遵守Robots.txt文件&#xff1a;首先&#xff0c;网站管理员可以通过robots.txt文件明确告知爬虫哪些页面可以抓取&#xff0c;哪些不可以。爬虫在抓取之前应先检查该文件&#xff0c;尊重网站…...

项目准备(flask+pyhon+MachineLearning)- 3

目录 1.商品信息 2. 商品销售预测 2.1 机器学习 2.2 预测功能 3. 模型评估 1.商品信息 app.route(/products) def products():"""商品分析页面"""data load_data()# 计算当前期间和上期间current_period data[data[成交时间] > data[成…...

选开源CMS建站系统时,插件越多越好吗?

在选择开源CMS建站系统时&#xff0c;插件数量并不是唯一的衡量标准&#xff0c;更不能简单地说“插件越多就越好”&#xff0c;还是需要综合评估来考虑选择结果&#xff0c;以下是有关选择开源CMS系统时对插件数量的考量。 插件数量的优势插件数量可能带来的问题功能丰富性&a…...

OSPF BIT 类型说明

注&#xff1a;本文为 “OSPF BIT 类型 | LSA 类型 ” 相关文章合辑。 机翻&#xff0c;未校。 15 OSPF BIT Types Explained 15 种 OSPF BIT 类型说明 Rashmi Bhardwaj Distribution of routing information within a single autonomous system in larger networks is per…...

C语言(3)—循环、数组、函数的详解

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、函数二、循环与数组 1.循环2.数组 总结 前言 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、函数 在C语言中&#xff0c;函数…...

大唐杯——阶段二01

03 5G寻呼 UE&#xff08;User Equipment&#xff09; UE是用户设备&#xff08;User Equipment&#xff09;的缩写&#xff0c;指的是移动通信网络中的终端设备&#xff0c;例如手机、平板电脑、物联网传感器等。 AMF&#xff08;Access and Mobility Management Function&a…...

清华大学Deepseek第六版AIGC发展研究3.0(共186页,附PDF下载)

人工智能生成内容&#xff08;AIGC&#xff09;正以前所未有的速度改变我们的生活。 2024年底&#xff0c;清华大学新闻与传播学院与人工智能学院联合发布了《AIGC发展研究3.0版》&#xff0c;这份报告系统梳理了AIGC技术的突破性进展、应用场景及社会影响&#xff0c;并展望了…...

【漫话机器学习系列】114.逻辑 Sigmoid 函数

逻辑 Sigmoid 函数详解 1. 引言 逻辑回归&#xff08;Logistic Regression&#xff09;是机器学习中常用的分类算法&#xff0c;而 Sigmoid 函数 是逻辑回归的核心数学工具。Sigmoid 函数能够将任意实数映射到 (0,1) 之间&#xff0c;因此特别适用于概率估计。在这篇文章中&a…...

Cocos Creator3.8.6拖拽物体的几种方式

文章目录 前言一、第一种通过UILocation二、第二种通过UIDelta实现总结 前言 在游戏开发中&#xff0c;拖拽物体是一个非常常见的交互功能&#xff0c;无论是用于UI元素的拖动&#xff0c;还是场景中物体的移动&#xff0c;拖拽操作都能极大地提升用户体验。Cocos Creator 3.8…...

01_NLP基础之文本处理的基本方法

自然语言处理入门 自然语言处理&#xff08;Natural Language Processing, 简称NLP&#xff09;是计算机科学与语言学中关注于计算机与人类语言间转换的领域&#xff0c;主要目标是让机器能够理解和生成自然语言&#xff0c;这样人们可以通过语言与计算机进行更自然的互动。 …...

Minio搭建并在SpringBoot中使用完成用户头像的上传

Minio使用搭建并上传用户头像到服务器操作,学习笔记 Minio介绍 minio官网 MinIO是一个开源的分布式对象存储服务器&#xff0c;支持S3协议并且可以在多节点上实现数据的高可用和容错。它采用Go语言开发&#xff0c;拥有轻量级、高性能、易部署等特点&#xff0c;并且可以自由…...

深入解析 Kubernetes CRD:原理、特点与典型应用场景

深入解析 Kubernetes CRD:原理、特点与典型应用场景 一、CRD 的本质与原理 1.1 什么是 CRD? CRD(Custom Resource Definition) 是 Kubernetes 提供的核心扩展机制,允许用户自定义 API 资源类型。通过 CRD,开发者可以将业务逻辑抽象为 Kubernetes 原生资源模型,实现与…...

【新手入门】SQL注入之盲注

一、引言 在我们的注入语句被带入数据库查询但却什么都没有返回的情况我们该怎么办? 例如应用程序返回到一个"通用的"的页面&#xff0c;或者重定向一个通用页面(可能为网站首页)。这时&#xff0c;我们之前学习的SQL注入的办法就无法使用了。这种情况我们称之为无…...

功能丰富的自动化任务软件zTasker_2.1.0_绿色版_屏蔽强制更新闪退

&#x1f680; zTasker 一键式效率倍增器使用指南 &#x1f64f; 致谢 首先感谢开发者提供如此高效的工具&#xff01; 软件本身功能强大&#xff0c;但部分机制需特别注意&#xff01; &#x1f4d6; 软件概述 zTasker 是一款通过自动化脚本/任务流实现效率飞跃的生产力工…...

YOLOv11-ultralytics-8.3.67部分代码阅读笔记-model.py

model.py ultralytics\models\yolo\model.py 目录 model.py 1.所需的库和模块 2.class YOLO(Model): 3.class YOLOWorld(Model): 1.所需的库和模块 # Ultralytics &#x1f680; AGPL-3.0 License - https://ultralytics.com/licensefrom pathlib import Pathfrom ult…...

深入浅出 Go 语言:协程(Goroutine)详解

深入浅出 Go 语言&#xff1a;协程(Goroutine)详解 引言 Go 语言的协程&#xff08;goroutine&#xff09;是其并发模型的核心特性之一。协程允许你轻松地编写并发代码&#xff0c;而不需要复杂的线程管理和锁机制。通过协程&#xff0c;你可以同时执行多个任务&#xff0c;并…...

【深度学习】Hopfield网络:模拟联想记忆

Hopfield网络是一种经典的循环神经网络&#xff0c;由物理学家John Hopfield在1982年提出。它的核心功能是模拟联想记忆&#xff0c;类似于人类大脑通过部分信息回忆完整记忆的能力。以下是通俗易懂的解释&#xff1a; 1. 核心思想 想象你看到一张模糊的老照片&#xff0c;虽然…...

为什么深度学习选择Tensor而非NumPy数组?核心优势深度解析

简短总结&#xff1a; 支持 GPU 加速&#xff1a;Tensor 提供对 GPU 的原生支持&#xff0c;能够有效加速计算&#xff0c;而 NumPy 则通常只能在 CPU 上运行。支持自动求导&#xff1a;深度学习模型的训练依赖于参数的优化&#xff0c;而 Tensor 提供了自动求导功能&#xff…...

MongoDB—(一主、一从、一仲裁)副本集搭建

MongoDB集群介绍&#xff1a; MongoDB 副本集是由多个MongoDB实例组成的集群&#xff0c;其中包含一个主节点&#xff08;Primary&#xff09;和多个从节点&#xff08;Secondary&#xff09;&#xff0c;用于提供数据冗余和高可用性。以下是搭建 MongoDB 副本集的详细步骤&am…...

【Leetcode 每日一题】132. 分割回文串 II

问题背景 给你一个字符串 s s s&#xff0c;请你将 s s s 分割成一些子串&#xff0c;使每个子串都是回文串。 返回符合要求的 最少分割次数 。 数据约束 1 ≤ s . l e n g t h ≤ 2000 1 \le s.length \le 2000 1≤s.length≤2000 s s s 仅由小写英文字母组成 解题过程 …...

面试常问的压力测试问题

性能测试作为软件开发中的关键环节&#xff0c;确保系统在高负载下仍能高效运行。压力测试作为性能测试的重要类型&#xff0c;旨在通过施加超出正常负载的压力&#xff0c;观察系统在极端条件下的表现。面试中&#xff0c;相关问题常被问及&#xff0c;包括定义、重要性、与负…...

信刻光盘安全隔离与信息交换系统让“数据摆渡”安全高效

随着数据传输、存储及信息技术的飞速发展&#xff0c;信息安全保护已成为重中之重。各安全领域对跨网数据交互的需求日益迫切&#xff0c;数据传输的安全可靠性成为不可忽视的关键。为满足业务需求并遵守保密规范&#xff0c;针对于涉及重要秘密信息&#xff0c;需做到安全的物…...

MySQL InnoDB 引擎中的聚簇索引和非聚簇索引有什么区别?

在 MySQL 的 InnoDB 存储引擎中&#xff0c;聚簇索引&#xff08;Clustered Index&#xff09;和非聚簇索引&#xff08;Non-Clustered Index&#xff09;是两种重要的索引类型&#xff0c;它们在数据存储结构、性能特点和适用场景上存在显著区别。以下是对它们的详细对比和解释…...

微信小程序开发学习笔记

微信小程序开发学习笔记 一、基础结构项目结构配置文件&#xff08;app.json&#xff09; 二、常用组件视图组件表单组件导航组件 三、API 常用功能网络请求数据缓存用户信息支付功能 四、框架与工具框架开发者工具 五、开发流程六、最佳实践七、常见问题路由跳转&#xff1a;权…...

动态规划刷题

文章目录 动态规划三步问题题目解析代码 动态规划 1. 状态表示&#xff1a;dp[i]&#xff0c;表示dp表中i下标位置的值 2. 状态转移方程&#xff1a;以i位置位置的状态&#xff0c;最近的一步来划分问题&#xff0c;比如可以将状态拆分成前状态来表示现状态&#xff0c;dp[i] …...

uniapp 系统学习,从入门到实战(七)—— 网络请求与数据交互

全篇大概 3600 字(含代码)&#xff0c;建议阅读时间 25min &#x1f4da; 目录 使用uni.request发起请求封装全局请求工具破解跨域难题总结 在跨平台应用开发中&#xff0c;网络请求是连接前端与后端服务的核心环节。UniApp 提供了 uni.request 方法处理网络请求&#xff0c;但…...

AI人工智能机器学习之聚类分析

1、概要 本篇学习AI人工智能机器学习之聚类分析&#xff0c;以KMeans、AgglomerativeClustering、DBSCAN为例&#xff0c;从代码层面讲述机器学习中的聚类分析。 2、聚类分析 - 简介 聚类分析是一种无监督学习的方法&#xff0c;用于将数据集中的样本划分为不同的组&#xff…...

安当全栈式PostgreSQL数据库安全解决方案:透明加密、动态凭据与勒索防护一体化实践

引言&#xff1a;数字化转型下的数据库安全挑战 随着PostgreSQL在企业核心业务中的广泛应用&#xff0c;其承载的敏感数据价值日益攀升。然而&#xff0c;近年来针对数据库的攻击事件频发&#xff0c;如SQL注入漏洞&#xff08;CVE-2025-1094&#xff09;、勒索病毒攻击、内部…...

进程的状态 ─── linux第11课

目录 ​编辑 补充知识: 1.并行和并发 分时操作系统&#xff08;Time-Sharing Systems&#xff09; 实时操作系统&#xff08;Real-Time Systems&#xff09; 进程的状态(操作系统层面) ​编辑 运行状态 阻塞状态 状态总结: 挂起状态 linux下的进程状态 补充知识: …...

DevOps原理和实现面试题及参考答案

解释 DevOps 的核心目标与文化价值观,如何理解 “CAMS” 模型? DevOps 的核心目标是打破开发(Development)和运维(Operations)之间的壁垒,通过自动化、协作和持续反馈,实现软件的快速、可靠交付,以更好地满足业务需求和客户期望。具体来说,DevOps 旨在缩短软件的交付…...

牛客刷题自留-深度学习

1、当在卷积神经网络中加入池化层(pooling layer)时&#xff0c;平移变换的不变性会被保留&#xff0c;是吗&#xff1f; 正常答案: C A 不知道 B 看情况 C 是 D 否 平移变换不变性的概念 平移变换不变性指的是当输入图像发生小范围的平移时&#xff0c;模型的输出结果不会发…...

网络空间安全(6)web应用程序技术

前言 Web应用程序技术是指用于开发和构建基于Web的应用程序的技术和工具&#xff0c;涵盖了前端开发、后端开发、数据库管理、安全性等多个方面的技术。 一、前端开发技术 HTML/CSS/JavaScript&#xff1a;HTML用于构建网页结构&#xff0c;CSS用于进行样式设计&#xff0c;Jav…...

kubernetes 初学命令

基础命令 kubectl 运维命令常用&#xff1a; #查看pod创建过程以及相关日志 kubectl describe pod pod-command -n dev #查看某个pod&#xff0c;以yaml格式展示结果 kubectl get pod nginx -o yaml #查看pod 详情 以及对应的集群IP地址 kubectl get pods -o wide 1. kubetc…...

Redis面试题

Redis 是一个高性能的开源键值对存储数据库&#xff0c;在面试中经常会被问到。以下是一些常见的 Redis 面试题&#xff1a; 基础概念 Redis 是什么 描述&#xff1a;Redis 是一个开源的、基于内存的数据结构存储系统&#xff0c;它可以用作数据库、缓存和消息中间件。支持多…...

提升系统效能:从流量控制到并发处理的全面解析

在当今快速发展的数字时代&#xff0c;无论是构建高效的网络服务、管理海量数据&#xff0c;还是优化系统的并发处理能力&#xff0c;都是技术开发者和架构师们面临的重大挑战。本文集旨在深入探讨几个关键技术领域&#xff0c;包括用于网络通信中的漏桶算法与令牌桶算法的原理…...

【计算机网络入门】初学计算机网络(四)

目录 1.信源、信宿、信号、信道 2.码元 2.1 码元与比特之间的关系 3.波特和比特 4.奈奎斯特定理 4.1 带宽和噪声的概念 5.香农定理 5.1信噪比 6.奈氏定理和香农定理的对比 1.信源、信宿、信号、信道 数据转换为信号从信源发送到信道上&#xff0c;再发送到信宿中。 …...

多元数据直观表示(R语言)

一、实验目的&#xff1a; 通过上机试验&#xff0c;掌握R语言实施数据预处理及简单统计分析中的一些基本运算技巧与分析方法&#xff0c;进一步加深对R语言简单统计分析与图形展示的理解。 数据&#xff1a; 链接: https://pan.baidu.com/s/1kMdUWXuGCfZC06lklO5iXA 提取码: …...

派可数据BI接入DeepSeek,开启智能数据分析新纪元

派可数据BI产品完成接入DeepSeek&#xff0c;此次接入标志着派可数据BI在智能数据分析领域迈出了重要一步&#xff0c;将为用户带来更智能、更高效、更便捷的数据分析体验。 派可数据BI作为国内领先的商业智能解决方案提供商&#xff0c;一直致力于为用户提供高效、稳定易扩展…...

Hive之正则表达式

Hive版本&#xff1a;hive-3.1.2 目录 一、Hive的正则表达式概述 1.1 字符集合 1.2 边界集合 1.3 量词&#xff08;重复次数&#xff09;集合 1.4 转义操作符 1.5 运算符优先级 二、Hive 正则表达式案例 2.1 like 2.2 rlike 2.3 regexp 2.4 regexp_replace正…...

【软路由】ImmortalWrt 编译指南:从入门到精通

对于喜欢折腾路由器&#xff0c;追求极致性能和定制化的玩家来说&#xff0c;OpenWrt 无疑是一个理想的选择。而在众多 OpenWrt 衍生版本中&#xff0c;ImmortalWrt 以其更活跃的社区、更激进的特性更新和对新硬件的支持而备受关注。 本文将带你深入了解 ImmortalWrt&#xff0…...

蓝桥杯备考:从记忆化搜索到动态规划

首先我们先来复习一下我们之前学的用记忆化搜索优化的求斐波那契数列 #include <iostream> #include <cstring> using namespace std; const int N 35; int f[N]; int dfs(int n) {if(f[n]!-1) return f[n];if(n1||n0) return f[n]n;return f[n] dfs(n-1)dfs(n-2…...

React底层原理详解

React中Element&Fiber对象、WorkInProgress双缓存、Reconcile&Render&Commit、第一次挂载过程详解 在面试中介绍React底层原理时&#xff0c;需遵循逻辑清晰、层次分明、重点突出的原则&#xff0c;结合技术深度与实际应用场景。以下是结构化回答模板&#xff1a;…...

[含文档+PPT+源码等]精品基于Python实现的vue3+Django计算机课程资源平台

基于Python实现的Vue3Django计算机课程资源平台的背景&#xff0c;可以从以下几个方面进行阐述&#xff1a; 一、教育行业发展背景 1. 教育资源数字化趋势 随着信息技术的快速发展&#xff0c;教育资源的数字化已成为不可逆转的趋势。计算机课程资源作为教育领域的重要组成部…...

通过 PromptTemplate 生成干净的 SQL 查询语句并执行SQL查询语句

问题描述 在使用 LangChain 和 Llama 模型生成 SQL 查询时&#xff0c;遇到了 sqlite3.OperationalError 错误。错误信息如下&#xff1a; OperationalError: (sqlite3.OperationalError) near "sql SELECT Name FROM MediaType LIMIT 5; ": syntax error [SQL: …...

Mercury、LLaDA 扩散大语言模型

LLaDA 参考&#xff1a; https://github.com/ML-GSAI/LLaDA https://ml-gsai.github.io/LLaDA-demo/ 在线demo&#xff1a; https://huggingface.co/spaces/multimodalart/LLaDA Mercury 在线demo&#xff1a; https://chat.inceptionlabs.ai/ 速度很快生成...