当前位置: 首页 > news >正文

Python从0到100(八十九):Resnet、LSTM、Shufflenet、CNN四种网络分析及对比

在这里插入图片描述

前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!
欢迎大家订阅专栏:零基础学Python:Python从0到100最新最全教程!

本文目录:

  • 一、四种网络的结构及介绍
    • 1.ResNet
    • 2.长短期记忆网络(LSTM)
    • 3.ShuffleNet
    • 4.CNN
  • 二、具体训练过程
    • 1.Resnet
      • 1.1 残差块(Block)
      • 1.2 ResNet网络
      • 1.3 辅助方法
      • 1.4 前向传播(Forward Pass)
      • 训练过程及结果
    • 2.LSTM
      • 2.1 LSTM类及网络层
      • 2.3前向传播(Forward Pass)
      • 训练过程及结果
    • 3.ShuffleNet
      • 1. ChannelShuffleModule类
      • 2. ShuffleNet类
      • 3. 前向传播(Forward Pass)
      • 训练过程及结果
    • 4.Cnn
  • 三、结果分析
  • 四、结论
    • 1. 模型结构设计差异
    • 2. 模型结构设计对训练和loss的影响
    • 3. Loss设计对模型性能的影响
    • 文末送书
      • `本期推荐1:`
      • `本期推荐2:`

为了进一步探索不同网络结构在WISDM数据集上的表现,本文将继续深入研究,将训练模型推广到其他网络结构中,包括ResNet、LSTM和ShuffleNet,并通过仿真实验对比这些网络在WISDM数据集上的训练效果。

一、四种网络的结构及介绍

1.ResNet

残差网络(ResNet)通过引入“残差学习”的概念,解决了深度神经网络训练困难的问题。其核心思想是通过残差块(Residual Block)将输入直接与输出相加,从而缓解梯度消失问题,使得网络可以训练得更深。
在这里插入图片描述

ResNet沿用了VGG完整的3 × 3卷积层设计。残差块里首先有2个有相同输出通道数的3 × 3卷积层。 每个卷积层后接一个批量规范化层和ReLU激活函数。 然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。

核心思想:

· 残差块(Residual Block) :输入通过一个或多个卷积层后,与输入相加,形成残差。这样做可以使得网络学习到的是输入和输出之间的残差,而不是直接学习输出,从而缓解了梯度消失问题,使得网络可以成功训练更深的模型。
在这里插入图片描述

优点:

· 通过残差学习,可以有效地训练更深的网络,提高了模型的性能。

· 网络结构易于拓展,可以构建更复杂的模型。

缺点:

· 虽然缓解了梯度消失问题,但在某些情况下仍然可能遇到梯度爆炸的问题。

· 模型参数较多,需要较大的数据集进行训练。

网络结构:

ResNet((layer1): Sequential((0): Block((block): Sequential((0): Conv2d(1, 64, kernel_size=(3, 1), stride=(2, 1), padding=(1, 0))(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU()(3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))(short): Sequential((0): Conv2d(1, 64, kernel_size=(3, 1), stride=(2, 1), padding=(1, 0))(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))

image.png

2.长短期记忆网络(LSTM)

LSTM是一种特殊的循环神经网络(RNN),通过引入门控机制(输入门、遗忘门和输出门)和记忆单元,能够学习长期依赖信息,特别适合处理时间序列数据。

在这里插入图片描述

核心思想:

· 门控机制(Gating Mechanism) :LSTM通过引入输入门、遗忘门和输出门来控制信息的流动,解决了传统RNN的短期记忆问题。

· 记忆单元(Memory Cell) :LSTM的核心是记忆单元,它可以添加或移除信息,从而实现长期记忆。

优点:

· 能够处理长期依赖问题,适用于时间序列数据。

· 通过门控机制,可以有效地避免梯度消失和梯度爆炸问题。

缺点:

· 参数数量较多,训练时间较长。

· 门控机制增加了模型的复杂度。

网络结构:

LSTM(

(lstm): LSTM(3, 512, num_layers=2, batch_first=True)

(fc): Linear(in_features=512, out_features=6, bias=True)

)

image.png

3.ShuffleNet

ShuffleNet是一种高效的卷积神经网络,通过分组卷积和通道洗牌操作减少计算量,同时保持较高的准确率。
在这里插入图片描述

核心思想:

· 分组卷积:将输入通道分成多个组,每组独立进行卷积操作,然后合并结果。这样可以减少计算量和参数数量。
在这里插入图片描述

· 通道洗牌:在分组卷积后,通过通道洗牌操作重新混合不同组的特征图,以保持特征的多样性。
在这里插入图片描述

优点:

· 计算效率高,适用于资源受限的环境。

· 通过通道洗牌操作,可以在减少计算量的同时保持特征的多样性。

缺点:

· 虽然减少了计算量,但在某些复杂任务上可能不如其他网络结构表现出色。

· 分组卷积可能会牺牲一定的模型性能。

网络结构:

ShuffleNet((layer): Sequential((0): Conv2d(1, 1, kernel_size=(3, 1), stride=(2, 1), padding=(1, 0))(1): Conv2d(1, 64, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU()(19): ChannelShuffleModule())(ada_pool): AdaptiveAvgPool2d(output_size=(1, 3))(fc): Linear(in_features=1536, out_features=6, bias=True))

image.png

4.CNN

CNN是一种深度学习模型,主要用于处理具有网格结构的数据,如图像和时间序列数据。其核心思想是利用卷积层(Convolutional Layer)提取局部特征,然后通过池化层(Pooling Layer)进行下采样以减少特征维度,最后通过全连接层(Fully Connected Layer)进行分类或回归。
CNN的典型结构包括多个卷积层、池化层和全连接层。以下是一个简单的CNN结构示例:

import torch.nn as nnclass CNN(nn.Module):def __init__(self, input_channels, num_classes):super(CNN, self).__init__()self.conv1 = nn.Conv2d(in_channels=input_channels, out_channels=32, kernel_size=3, stride=1, padding=1)self.relu = nn.ReLU()self.pool = nn.MaxPool2d(kernel_size=2, stride=2)self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)self.fc1 = nn.Linear(64 * 7 * 7, 128)  # 假设输入图像大小为28x28self.fc2 = nn.Linear(128, num_classes)def forward(self, x):x = self.conv1(x)x = self.relu(x)x = self.pool(x)x = self.conv2(x)x = self.relu(x)x = self.pool(x)x = x.view(x.size(0), -1)  # 展平特征x = self.fc1(x)x = self.relu(x)x = self.fc2(x)return x

二、具体训练过程

1.Resnet

1.1 残差块(Block)

  • Block 类是一个残差网络的基本构建块,它包含两个卷积层,分别后接批量归一化(BatchNorm)和ReLU激活函数。
  • 第一个卷积层的卷积核大小为 (3, 1),步长为 (stride, 1),填充为 (1, 0)
  • 如果输入和输出的通道数不同,或者步长不为1,残差块会包含一个快捷连接(shortcut),它是一个1x1的卷积层,用于匹配通道数和步长。
class Block(nn.Module):def __init__(self, inchannel, outchannel, stride):super().__init__()self.block = nn.Sequential(nn.Conv2d(inchannel, outchannel, (3, 1), (stride, 1), (1, 0)),nn.BatchNorm2d(outchannel),nn.ReLU(),nn.Conv2d(outchannel, outchannel, 1, 1, 0),nn.BatchNorm2d(outchannel))self.short = nn.Sequential()if (inchannel != outchannel or stride != 1):self.short = nn.Sequential(nn.Conv2d(inchannel, outchannel, (3, 1), (stride, 1), (1, 0)),nn.BatchNorm2d(outchannel))

1.2 ResNet网络

  • ResNet 类定义了整个网络结构,它由四个残差层(layer1layer4)组成,每一层由多个残差块组成。
  • 每一层的输出通道数分别是64, 128, 256, 和 512。每一层的第一个块的步长为2,用于下采样,其余块的步长为1。
  • 网络的输入假设具有形状 [b, c, series, modal],其中 b 是批次大小,c 是通道数,series 是序列长度,modal 是模态数(例如,图像的高度)。
  • 网络最后使用一个自适应平均池化层(AdaptiveAvgPool2d)将特征图的大小调整为 (1, train_shape[-1]),然后通过一个全连接层(fc)输出类别预测。
class ResNet(nn.Module):def __init__(self, train_shape, category):super().__init__()self.layer1 = self.make_layers(1, 64, 2, 1)self.layer2 = self.make_layers(64, 128, 2, 1)self.layer3 = self.make_layers(128, 256, 2, 1)self.layer4 = self.make_layers(256, 512, 2, 1)self.ada_pool = nn.AdaptiveAvgPool2d((1, train_shape[-1]))self.fc = nn.Linear(512*train_shape[-1], category)

1.3 辅助方法

  • make_layers 方法用于创建每个残差层中的多个残差块。它接受输入通道数、输出通道数、步长和块的数量作为参数,并返回一个由这些块组成的序列。
def make_layers(self, inchannel, outchannel, stride, blocks):layer = [Block(inchannel, outchannel, stride)]for i in range(1, blocks):layer.append(Block(outchannel, outchannel, 1))return nn.Sequential(*layer)

1.4 前向传播(Forward Pass)

  • forward 方法中,输入数据 x 会逐层通过残差层,然后通过自适应平均池化层和全连接层,最终输出类别预测。
def forward(self, x):out = self.block(x) + self.short(x)return nn.ReLU()(out)

训练过程及结果

image.png
从训练得到的结果我们可以发现在准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1分数(F1-score)、参数量(Parameters)、推理时间(Inference Time) 六个维度上分别为:

image.png

2.LSTM

LSTM网络特别适合于处理和预测时间序列数据,因为它们可以捕捉长期依赖关系,在本次实验中可以发挥出其特点,我们首先使用用LSTM层来处理序列数据,然后使用全连接层来进行分类预测。通过选取序列最后一个时间步的隐藏状态来进行分类,这是处理序列数据的一个常见做法,尤其是当序列长度固定时。

2.1 LSTM类及网络层

我们使用LSTM 类继承自 nn.Module,构造函数 __init__ 接受两个参数:train_shapecategory

  • train_shape 是训练数据的形状,这里假设它是一个包含序列长度和模态数的列表或元组。
  • category 是类别的数量,即网络输出的维度,用于分类任务。
class LSTM(nn.Module):def __init__(self, train_shape, category):super().__init__()self.lstm = nn.LSTM(train_shape[-1], 512, 2, batch_first=True)self.fc = nn.Linear(512, category)

其中self.lstm 是LSTM层,其参数如下:

  • train_shape[-1] 是输入特征的维度,即模态数。
  • 512 是LSTM隐藏层的维度。
  • 2 表示堆叠两个LSTM层。
  • batch_first=True 表示输入和输出的张量的第一个维度是批次大小(batch size)。

self.fc 是一个全连接层,它将LSTM层的输出映射到类别空间。它的输入维度是512(LSTM隐藏层的维度),输出维度是 category

2.3前向传播(Forward Pass)

forward 方法定义了数据通过网络的正向传播过程。输入 x 的形状假设为 [b, c, series, modal],其中 b 是批次大小,c 是通道数(在这里为1,因为 squeeze(1) 被调用)。
x.squeeze(1) 将通道数维度移除,使得 x 的形状变为 [b, series, modal]self.lstm(x) 将数据 x 通过LSTM层,输出一个包含隐藏状态和细胞状态的元组。

def forward(self, x):x, _ = self.lstm(x.squeeze(1))x = x[:, -1, :]x = self.fc(x)return x

训练过程及结果

image.png
从训练得到的结果我们可以发现在准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1分数(F1-score)、参数量(Parameters)、推理时间(Inference Time) 六个维度上分别为:

image.png

3.ShuffleNet

ShuffleNet通过深度可分离卷积和通道混合技术减少了模型的参数量和计算量,同时保持了较好的性能。这种卷积首先使用 groups 参数将输入通道分组,然后对每个组应用一个轻量级的 (kernel_size, 1) 卷积,接着是一个 1x1 的卷积来组合这些输出。在每个深度可分离卷积后面,紧跟着一个批量归一化层、一个ReLU激活函数和一个通道混合模块。

1. ChannelShuffleModule类

ChannelShuffleModule 是一个通道混合模块,它接收一个张量作为输入,并将其通道按照指定的组数进行重组和混合。在构造函数中,channels 是输入张量的通道数,groups 是要将通道分成的组数。

forward 方法首先将输入张量重塑为 (batch, groups, channel_per_group, series, modal) 的形状,然后通过 permute 重新排列这些组,最后再将其重塑回 (batch, channels, series, modal) 的形状。

class ChannelShuffleModule(nn.Module):def __init__(self, channels, groups):super().__init__()'''channels: 张量通道数groups: 通道组数【将channels分为groups组去shuffle】'''assert channels % groups == 0self.channels = channelsself.groups = groupsself.channel_per_group = self.channels // self.groups

2. ShuffleNet类

ShuffleNet 类继承自 nn.Module,定义了ShuffleNet的主体结构。
构造函数 __init__ 接受 train_shape(训练样本的形状)、category(类别数)和 kernel_size(卷积核大小)作为参数。

self.layer 是一个由多个卷积层、批量归一化层、ReLU激活函数和通道混合模块组成的序列。这些层按照顺序执行,逐步增加网络的深度并减少特征图的尺寸。

class ShuffleNet(nn.Module):def __init__(self, train_shape, category, kernel_size=3):super(ShuffleNet, self).__init__()self.layer = nn.Sequential(nn.Conv2d(1, 1, (kernel_size, 1), (2, 1), (kernel_size // 2, 0), groups=1),nn.Conv2d(1, 64, 1, 1, 0),nn.BatchNorm2d(64),nn.ReLU(),ChannelShuffleModule(channels=64, groups=8),nn.Conv2d(64, 64, (kernel_size, 1), (2, 1), (kernel_size // 2, 0), groups=64),nn.Conv2d(64, 128, 1, 1, 0),nn.BatchNorm2d(128),nn.ReLU(),ChannelShuffleModule(channels=128, groups=8),nn.Conv2d(128, 128, (kernel_size, 1), (2, 1), (kernel_size // 2, 0), groups=128),nn.Conv2d(128, 256, 1, 1, 0),nn.BatchNorm2d(256),nn.ReLU(),ChannelShuffleModule(channels=256, groups=16),nn.Conv2d(256, 256, (kernel_size, 1), (2, 1), (kernel_size // 2, 0), groups=256),nn.Conv2d(256, 512, 1, 1, 0),nn.BatchNorm2d(512),nn.ReLU(),ChannelShuffleModule(channels=512, groups=16))self.ada_pool = nn.AdaptiveAvgPool2d((1, train_shape[-1]))self.fc = nn.Linear(512*train_shape[-1], category)

3. 前向传播(Forward Pass)

  • forward 方法定义了数据通过网络的正向传播过程。
  • 输入 x 的形状假设为 [b, c, series, modal],其中 b 是批次大小,c 是通道数,series 是序列长度,modal 是模态数。
    首先,x 通过 self.layer 中定义的多个卷积层和通道混合模块。
    然后,使用 self.ada_pool 进行自适应平均池化,将特征图的 series 维度缩减到 1
    接着,通过 view 方法将池化后的特征图展平,并通过一个全连接层 self.fc 进行分类。
def forward(self, x):x = self.layer(x)x = self.ada_pool(x)x = x.view(x.size(0), -1)x = self.fc(x)return x

训练过程及结果

image.png
从训练得到的结果我们可以发现在准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1分数(F1-score)、参数量(Parameters)、推理时间(Inference Time) 六个维度上分别为:

image.png

4.Cnn

上篇文章中已经具体分析,这里只给出结果:

image.png

三、结果分析

将得到的四组实验数据写入表格中,进行横向深入对比:
image.png

从模型参数量来看,LSTM>Resnet>CNN>Shufflenet。ResNet在性能和效率之间取得了很好的平衡;CNN在保持较高准确率的同时,具有较小的模型尺寸和较快的推理速度;LSTM适合处理时间序列数据,但计算成本较高;ShuffleNet则在资源受限的环境中表现出色,尽管其准确率略低。
以下是我们对各个模型的关键指标更详细的对比:

  1. 准确率 (Accuracy): 所有模型的准确率都相当高,其中ResNet最高,达到了97.47%。

  2. 精确率 (Precision): 精确率衡量的是预测为正类别中实际为正类别的比例。ResNet同样在这项指标上表现最佳,为97.50%。

  3. 召回率 (Recall): 召回率衡量的是所有实际为正类别中被正确预测为正类别的比例。ResNet的召回率也是最高的,为97.47%。

  4. F1分数 (F1 Score): F1分数是精确率和召回率的调和平均值,它在两者之间取得平衡。ResNet的F1分数最高,为97.48%。

  5. 参数量 (Parameter Count): 参数量反映了模型的复杂度。LSTM的参数量最大,为3,163,142,而Shufflenet的参数量最小,为185,994。

  6. 推理时间 (Inference Time): 推理时间是指模型进行预测所需的时间。CNN的推理时间最短,为0.0008秒,而LSTM的推理时间最长,为0.0088秒。

如果对预测性能有极高的要求,ResNet可能是最佳选择。如果对速度和模型大小有更高的要求,CNN或Shufflenet可能更合适。LSTM由于其参数量最大,可能适用于需要捕获长期依赖关系的任务,但需要更多的计算资源。

四、结论

1. 模型结构设计差异

  1. ResNet:其残差连接允许网络学习输入的恒等变换以及更复杂的函数。这种设计使得网络能够通过增加层数来提高性能,而不会受到梯度消失的影响。此外,残差连接有助于网络在训练过程中保持特征的一致性,这可能是ResNet在多个评价指标上表现优异的原因之一。
  2. LSTM:LSTM的门控机制使其能够学习长期依赖关系,这对于时间序列数据特别重要。然而,这种复杂的结构也导致了更多的参数和更高的计算成本。在训练过程中,LSTM可能需要更多的数据和调整来优化其门控单元的状态,这可能是其参数量较大和推理时间较长的原因之一。
  3. ShuffleNet:ShuffleNet的设计注重计算效率和模型大小。通过分组卷积和通道洗牌,ShuffleNet减少了计算量和参数数量,但这种设计可能牺牲了一些模型的表达能力,尤其是在处理复杂数据时。这可能是ShuffleNet在准确率上略低于其他模型的原因之一。
  4. CNN:传统的卷积神经网络通常具有较少的参数和较高的计算效率。它们在图像识别任务中表现出色,但在处理时间序列数据或需要捕捉长期依赖关系的任务中可能不如LSTM有效。

2. 模型结构设计对训练和loss的影响

  1. ResNet:残差连接允许网络层之间直接的信息流动,这有助于缓解深层网络中的梯度消失问题。这种设计使得ResNet在训练时对loss的梯度更加敏感,从而在优化过程中能够更快地收敛。
  2. LSTM:其门控机制能够有效地捕捉长期依赖关系,但这也意味着在训练过程中需要更加细致地调整超参数,以确保模型不会陷入局部最优解。LSTM可能需要特定的loss函数来更好地利用其记忆单元,需要考虑序列中的不同时间步长对预测的贡献。
  3. ShuffleNet:通过分组卷积和通道洗牌,ShuffleNet减少了模型的计算复杂度,但可能牺牲了某些特征的表达能力。在训练ShuffleNet时,需要更加关注loss函数的设计,以确保模型能够在有限的参数下学习到有效的特征表示。
  4. CNN:标准的CNN结构通常具有较好的空间特征提取能力,但在处理时间序列数据时可能不如LSTM有效。在设计loss函数时,需要考虑如何更好地利用CNN的空间特征提取能力,例如通过设计空间敏感的loss函数。

3. Loss设计对模型性能的影响

  1. 损失函数的选择:对于不同的模型结构,需要设计不同的损失函数来更好地捕捉任务的关键特性。对于ShuffleNet,可能需要设计一个损失函数,它不仅惩罚预测错误的程度,还鼓励模型学习到更加分散的特征表示。
  2. 损失函数的权重分配:在多任务学习中,不同任务的loss可能需要不同的权重。在训练LSTM进行序列预测时,可能需要为预测序列的早期和晚期分配不同的权重,以确保模型能够平衡短期和长期预测的准确性。
  3. 自定义损失函数:在某些特定任务中,可能需要设计自定义的损失函数来更好地适应模型的特性。对于CNN,需要设计一个损失函数,它能够鼓励模型学习到更加鲁棒的特征表示,以应对图像数据中的噪声和变化。

通过对ResNet、LSTM、ShuffleNet和CNN在WISDM数据集上的对比实验,我们发现不同网络结构在不同场景下各有优劣。ResNet在性能和效率之间取得了很好的平衡;CNN在保持较高准确率的同时,具有较小的模型尺寸和较快的推理速度;LSTM适合处理时间序列数据,但计算成本较高;ShuffleNet则在资源受限的环境中表现出色,尽管其准确率略低。在实际应用中,应根据具体任务需求选择合适的模型结构。

文末送书

本期推荐1:

《AI智能运营从入门到精通》
巧用AI大模型,带你深度解析用户洞察+精准策略+智能创作+数据模型,构建你的竞争壁垒。
在这里插入图片描述

京东:https://item.jd.com/14809514.html

★站在运营视角解读AI技术:AI 的底层逻辑与应用方法。
★AI构建精细化运营策略:利用AI画像分层用户,积分激励提升价值,基于生命周期理论,个性化推荐促精细化运营。
★AI智能内容创作助手:助您构建创意选题库,策划高质量脚本,降低内容重复率,训练文案打造爆款标题,生成调研问卷洞悉需求,分析文本偏好,以RSM模型规划活动,并自动撰写运营周报。
★AI驱动数据分析决策:AI作为数据分析的强大助手,不仅加速了决策效率,还提供了从基础到进阶的全面运营数据分析能力。
内容简介
本书从多个方面介绍了如何整合AI技术进行运营工作,包括AI与用户运营的融合、精细化运营策略的构建、智能内容创作助手的运用、AI驱动分析决策。
读者可以通过本书学习如何利用AI处理运营工作,从而更好地满足目标受众需求,提高内容质量,做出更准确的决策,并提升工作效率。本书内容丰富实用,旨在帮助读者适应数字化时代的挑战,实现运营工作的智能化和高效化。握人工智能大模型在写作中的应用。

本期推荐2:

《WPS五合一》
WPS官方推荐:汇集多年教学经验,指引从入门到精通全过程,全面提升WPS Office办公技能!AI助力智能办公。
在这里插入图片描述

京东:https://item.jd.com/14850712.html

原创:以原创经典案例为核心+11小时全程同步视频,全面呈现WPS Office的核心功能!
智能:涵盖AI帮我写、AI帮我改、AI排版、AI写公式、AI数据问答、AI生成PPT等WPS AI功能,帮你全面提供办公效率!
高效:集实战案例、经验技巧、职场心得、1000个办公模板于一体!
全能:与时俱进地将WPS Office文字、表格、演示、PDF和WPS AI全面覆盖,学WPS Office办公一本就够!
内容简介
本书通过精选案例,系统地介绍了WPS Office的相关知识和应用方法。
全书分为5篇,共15章。“第1篇 文字排版篇”主要介绍WPS文字的基本操作、使用表格和图美化文档及长文档的排版等;“第2篇 表格分析篇”主要介绍WPS表格的基本操作、初级数据处理与分析、中级数据处理与分析,以及高级数据处理与分析等;“第3篇 演示设计篇”主要介绍演示文稿的基本设计、演示文稿的视觉呈现和放映幻灯片的操作技巧等;“第4篇 PDF等特色功能篇”主要介绍如何轻松编辑PDF文档、WPS Office其他特色组件的应用及WPS Office实用功能让办公更高效的方法等;“第5篇 WPS AI应用篇”主要介绍WPS AI的办公应用和WPS云办公的操作技巧等。
本书不仅适合WPS Office初、中级用户学习,也适合作为各类院校相关专业学生和计算机培训班学员的教材或辅导用书。

相关文章:

Python从0到100(八十九):Resnet、LSTM、Shufflenet、CNN四种网络分析及对比

前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…...

密码学(哈希函数)

4.1 Hash函数与数据完整性 数据完整性: 检测传输消息(加密或未加密)的修改。 密码学Hash函数: 构建某些数据的简短“指纹”;如果数据被篡改,则该指纹(以高概率)不再有效。Hash函数…...

设计模式Python版 备忘录模式

文章目录 前言一、备忘录模式二、备忘录模式示例1三、备忘录模式示例2 前言 GOF设计模式分三大类: 创建型模式:关注对象的创建过程,包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式&#xff1a…...

CES Asia 2025聚焦量子计算,多领域进展引关注

作为亚洲地区极具影响力的科技盛会,CES Asia 2025第七届亚洲消费电子技术贸易展(赛逸展)将在首都北京举办。本届展会以“创新、智能、互联”为主题,将全方位展示全球消费科技领域的最新成果与发展趋势。其中,量子计算作…...

MySQL索引深度剖析:从数据结构到实际应用

引言 在数据库系统中,索引是提高查询效率的关键技术之一。MySQL作为最流行的关系型数据库之一,其索引机制尤为重要。本文将剖析MySQL索引的数据结构、分类、创建方式以及实际应用场景,帮助读者更好地理解和应用索引技术。 主体部分 1. MyS…...

【deepseek】本地部署+RAG知识库挂载+对话测试

文章目录 前言一、Deepseek模型下载(以7B为例)二、RAG本地知识库挂载三、创建本地对话脚本四、结果展示 前言 本文主要涵盖Deepseek在ubuntu系统中的部署全流程,包括模型的下载、系统部署、本地文档向量化、向量列表存储、RAG知识库挂载、对话测试等内容 一、Deeps…...

Vue.js 组件开发全面详解及应用案例

Vue.js 的组件化开发是其核心特性之一,使得代码复用、维护和扩展变得更加容易。以下是关于 Vue.js 组件开发的全面解析,并附带一个实际应用案例。 一、组件基础概念 1. 什么是组件? 组件是 Vue 应用的基本构建块,封装了 HTML、C…...

java面试场景问题

还在补充,这几天工作忙,闲了会把答案附上去,也欢迎各位大佬评论区讨论 1.不用分布式锁如何防重复提交 方法 1:基于唯一请求 ID(幂等 Token) 思路:前端生成 一个唯一的 requestId(…...

MySQL数据库基本概念

目录 什么是数据库 从软件角度出发 从网络角度出发 MySQL数据库的client端和sever端进程 mysql的client端进程连接sever端进程 mysql配置文件 MySql存储引擎 MySQL的sql语句的分类 数据库 库的操作 创建数据库 不同校验规则对查询的数据的影响 不区分大小写 区…...

【wiki知识库】07.用户管理后端SpringBoot部分

目录 一、今日目标 二、??SpringBoot部分类的添加 2.1 使用逆向工程新增User模块 2.2 UserQueryParam添加 2.3 UserSaveParam添加 2.4 UserResetPasswordParam添加 2.5 UserQueryVo添加 2.6 SnowFlake工具类 三、??后端新增接口? 3.1 /user/list接口添加 3.2 /…...

千峰React:案例二

完成对html文档还有css的引入&#xff0c;引入一下数据&#xff1a; import { func } from prop-types import ./购物车样式.css import axios from axios import { useImmer } from use-immer import { useEffect } from reactfunction Item() {return (<li classNameacti…...

Junit框架缺点

JUnit 是 Java 生态中最流行的单元测试框架&#xff0c;广泛应用于单元测试和集成测试中。尽管它功能强大且易于使用&#xff0c;但也存在一些缺陷和局限性。以下是 JUnit 的主要缺点&#xff1a; 1. 功能相对固定 问题&#xff1a;JUnit 的核心功能相对固定&#xff0c;缺乏灵…...

计算机毕业设计SpringBoot+Vue.js公司日常考勤系统(源码+文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

Python线程池知多少

目录 目标 Python版本 官方文档 概述 线程池 实战 创建线程池的基本语法 批量提交任务 生产者&消费者模型 目标 掌握线程池的基本概念和使用方法。 Python版本 Python 3.9.18 官方文档 concurrent.futures — Launching parallel taskshttps://docs.python.org/3…...

MySQL数据库入门到大蛇尚硅谷宋红康老师笔记 高级篇 part 6

从6到12章将会是重中之重,请一定好好看 第06章_索引的数据结构 1.为什么使用索引 索引是存储引擎用于快速找到数据记录的一种数据结构&#xff0c;就好比一本教课书的目录部分&#xff0c;通过目录中找到对应文章的页码&#xff0c;便可快速定位到需要的文章。MySQL中也是一…...

C++动态与静态转换区别详解

文章目录 前言一、 类型检查的时机二、安全性三、适用场景四、代码示例对比总结 前言 在 C 中&#xff0c;dynamic_cast 和 static_cast 是两种不同的类型转换操作符&#xff0c;主要区别体现在类型检查的时机、安全性和适用场景上。以下是它们的核心区别&#xff1a; 一、 类…...

面向AI 的前端发展及初识大模型

AI带来的开发范式迁移 随着AI的涌现&#xff0c;对前端的发展也有着非常大的影响&#xff0c;总结过去前端的发展路径&#xff0c;目前应该属于又一次的大规模的开发范式迁移阶段。上一个阶段是从jquery到React/Vue/Angular迁移&#xff08;jquery之前的就不讨论了&#xff09…...

Java入门的基础学习

Java的基础语法知识 一 初始Java二 Java数据类型和变量1.字面常量2.数据类型基本数据类型引用数据类型 3.变量整型变量浮点型变量字符型变量布尔型变量 4.类型转化和提升类型转化类型提升 三 运算符1.算数运算符2.关系操作符3.逻辑运算符&#xff1a;&&&#xff0c;||&…...

万字详解 MySQL MGR 高可用集群搭建

文章目录 1、MGR 前置介绍 1.1、什么是 MGR1.2、MGR 优点1.3、MGR 缺点1.4、MGR 适用场景 2、MySQL MGR 搭建流程 2.1、环境准备2.2、搭建流程 2.2.1、配置系统环境2.2.2、安装 MySQL2.2.3、配置启动 MySQL2.2.4、修改密码、设置主从同步2.2.5、安装 MGR 插件 3、MySQL MGR 故…...

脚本无法获取响应主体(原因:CORS Missing Allow Credentials)

背景&#xff1a; 前端的端口号8080&#xff0c;后端8000。需在前端向后端传一个参数&#xff0c;让后端访问数据库去检测此参数是否出现过。涉及跨域请求&#xff0c;一直有这个bug是404文件找不到。 在修改过程当中不小心删除了一段代码&#xff0c;出现了这个bug&#xff0…...

GD32F450 使用

GB32F450使用 1. 相关知识2. 烧写程序3. SPI3.1 spi基础3.2 spi代码 4. 串口4.1 串口引脚4.2 串口通信代码 问题记录1. 修改晶振频率 注意&#xff1a;GD32F450 总共有三种封装形式&#xff0c;本文所述的相关代码和知识&#xff0c;均为 GD32F450IX 系列。 1. 相关知识 参数配…...

神经网络代码入门解析

神经网络代码入门解析 import torch import matplotlib.pyplot as pltimport randomdef create_data(w, b, data_num): # 数据生成x torch.normal(0, 1, (data_num, len(w)))y torch.matmul(x, w) b # 矩阵相乘再加bnoise torch.normal(0, 0.01, y.shape) # 为y添加噪声…...

Android 数据库查询对比(APN案例)

功能背景 APN 数据通常存储在数据库中&#xff0c;由TelephonyProvider提供。当用户进入APN设置界面时&#xff0c;Activity会启动&#xff0c;AOSP源码通过ContentResolver查询APN数据。关键分析点在于这个查询操作是否在主线程执行&#xff0c;因为主线程上的耗时操作会导致…...

神卓 S500 异地组网设备实现监控视频异地组网的详细步骤

一、设备与环境准备 硬件清单 主设备&#xff1a;神卓 S500 异地组网路由器 1子设备&#xff1a;神卓 S500 或兼容设备 N&#xff08;需通过官网认证&#xff09;监控设备&#xff1a;支持 RTSP/ONVIF 协议的 NVR、摄像头网络要求&#xff1a;各网点需稳定联网&#xff08;推荐…...

golang安装(1.23.6)

1&#xff0e;切换到安装目录 cd /usr/local 2&#xff0e;下载安装包 wget https://go.dev/dl/go1.23.6.linux-amd64.tar.gz 3&#xff0e;解压安装包 sudo tar -C /usr/local -xzf go1.23.6.linux-amd64.tar.gz 4&#xff0e;配置环境变量 vi /etc/profile export PATH$…...

leetcode35.搜索插入位置

题目&#xff1a; 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出…...

LeetCode第57题_插入区间

LeetCode 第57题&#xff1a;插入区间 题目描述 给你一个 无重叠的 &#xff0c;按照区间起始端点排序的区间列表。在列表中插入一个新的区间&#xff0c;你需要确保列表中的区间仍然有序且不重叠&#xff08;如果有必要的话&#xff0c;可以合并区间&#xff09;。 难度 中…...

人工智能之数学基础:线性代数中矩阵的运算

本文重点 矩阵的运算在解决线性方程组、描述线性变换等方面发挥着至关重要的作用。通过对矩阵进行各种运算,可以简化问题、揭示问题的本质特征。在实际应用中,我们可以利用矩阵运算来处理图像变换、数据分析、电路网络等问题。深入理解和掌握矩阵的运算,对于学习线性代数以…...

SQL Server 创建用户并授权

创建用户前需要有一个数据库&#xff0c;创建数据库命令如下&#xff1a; CREATE DATABASE [数据库名称]; CREATE DATABASE database1;一、创建登录用户 方式1&#xff1a;SQL命令 命令格式&#xff1a;CREATE LOGIN [用户名] WITH PASSWORD ‘密码’; 例如&#xff0c;创…...

MySQL双主搭建-5.7.35

文章目录 上传并安装MySQL 5.7.35双主复制的配置实例一&#xff1a;172.25.0.19&#xff1a;实例二&#xff1a;172.25.0.20&#xff1a; 配置复制用户在实例 1 &#xff08;172.25.0.19&#xff09;上执行&#xff1a;在实例 2 &#xff08;172.25.0.20&#xff09;上执行&…...

RNN实现精神分裂症患者诊断(pytorch)

RNN理论知识 RNN&#xff08;Recurrent Neural Network&#xff0c;循环神经网络&#xff09; 是一种 专门用于处理序列数据&#xff08;如时间序列、文本、语音、视频等&#xff09;的神经网络。与普通的前馈神经网络&#xff08;如 MLP、CNN&#xff09;不同&#xff0c;RNN…...

Python中字符串的常用操作

一、r原样输出 在 Python 中&#xff0c;字符串前加 r&#xff08;即 r"string" 或 rstring&#xff09;表示创建一个原始字符串&#xff08;raw string&#xff09;。下面详细介绍原始字符串的特点、使用场景及与普通字符串的对比。 特点 忽略转义字符&#xff1…...

uniapp 本地数据库多端适配实例(根据运行环境自动选择适配器)

项目有个需求&#xff0c;需要生成app和小程序&#xff0c;app支持离线数据库&#xff0c;如果当前没有网络提醒用户开启离线模式&#xff0c;所以就随便搞了下&#xff0c;具体的思路就是&#xff1a; 一个接口和多个实现类&#xff08;类似后端的模板设计模式&#xff09;&am…...

Spring Cloud Gateway 整合Spring Security

做了一个Spring Cloud项目&#xff0c;网关采用 Spring Cloud Gateway&#xff0c;想要用 Spring Security 进行权限校验&#xff0c;由于 Spring Cloud Gateway 采用 webflux &#xff0c;所以平时用的 mvc 配置是无效的&#xff0c;本文实现了 webflu 下的登陆校验。 1. Sec…...

【异地访问本地DeepSeek】Flask+内网穿透,轻松实现本地DeepSeek的远程访问

写在前面&#xff1a;本博客仅作记录学习之用&#xff0c;部分图片来自网络&#xff0c;如需引用请注明出处&#xff0c;同时如有侵犯您的权益&#xff0c;请联系删除&#xff01; 文章目录 前言依赖Flask构建本地网页访问LM Studio 开启网址访问DeepSeek 调用模板Flask 访问本…...

Windows对比MacOS

Windows对比MacOS 文章目录 Windows对比MacOS1-环境变量1-Windows添加环境变量示例步骤 1&#xff1a;打开环境变量设置窗口步骤 2&#xff1a;添加系统环境变量 2-Mac 系统添加环境变量示例步骤 1&#xff1a;打开终端步骤 2&#xff1a;编辑环境变量配置文件步骤 3&#xff1…...

React实现无缝滚动轮播图

实现效果&#xff1a; 由于是演示代码&#xff0c;我是直接写在了App.tsx里面在 文件位置如下&#xff1a; App.tsx代码如下&#xff1a; import { useState, useEffect, useCallback, useRef } from "react"; import { ImageContainer } from "./view/ImageC…...

Ubuntu20.04确认cuda和cudnn已经安装成功

当我们通过官网安装cuda和cudnn时&#xff0c;终端执行完命令后我们仍不能确定是否已经安装成功。接下来教大家用几句命令测试。 cuda 检测版本号 nvcc -V如果输出如下&#xff0c;则安装成功。 可以看到版本号是11.2 cudnn检测版本号 有两种命令&#xff1a;如果你的cudn…...

sqlilab 46 关(布尔、时间盲注)

sqlilabs 46关&#xff08;布尔、时间盲注&#xff09; 46关有变化了&#xff0c;需要我们输入sort&#xff0c;那我们就从sort1开始 递增测试&#xff1a; 发现测试到sort4就出现报错&#xff1a; 我们查看源码&#xff1a; 从图中可看出&#xff1a;用户输入的sort值被用于查…...

AI时代保护自己的隐私

人工智能最重要的就是数据&#xff0c;让我们面对现实&#xff0c;大多数人都不知道他们每天要向人工智能提供多少数据。你输入的每条聊天记录&#xff0c;你发出的每条语音命令&#xff0c;人工智能生成的每张图片、电子邮件和文本。我建设了一个网站(haptool.com)&#xff0c…...

模型优化之强化学习(RL)与监督微调(SFT)的区别和联系

强化学习&#xff08;RL&#xff09;与监督微调&#xff08;SFT&#xff09;是机器学习中两种重要的模型优化方法&#xff0c;它们在目标、数据依赖、应用场景及实现方式上既有联系又有区别。 想了解有关deepseek本地训练的内容可以看我的文章&#xff1a; 本地基于GGUF部署的…...

Buildroot 添加自定义模块-内置文件到文件系统

目录 概述实现步骤1. 创建包目录和文件结构2. 配置 Config.in3. 定义 cp_bin_files.mk4. 添加源文件install.shmy.conf 5. 配置与编译 概述 Buildroot 是一个高度可定制和模块化的嵌入式 Linux 构建系统&#xff0c;适用于从简单到复杂的各种嵌入式项目. buildroot的源码中bui…...

蓝牙接近开关模块感应开锁手机靠近解锁支持HID低功耗

ANS-BT101M是安朔科技推出的蓝牙接近开关模块&#xff0c;低功耗ble5.1&#xff0c;采用UART通信接口&#xff0c;实现手机自动无感连接&#xff0c;无需APP&#xff0c;人靠近车门自动开锁&#xff0c;支持苹果、安卓、鸿蒙系统&#xff0c;也可以通过手机手动开锁或上锁&…...

计算机毕业设计SpringBoot+Vue.js基于工程教育认证的计算机课程管理平台(源码+文档+PPT+讲解)

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…...

企业知识库搭建:14款开源与免费系统选择

本文介绍了以下14 款知识库管理系统&#xff1a;1.Worktile&#xff1b;2.PingCode&#xff1b;3.石墨文档&#xff1b; 4. 语雀&#xff1b; 5. 有道云笔记&#xff1b; 6. Bitrix24&#xff1b; 7. Logseq等。 在如今的数字化时代&#xff0c;企业和团队面临着越来越多的信息…...

蓝桥杯(握手问题)

小蓝组织了一场算法交流会议&#xff0c;总共有 50 人参加了本次会议。在会议上&#xff0c;大家进行了握手交流。按照惯例他们每个人都要与除自己以外的其他所有人进行一次握手 (且仅有一次)。 但有 7个人&#xff0c;这 7 人彼此之间没有进行握手 (但这 7 人与除这 7 人以外…...

如何使用 Jenkins 实现 CI/CD 流水线:从零开始搭建自动化部署流程

如何使用 Jenkins 实现 CI/CD 流水线:从零开始搭建自动化部署流程 在软件开发过程中,持续集成(CI)和持续交付(CD)已经成为现代开发和运维的标准实践。随着代码的迭代越来越频繁,传统的手动部署方式不仅低效,而且容易出错。为了提高开发效率和代码质量,Jenkins作为一款…...

c++字符编码/乱码问题

基本概念 c11版本引入了char16_t和char32_t两个类型&#xff0c;他们的特点分别如下&#xff1a; char16_t 16位的unicode字符类型用于表示UTF-16编码大小&#xff1a;2字节字面量前缀&#xff1a;u char32_t 32位unicode字符类型用于表示UTF-32编码大小&#xff1a;4字节…...

侯捷 C++ 课程学习笔记:深入理解类与继承

文章目录 每日一句正能量一、课程背景二、学习内容&#xff1a;类与继承&#xff08;一&#xff09;类的基本概念1. 类的定义与实例化2. 构造函数与析构函数 &#xff08;二&#xff09;继承1. 单继承与多继承2. 虚函数与多态 三、学习心得四、总结 每日一句正能量 有种承担&am…...

初始化列表

一&#xff1a;声明&#xff0c;定义&#xff0c;赋值的区别 ①&#xff1a;声明 这里&#xff0c;int _year; int _month;int _day; 是成员变量的声明&#xff0c;它们告诉编译器&#xff1a; 类 Date中有三个成员变量_year和 _month和_day。 它们的类型分别都是 int 此…...