当前位置: 首页 > news >正文

BiGRU双向门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据)

在这里插入图片描述
在这里插入图片描述
代码地址:BiGRU双向门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据)

BiGRU双向门控循环单元多变量多步预测,光伏功率预测

一、引言
1.1、研究背景和意义

随着全球对可再生能源需求的不断增长,光伏发电因其清洁、可再生的特点,已成为替代传统能源的重要选择之一。光伏发电的效率和稳定性直接影响到电力系统的运行和电网的稳定性。因此,准确的光伏功率预测对于电力系统的优化调度、能量管理以及提高电网的整体运行效率具有重要意义。

光伏功率预测不仅能帮助电网公司更好地进行电力调度,减少能源浪费,还能有效降低电力系统的运营成本,提高经济效益。在国家政策的扶持下,光伏发电得到了大力发展。然而,光伏发电具有间歇性和随机性,其输出功率受天气变化、季节交替等因素的影响较大,这给电网的稳定运行带来了挑战。因此,研究光伏功率预测方法,提高预测准确性,显得尤为重要。

此外,光伏发电的迅速发展也对电网端的调度和管理提出了更高的要求。准确的光伏功率预测可以帮助电网部门制定更为合理的调度策略,优化电力资源配置,确保电网的稳定运行。同时,光伏功率预测还能够减少电网的旋转备用容量,降低电力系统运行成本,充分运用太阳能资源,取得更大的经济效益和社会效益。

1.2、研究现状

目前,光伏功率预测方法主要包括物理模型法、统计模型法和机器学习法等。物理模型法依赖于详细的气象数据和光伏电池的物理特性,统计模型法通过分析历史数据来寻找功率输出的规律,而机器学习方法则通过训练算法来学习和预测功率变化。然而,这些方法在处理多变量输入和超前多步预测时仍面临一些挑战,如数据的不确定性和模型的复杂性。

具体来说,物理模型法需要对光伏电池的物理特性有深入的了解,并且依赖于高精度的气象数据,其建模过程较为复杂。统计模型法虽然能够利用历史数据进行预测,但对于非线性、复杂的变化规律,其预测精度有限。机器学习方法如神经网络、支持向量机等在光伏功率预测中表现出较好的效果,但这些方法在处理多变量输入和超前多步预测时,仍存在一些问题,如模型的训练时间较长、预测精度受数据质量影响较大等。

近年来,支持向量机(SVM)作为一种新型学习机,在光伏功率预测中得到了广泛应用。SVM基于结构风险最小化准则,具有较强的泛化能力,能够有效处理非线性、小样本等问题。然而,SVM在处理大规模数据时,计算复杂度较高,且核函数的选择对预测结果有较大影响。因此,研究新的预测方法,提高光伏功率预测的准确性和效率,仍是一个重要的课题。

二、BiGRU模型概述
2.1、GRU的基本原理

门控循环单元(GRU)是一种循环神经网络(RNN)的变体,旨在解决长期依赖问题和梯度消失问题。GRU通过更新门和重置门来控制信息的流动,使得模型能够选择性地记住或遗忘之前的输入,从而更好地捕捉时间序列数据中的关键信息。

具体来说,GRU中的更新门决定了如何更新单元状态,即多少信息需要从上一时间步传递到当前时间步;而重置门则决定了如何重置单元状态,即多少信息需要从当前输入中忽略。通过这两个门控机制,GRU能够有效地处理长期依赖问题,提高模型的预测性能。

2.2、BiGRU的双向结构

双向门控循环单元(BiGRU)在GRU的基础上增加了双向结构,即在同一个时间步上同时处理过去和未来的信息。这使得BiGRU能够更全面地理解时间序列数据的上下文关系,提高预测的准确性。在光伏功率预测中,BiGRU能够利用历史数据中的前向和后向信息,更好地捕捉光伏功率变化的复杂模式。

通过这种双向结构,BiGRU在处理时间序列数据时,能够同时考虑过去和未来的信息,从而更全面地理解数据的变化趋势和模式。例如,在预测未来某一时刻的光伏功率时,BiGRU不仅可以利用之前的功率数据,还可以考虑之后的时间点上的相关信息,从而提高预测的准确性和鲁棒性。

三、多变量输入与超前多步预测
3.1、多变量输入的特征选择

在光伏功率预测中,影响光伏功率输出的因素众多,包括温度、湿度等气象因素,以及历史功率数据等。这些变量与光伏功率输出之间存在复杂的非线性关系。因此,合理选择和预处理多变量输入是提高预测模型性能的关键。

3.2、超前多步预测的实现机制

超前多步预测是指预测未来多个时间点的光伏功率输出,这对于电力系统的调度和运行具有重要意义。BiGRU模型通过其双向结构和门控机制,能够捕捉时间序列数据中的长期依赖关系,从而实现超前多步预测。具体来说,BiGRU模型在训练过程中,通过学习多变量输入与光伏功率输出之间的复杂关系,构建一个能够预测未来多个时间步的模型。

在实现超前多步预测时,BiGRU模型不仅需要考虑当前时间点的输入变量,还需要利用历史数据中的前向和后向信息,预测未来多个时间点的功率输出。例如,模型可以在当前时间点预测未来1小时、2小时甚至更长时间段内的光伏功率输出,从而为电力系统的调度提供更全面的参考信息。

四、数据准备与模型构建
4.1、数据收集与预处理

为了构建有效的BiGRU预测模型,首先需要收集相关的多变量输入数据,包括历史光伏功率数据、气象数据等。数据收集过程应确保数据的完整性和准确性。收集到的数据往往需要进行清洗、归一化等预处理步骤,以消除噪声和减少变量之间的量级差异,从而提高模型的训练效率和预测性能。

4.2、BiGRU模型的设计与实现

设计BiGRU模型时,需要确定模型的层数、神经元数量等参数。通过实验调整这些参数,可以优化模型的性能。模型训练过程中,使用历史数据对BiGRU模型进行训练,通过反向传播算法优化模型参数。训练好的模型可以在独立的测试数据集上进行验证和评估,以确保其预测性能。

在模型设计过程中,需要考虑模型的复杂度和训练时间。一般来说,模型的层数和神经元数量越多,模型的预测性能越好,但同时也会增加训练时间和计算复杂度。因此,需要在预测性能和计算效率之间进行权衡,选择合适的模型参数。此外,为了提高模型的泛化能力,还可以采用正则化技术,如L2正则化、Dropout等,减少过拟合现象。

五、模型评估与结果分析
5.1、评估指标

为了评价BiGRU模型的预测性能,采用均方根误差(RMSE)、平均绝对误差(MAE)等指标。这些指标能够量化预测值与实际值之间的偏差,帮助分析模型的准确性和鲁棒性。

均方根误差(RMSE)能够反映预测误差的分散程度,是评价预测性能的重要指标。计算公式为:

R M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2} RMSE=n1i=1n(yiy^i)2

其中, y i y_i yi为实际值, y ^ i \hat{y}_i y^i为预测值, n n n为样本个数。

平均绝对误差(MAE)能够反映预测误差的平均幅值,计算公式为:

M A E = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i| MAE=n1i=1nyiy^i

通过这些评估指标,可以全面分析模型的预测性能,找出模型存在的问题,并进行相应的优化。

5.2、结果分析

通过实验验证,BiGRU模型在光伏功率预测中表现出较高的准确性和鲁棒性。实验结果显示,BiGRU模型在超前多步预测中,能够有效捕捉光伏功率变化的复杂模式,预测误差较小。此外,BiGRU模型在处理多变量输入时,能够充分利用各种影响因素的信息,提高预测性能。

具体来说,实验结果显示,BiGRU模型在预测未来1小时、2小时甚至更长时间段内的光伏功率输出时,均表现出较高的准确性。预测结果的RMSE和MAE指标均较低,说明模型的预测误差较小,预测性能较好。此外,通过对不同气象条件下的预测结果进行分析,发现BiGRU模型在各种气象条件下均能表现出较好的鲁棒性,能够有效应对天气变化对光伏功率输出的影响。

六、结论与展望
6.1、研究总结

本研究提出了一种基于BiGRU的光伏功率预测方法,通过利用多变量输入和双向结构,实现了超前多步预测。实验结果表明,该方法在光伏功率预测中表现出较高的准确性和鲁棒性,能够有效应对复杂的气象变化。

具体来说,本研究通过合理选择和预处理多变量输入,构建了高效的BiGRU预测模型。通过实验验证,发现BiGRU模型在超前多步预测中,能够有效捕捉光伏功率变化的复杂模式,预测误差较小。此外,BiGRU模型在处理多变量输入时,能够充分利用各种影响因素的信息,提高预测性能。

6.2、研究展望

未来研究可以考虑引入更多的影响因素,如天气预报数据、光伏电站的运行状态等,以进一步提高预测性能。此外,探索更高效的模型训练方法和优化算法,也是未来研究的重要方向。

具体来说,可以研究如何将天气预报数据与历史功率数据相结合,提高预测模型的准确性。此外,还可以探索新的优化算法,如遗传算法、粒子群优化算法等,提高模型的训练效率和预测性能。通过这些研究,可以进一步优化光伏功率预测方法,为电力系统的调度和管理提供更有力的支持。

相关文章:

BiGRU双向门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据)

代码地址:BiGRU双向门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据) BiGRU双向门控循环单元多变量多步预测,光伏功率预测 一、引言 1.1、研究背景和意义 随着全球对可再生能源需求的不断增长,光伏…...

Leetcode 3448. Count Substrings Divisible By Last Digit

Leetcode 3448. Count Substrings Divisible By Last Digit 1. 解题思路2. 代码实现 题目链接:3448. Count Substrings Divisible By Last Digit 1. 解题思路 这一题的话我们走的是一个累积数组的思路。 首先,我们使用一个cache数组记录下任意段数字…...

青少年编程与数学 02-009 Django 5 Web 编程 03课题、项目结构

青少年编程与数学 02-009 Django 5 Web 编程 03课题、项目结构 一、项目结构项目根目录应用目录其他目录 二、项目设置Django 插件设置项目配置环境变量设置项目目录标记版本控制 三、Django 插件安装 Django 插件配置 Django 插件使用 Django 插件功能 四、扩展插件开发效率插…...

【玩转 Postman 接口测试与开发2_018】第14章:利用 Postman 初探 API 安全测试

《API Testing and Development with Postman》最新第二版封面 文章目录 第十四章 API 安全测试1 OWASP API 安全清单1.1 相关背景1.2 OWASP API 安全清单1.3 认证与授权1.4 破防的对象级授权(Broken object-level authorization)1.5 破防的属性级授权&a…...

UA-Track:不确定性感知端到端3D多目标跟踪

论文地址:https://arxiv.org/pdf/2406.02147 主页:https://liautoad.github.io/ua-track-website/ 3D多目标跟踪(MOT)在自动驾驶感知中起着至关重要的作用。最近基于端到端查询的跟踪器可以同时检测和跟踪对象,这在3D …...

Windows下AMD显卡在本地运行大语言模型(deepseek-r1)

Windows下AMD显卡在本地运行大语言模型 本人电脑配置第一步先在官网确认自己的 AMD 显卡是否支持 ROCm下载Ollama安装程序模型下载位置更改下载 ROCmLibs先确认自己显卡的gfx型号下载解压 替换替换rocblas.dll替换library文件夹下的所有 重启Ollama下载模型运行效果 本人电脑配…...

萌新学 Python 之字符串及字符串相关函数

字符串:单引号、双引号、三个单引号、三个双引号 字符串属于不可变的数据类型,一旦被定义,内存地址不变 name 张三 # 字符串赋值给name后,内存地址存储张三,地址不变 username 张三 # 张三去内存中找…...

【鸿蒙开发】第二十四章 AI - Core Speech Kit(基础语音服务)

目录 1 简介 1.1 场景介绍 1.2 约束与限制 2 文本转语音 2.1 场景介绍 2.2 约束与限制 2.3 开发步骤 2.4 设置播报策略 2.4.1 设置单词播报方式 2.4.2 设置数字播报策略 2.4.3 插入静音停顿 2.4.4 指定汉字发音 2.5 开发实例 3 语音识别 3.1 场景介绍 3.2 约束…...

Java | RESTful 接口规范

关注:CodingTechWork 引言 作为一名程序员,制定清晰、一致且高效的 RESTful 接口规范对于团队的开发效率和项目的长期维护至关重要。本文将详细介绍 RESTful 接口的设计理念、请求方法分类、核心规范,以及正确和错误的示例,帮助团…...

shell脚本控制——处理信号

Linux利用信号与系统中的进程进行通信。你可以通过对脚本进行编程,使其在收到特定信号时执行某些命令,从而控制shell脚本的操作。 1.重温Linux信号 Linux系统和应用程序可以产生超过30个信号。下表列出了在shell脚本编程时会遇到的最常见的Linux系统信…...

OpenGL学习笔记(十二):初级光照:投光物/多光源(平行光、点光源、聚光)

文章目录 平行光点光源聚光多光源 现实世界中,我们有很多种类的光照,每种的表现都不同。将光投射(Cast)到物体的光源叫做投光物(Light Caster)。 平行光/定向光(Directional Light)点光源(Point Light)聚光(Spotlight) 平行光 当一个光源处于很远的地…...

redis底层数据结构——整数集合

文章目录 定义内部实现升级升级的好处提升灵活性节约内存 降级总结 定义 整数集合(intset)是集合键的底层实现之一,当一个集合只包含整数值元素,并且这个集合的元素数量不多时,Redis就会使用整数集合作为集合键的底层…...

w198基于Springboot的智能家居系统

🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…...

【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-Chapter2-HTML 中的 JavaScript

二、HTML 中的 JavaScript 将 JavaScript 插入 HTML 的主要方法是使用<script>元素。 <script>元素有下列 8 个属性。 async&#xff1a;可选。表示应该立即开始下载脚本&#xff0c;但不能阻止其他页面动作&#xff0c;比如下载资源或等待其他脚本加载。只对外部…...

【5】阿里面试题整理

[1]. 介绍一下ZooKeeper ZooKeeper是一个开源的分布式协调服务&#xff0c;核心功能是通过树形数据模型&#xff08;ZNode&#xff09;和Watch机制&#xff0c;解决分布式系统的一致性问题。 它使用ZAB协议保障数据一致性&#xff0c;典型场景包括分布式锁、配置管理和服务注…...

系统思考—自我超越

“人们往往认为是个人的能力限制了他们&#xff0c;但事实上&#xff0c;是组织的结构和惯性思维限制了他们的潜力。”—彼得圣吉 最近和一家行业隐形冠军交流&#xff0c;他们已经是领域第一&#xff0c;老板却依然要求&#xff1a;核心团队都要自我超越&#xff0c;攻坚克难…...

大模型-ALIGN 详细介绍

ALIGN模型&#xff08;A Large-scale ImaGe and Noisy-text embedding&#xff09;是一种大规模图像和噪声文本嵌入模型&#xff0c;它通过对比学习的方式将图像和文本嵌入到同一个向量空间中&#xff0c;使得匹配的图像-文本对的嵌入向量接近&#xff0c;不匹配的则远离。这种…...

【C++高并发服务器WebServer】-15:poll、epoll详解及实现

本文目录 一、poll二、epoll2.1 相对poll和select的优点2.2 epoll的api2.3 epoll的demo实现2.5 epoll的工作模式 一、poll poll是对select的一个改进&#xff0c;我们先来看看select的缺点。 我们来看看poll的实现。 struct pollfd {int fd; /* 委托内核检测的文件描述符 */s…...

【算法】动态规划专题⑩ —— 混合背包问题 python

目录 前置知识进入正题总结 前置知识 【算法】动态规划专题⑤ —— 0-1背包问题 滚动数组优化 【算法】动态规划专题⑥ —— 完全背包问题 python 【算法】动态规划专题⑦ —— 多重背包问题 二进制分解优化 python 混合背包结合了三种不同类型的背包问题&#xff1a;0/1背包…...

Java高频面试之SE-20

hello啊&#xff0c;各位观众姥爷们&#xff01;&#xff01;&#xff01;本baby今天又来了&#xff01;哈哈哈哈哈嗝&#x1f436; Java的泛型是什么&#xff1f; Java 泛型&#xff08;Generics&#xff09; 是 Java 5 引入的一项重要特性&#xff0c;用于增强代码的类型安…...

springboot 事务管理

在Spring Boot中&#xff0c;事务管理是通过Spring框架的事务管理模块来实现的。Spring提供了声明式事务管理和编程式事务管理两种方式。通常&#xff0c;我们使用声明式事务管理&#xff0c;因为它更简洁且易于维护。 1. 声明式事务管理 声明式事务管理是通过注解来实现的。…...

opentelemetry-collector 配置elasticsearch

一、修改otelcol-config.yaml receivers:otlp:protocols:grpc:endpoint: 0.0.0.0:4317http:endpoint: 0.0.0.0:4318 exporters:debug:verbosity: detailedotlp/jaeger: # Jaeger supports OTLP directlyendpoint: 192.168.31.161:4317tls:insecure: trueotlphttp/prometheus: …...

IDEA关联Tomcat,部署JavaWeb项目

将IDEA与Tomcat关联 创建JavaWeb项目 创建Demo项目 将Tomcat作为依赖引入到Demo中 添加 Web Application 编写前端和后端代码 配置Tomcat server&#xff0c;并运行...

位图与位运算的深度联系:从图像处理到高效数据结构的C++实现与优化

在学习优选算法课程的时候&#xff0c;博主学习位运算了解到位运算的这个概念&#xff0c;之前没有接触过&#xff0c;就查找了相关的资料&#xff0c;丰富一下自身&#xff0c;当作课外知识来了解一下。 位图&#xff08;Bitmap&#xff09;&#xff1a; 在计算机科学中有两种…...

运维_Mac环境单体服务Docker部署实战手册

Docker部署 本小节&#xff0c;讲解如何将前端 后端项目&#xff0c;使用 Docker 容器&#xff0c;部署到 dev 开发环境下的一台 Mac 电脑上。 1 环境准备 需要安装如下环境&#xff1a; Docker&#xff1a;容器MySQL&#xff1a;数据库Redis&#xff1a;缓存Nginx&#x…...

DeepSeek-V3 论文解读:大语言模型领域的创新先锋与性能强者

论文链接&#xff1a;DeepSeek-V3 Technical Report 目录 一、引言二、模型架构&#xff1a;创新驱动性能提升&#xff08;一&#xff09;基本架构&#xff08;Basic Architecture&#xff09;&#xff08;二&#xff09;多令牌预测&#xff08;Multi-Token Prediction&#xf…...

react使用if判断

1、第一种 function Dade(req:any){console.log(req)if(req.data.id 1){return <span>66666</span>}return <span style{{color:"red"}}>8888</span>}2、使用 {win.map((req,index) > ( <> <Dade data{req}/>{req.id 1 ?…...

opencv:基于暗通道先验(DCP)的内窥镜图像去雾

目录 项目大体情况 暗通道先验&#xff08;Dark Channel Prior, DCP&#xff09;原理 项目代码解析 该项目是由我和我导师与舟山某医院合作开发的一个基于暗通道先验&#xff08;Dark Channel Prior&#xff0c;DCP&#xff09;的内窥镜图像去雾方法。具体来说&#xff0c;…...

2025年物联网相关专业毕业论文选题参考,文末联系,选题相关资料提供

一、智能穿戴解决方案研究方向 序号解决方案论文选题论文研究方向1智能腰带健康监测基于SpringBoot和Vue的智能腰带健康监测数据可视化平台开发研究如何利用SpringBoot和Vue技术栈开发一个数据可视化平台&#xff0c;用于展示智能腰带健康监测采集的数据&#xff0c;如心率、血…...

npm无法加载文件 因为此系统禁止运行脚本

安装nodejs后遇到问题&#xff1a; 在项目里【node -v】可以打印出来&#xff0c;【npm -v】打印不出来&#xff0c;显示npm无法加载文件 因为此系统禁止运行脚本。 但是在winr&#xff0c;cmd里【node -v】,【npm -v】都也可打印出来。 解决方法&#xff1a; cmd里可以打印出…...

使用PyCharm创建项目以及如何注释代码

创建好项目后会出现如下图所示的画面&#xff0c;我们可以通过在项目文件夹上点击鼠标右键&#xff0c;选择“New”菜单下的“Python File”来创建一个 Python 文件&#xff0c;在给文件命名时建议使用英文字母和下划线的组合&#xff0c;创建好的 Python 文件会自动打开&#…...

Qt中QFile文件读写操作和QFileInfo文件信息读取方法(详细图文教程)

&#x1f4aa; 图像算法工程师&#xff0c;专业从事且热爱图像处理&#xff0c;图像处理专栏更新如下&#x1f447;&#xff1a; &#x1f4dd;《图像去噪》 &#x1f4dd;《超分辨率重建》 &#x1f4dd;《语义分割》 &#x1f4dd;《风格迁移》 &#x1f4dd;《目标检测》 &a…...

CF998A Balloons​ 构造 ​

Balloons 算法&#xff1a;构造 rating : 1000 思路&#xff1a; 分情况讨论&#xff1a; 1. 当只有一个气球包时&#xff0c;肯定不行 2.当有两个气球包时&#xff0c;若两个气球包的气球个数相同则不行 3.其余的情况都是可以的&#xff0c;题目问给格里高利的气球包数…...

python基础入门:3.5实战:词频统计工具

Python词频统计终极指南&#xff1a;字典与排序的完美结合 import re from collections import defaultdictdef word_frequency_analysis(file_path, top_n10):"""完整的词频统计解决方案:param file_path: 文本文件路径:param top_n: 显示前N个高频词:return:…...

面试准备——Java理论高级【笔试,面试的核心重点】

集合框架 Java集合框架是面试中的重中之重&#xff0c;尤其是对List、Set、Map的实现类及其底层原理的考察。 1. List ArrayList&#xff1a; 底层是动态数组&#xff0c;支持随机访问&#xff08;通过索引&#xff09;&#xff0c;时间复杂度为O(1)。插入和删除元素时&#…...

Docker 部署 verdaccio 搭建 npm 私服

一、镜像获取 # 获取 verdaccio 镜像 docker pull verdaccio/verdaccio 二、修改配置文件 cd /wwwroot/opt/docker/verdaccio/conf vim config.yaml config.yaml 配置文件如下&#xff0c;可以根据自己的需要进行修改 # # This is the default configuration file. It all…...

每日一题--数组中只出现一次的两个数字

数组中只出现一次的两个数字 题目描述数据范围提示 示例示例1示例2 题解解题思路位运算方法步骤&#xff1a; 代码实现代码解析时间与空间复杂度按位与操作获取最小位1的原理为什么选择最低有效的 1 位而不是其他位&#xff1f; 题目描述 一个整型数组里除了两个数字只出现一次…...

蓝耘智算平台与DeepSeek R1模型:推动深度学习发展

公主请阅 前言何为DeepSeek R1DeepSeek R1 的特点DeepSeek R1 的应用领域DeepSeek R1 与其他模型的对比 何为蓝耘智算平台使用蓝耘智算平台深度使用DeepSeek R1代码解释&#xff1a;处理示例输入&#xff1a;输出结果&#xff1a; 前言 在深度学习领域&#xff0c;创新迭代日新…...

数据中台是什么?:架构演进、业务整合、方向演进

文章目录 1. 引言2. 数据中台的概念与沿革2.1 概念定义2.2 历史沿革 3. 数据中台的架构组成与关键技术要素解析3.1 架构组成3.2 关键技术要素 4. 数据中台与其他平台的对比详细解析 5. 综合案例&#xff1a;金融行业数据中台落地实践5.1 背景5.2 解决方案5.3 成果与价值 6. 方向…...

告别2023~2024

时间过得真快&#xff0c;距离上次写作2年多了。2023年&#xff5e;2024年的这两年时光里经历太多人生大事&#xff1a; 房贷&#xff0c;提前还贷买车&#xff0c;全款拿下租房搬家媳妇怀孕&#xff0c;独自照顾&#xff0c;……老人离世开盲盒喜提千金&#xff0c;百岁宴&am…...

PMO项目管理规范标准

这份文档是一份关于 PMO 项目管理规范标准的 V3.0 版本。以下是该文档的主要内容&#xff1a; 1. 立项管理 - 立项标准、级别划分和管理&#xff1a;定义了立项管理的标准、级别划分和管理&#xff0c;包括立项的审批流程、产品可行性分析、立项建议书、产品需求文档等。 - 立项…...

通过类加载和初始化的一些题目理解Java类加载过程

通过题目重点理解&#xff1a;Class加载流程和运行时区域 目录 子类和父类static变量父子类加载顺序2class.forName初始化 子类和父类static变量 class Parent {static int a 1;static int b 2;static int c;static {c 3;System.out.println("parent static block&quo…...

【人工智能】解码语言之谜:使用Python构建神经机器翻译系统

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 神经机器翻译(NMT)是近年来机器翻译领域的一项重大突破。它利用深度学习模型,特别是循环神经网络(RNN)和Transformer网络,以端到端的…...

瑞芯微 Rockchip 系列 RK3588 主流深度学习框架模型转成 rknn 模型教程

前言 在瑞芯微 Rockchip 芯片上进行 NPU 推理&#xff0c;需要先将模型文件转换成 rknn 模型文件&#xff0c;才能执行各种推理任务。本文将介绍如何安装各种工具&#xff0c;并最终实现将各种深度学习框架的模型文件转换成 rknn 文件。 本教程不仅适合 RK3588 平台&#xff…...

51单片机俄罗斯方块计分函数

/************************************************************************************************************** * 名称&#xff1a;scoring * 功能&#xff1a;计分 * 参数&#xff1a;NULL * 返回&#xff1a;NULL * 备注&#xff1a;采用非阻塞延时 ****************…...

C++线程池

使用线程情况比较频繁的地方&#xff0c;由于线程的创建及销毁都会产生对资源的占用及性能的损耗。为了优化性能&#xff0c;提升效率&#xff0c;在这种场景中&#xff0c;就应该使用线程池来处理任务。 线程池创建的关键点&#xff1a; 装载线程的容器&#xff0c;在C中使用…...

Golang GORM系列:定义GORM模型及关系指南

使用GORM进行数据库管理的核心是定义模型的技能。模型是程序的面向对象结构和数据库的关系世界之间的纽带。本文深入研究了在GORM中创建成功模型的艺术&#xff0c;研究了如何设计结构化的Go结构&#xff0c;用标记注释字段&#xff0c;以及开发跨模型的链接&#xff0c;以便最…...

ssm校园二手交易平台小程序

博主介绍&#xff1a;✌程序猿徐师兄、8年大厂程序员经历。全网粉丝15w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

【虚幻引擎UE】AOI算法介绍与实现案例

【虚幻引擎UE】AOI算法介绍与实现 一、AOI算法介绍AOI算法的典型应用场景二、AOI相关算法1. 边界框法(Bounding Box Method)2. 动态AOI算法3. 布尔运算(Boolean Operations)4. 四叉树(Quadtree)5. R树(R-Tree)6. 圆形AOI算法7. 网格分割(Grid Partitioning)8. 多边形…...

JavaScript 基础语法:变量、数据类型、运算符、条件语句、循环

JavaScript 是一种动态类型的脚本语言&#xff0c;广泛用于前端开发。以下是 JavaScript 基础语法的核心内容&#xff0c;包括变量、数据类型、运算符、条件语句和循环。 --- ### 1. 变量 变量用于存储数据。JavaScript 中有三种声明变量的方式&#xff1a; - **var**&…...