当前位置: 首页 > news >正文

DeepSeek与人工智能的结合:探索搜索技术的未来

云边有个稻草人-CSDN博客

目录

引言

一、DeepSeek的技术背景

1.1 传统搜索引擎的局限性

1.2 深度学习在搜索中的优势

二、DeepSeek与人工智能的结合

2.1 自然语言处理(NLP)

示例代码:基于BERT的语义搜索

2.2 多模态搜索

示例代码:基于CLIP的跨模态搜索

三、DeepSeek的实际应用场景

3.1 医疗领域

3.2 教育领域

3.3 电商平台

3.4 企业知识管理

3.5 智能客服

四、挑战与改进方向

五、总结与展望


引言

在当前的信息爆炸时代,搜索技术成为我们获取知识和解决问题的重要工具。传统的搜索引擎虽然已经在性能和精度上取得了显著进步,但面对日益复杂的用户需求和海量数据,仍然存在局限性。DeepSeek作为一种新兴的搜索技术,通过深度学习和人工智能的结合,为搜索体验带来了全新的可能性。

本文将从DeepSeek的技术背景、实现原理、与人工智能的深度结合以及实际应用等方面进行深入探讨,并提供一些示例代码以帮助理解其工作机制。

一、DeepSeek的技术背景

DeepSeek是一种基于深度学习的搜索技术,它通过结合自然语言处理(NLP)、计算机视觉(CV)和大规模分布式计算等技术,为用户提供更智能、更高效的搜索体验。

1.1 传统搜索引擎的局限性

传统搜索引擎主要依赖关键词匹配和预定义的规则,其局限性包括:

  • 语义理解不足:无法准确理解用户的意图,尤其是在面对复杂查询时。

  • 数据依赖性强:对结构化数据和标签的依赖较大,难以处理非结构化数据。

  • 缺乏个性化:无法根据用户的历史行为或偏好提供个性化的搜索结果。

1.2 深度学习在搜索中的优势

深度学习通过神经网络模型的自适应能力,可以有效地解决上述问题:

  • 语义理解:通过预训练语言模型(如BERT、GPT等),深度学习能够理解自然语言中的复杂语义。

  • 跨模态搜索:结合图像、音频等非文本数据,实现多模态搜索。

  • 个性化推荐:通过用户行为数据的分析,为不同用户提供定制化的结果。

二、DeepSeek与人工智能的结合

DeepSeek的核心在于深度学习模型的广泛应用。以下是一些关键技术模块及其实现:

2.1 自然语言处理(NLP)

NLP是DeepSeek的核心组件之一,用于处理用户查询并匹配语义相关的结果。基于预训练模型的语义搜索是实现高效搜索的关键。

示例代码:基于BERT的语义搜索
from transformers import BertTokenizer, BertModel
import torch
from sklearn.metrics.pairwise import cosine_similarity# 加载预训练模型和分词器
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")# 编码函数
def encode_text(text):inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)outputs = model(**inputs)return outputs.last_hidden_state.mean(dim=1).detach().numpy()# 示例查询与文档
query = "What is artificial intelligence?"
documents = ["Artificial intelligence is a branch of computer science.","Deep learning is a subset of AI.","AI is widely used in various fields."
]# 编码查询和文档
query_embedding = encode_text(query)
doc_embeddings = [encode_text(doc) for doc in documents]# 计算相似性
similarities = [cosine_similarity(query_embedding, doc_emb)[0][0] for doc_emb in doc_embeddings]# 输出最相关的文档
most_relevant_index = similarities.index(max(similarities))
print("Most relevant document:", documents[most_relevant_index])

2.2 多模态搜索

DeepSeek通过结合计算机视觉技术,实现了文本、图像、音频等多模态数据的综合搜索。例如,用户可以通过上传图片来搜索相关的文本内容。

示例代码:基于CLIP的跨模态搜索
from transformers import CLIPProcessor, CLIPModel
import torch# 加载CLIP模型和处理器
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")# 示例文本和图像
texts = ["a photo of a dog", "a photo of a cat", "a photo of a bird"]
image_path = "dog.jpg"  # 替换为本地图片路径# 处理图像和文本
image = processor(images=image_path, return_tensors="pt", padding=True, truncation=True).pixel_values
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True, truncation=True)# 计算相似性
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)# 输出最匹配的文本
most_relevant_text_index = probs.argmax().item()
print("Most relevant text:", texts[most_relevant_text_index])

三、DeepSeek的实际应用场景

3.1 医疗领域

医疗领域对精确的信息获取有着极高的需求,DeepSeek可以通过以下几种方式提升效率:

  1. 医学文献搜索:医生可以使用DeepSeek搜索最新的医学研究和临床试验数据,避免信息过载的困扰。借助NLP技术,它还能准确理解复杂的医学术语。

  2. 医学影像辅助诊断:结合计算机视觉技术,DeepSeek可以分析医学影像(如X光片或MRI),辅助医生诊断病情。这种多模态搜索的能力使得医生能够跨越文本和影像数据的界限快速获取关键信息。

  3. 个性化医疗建议:通过分析患者的病史数据,DeepSeek能够为医生或患者提供定制化的治疗建议,提高医疗决策的准确性。

3.2 教育领域

教育行业中,DeepSeek可以极大地提升学生的学习效率和教师的教学质量:

  1. 个性化学习路径:学生可以通过DeepSeek搜索适合自己的学习资源,如课程视频、课件和练习题。系统会根据学生的学习习惯推荐相关内容。

  2. 知识地图构建:通过语义分析和知识图谱技术,DeepSeek能够为学生绘制清晰的学习路线图,帮助他们系统性地掌握知识。

  3. 多模态学习资源整合:学生可以上传问题的截图或语音,DeepSeek通过图像识别和语音处理技术提供相关答案和资源。

3.3 电商平台

电商行业对搜索技术的依赖程度极高,DeepSeek可以显著提升用户体验和商家收益:

  1. 商品推荐:结合用户的浏览和购买历史,DeepSeek可以实时推荐用户可能感兴趣的商品,提升转化率。

  2. 图片搜索:用户可以上传商品图片,DeepSeek通过多模态搜索技术快速定位相似商品,简化购物流程。

  3. 智能客服:通过自然语言理解,DeepSeek可以为用户提供精准的商品信息和售后服务,减少人工客服的压力。

3.4 企业知识管理

企业知识管理的核心是如何快速找到内部的文档、流程和解决方案。DeepSeek在以下方面有显著作用:

  1. 智能文档搜索:员工可以通过DeepSeek快速检索技术文档、政策文件或会议记录,避免浪费时间。

  2. 实时知识推荐:结合员工的项目进度或任务目标,DeepSeek可以动态推荐相关的知识和解决方案,提升工作效率。

  3. 团队协作优化:通过分析团队成员的搜索行为和问题反馈,DeepSeek能够识别知识盲点并提供改进建议。

3.5 智能客服

智能客服系统是许多企业的重要组成部分,DeepSeek的加入能够显著提升其服务水平:

  1. 精准回答:DeepSeek通过NLP技术理解用户的问题并提供精准答案,缩短响应时间。

  2. 复杂问题转接:对于复杂的问题,DeepSeek可以自动识别并将其转接至人工客服,同时提供相关背景信息,提升服务效率。

  3. 自助服务优化:分析用户的搜索行为后,DeepSeek能够动态优化FAQ页面和知识库内容,减少用户困惑。

四、挑战与改进方向

虽然DeepSeek在多个领域展现了强大的潜力,但仍然存在一些挑战:

  1. 数据隐私与安全:如何在处理用户数据的同时保护隐私是一个关键问题。

  2. 跨语言支持:实现多语言的搜索能力对于全球化应用至关重要。

  3. 计算资源需求:深度学习模型的训练和推理需要大量计算资源,优化效率是未来发展的重点。

  4. 实时性需求:面对动态数据流的场景,需要实现更高的实时处理能力。

为了解决这些问题,可以采取以下策略:

  • 联邦学习:通过分布式模型训练,减少对用户数据的直接依赖。

  • 模型压缩:使用剪枝、蒸馏等技术降低模型的计算复杂度。

  • 多语言预训练模型:引入如mBERT、XLM-R等多语言模型,提升跨语言能力。

  • 边缘计算:将部分计算任务分配到用户终端设备,以减少中心化计算压力。

五、总结与展望

DeepSeek通过结合深度学习和人工智能技术,突破了传统搜索引擎的限制,为用户提供了更加智能、便捷的搜索体验。随着技术的进一步发展,DeepSeek有望在更多领域展现其潜力,例如实时数据分析、智能客服等。

未来,我们可以期待DeepSeek在以下方向的持续改进:

  1. 实时性提升:优化搜索引擎的响应速度,处理更大规模的数据。

  2. 多模态融合:进一步提升多模态数据的搜索效果,实现更加全面的搜索能力。

  3. 隐私保护:通过联邦学习等技术,确保用户数据的安全性。

  4. 扩展领域:将搜索技术应用到金融、物流等新兴领域,推动行业的数字化转型。

DeepSeek的未来充满可能,让我们拭目以待!

完——


至此结束!

我是云边有个稻草人

期待与你的下一次相遇。。。

相关文章:

DeepSeek与人工智能的结合:探索搜索技术的未来

云边有个稻草人-CSDN博客 目录 引言 一、DeepSeek的技术背景 1.1 传统搜索引擎的局限性 1.2 深度学习在搜索中的优势 二、DeepSeek与人工智能的结合 2.1 自然语言处理(NLP) 示例代码:基于BERT的语义搜索 2.2 多模态搜索 示例代码&…...

OpenCV:图像修复

目录 简述 1. 原理说明 1.1 Navier-Stokes方法(INPAINT_NS) 1.2 快速行进方法(INPAINT_TELEA) 2. 实现步骤 2.1 输入图像和掩膜(Mask) 2.2 调用cv2.inpaint()函数 2.3 完整代码示例 2.4 运行结果 …...

解决基于FastAPI Swagger UI的文档打不开的问题

基于FastAPI Swagger UI的文档链接/docs和/redoc在没有外网的状态下无法打开,原因是Swagger依赖的JS和CSS来自CDN。 https://cdn.jsdelivr.net/npm/swagger-ui-dist5/swagger-ui-bundle.js https://cdn.jsdelivr.net/npm/swagger-ui-dist5/swagger-ui.css https://…...

前端开发知识梳理 - HTMLCSS

1. 盒模型 由内容区(content)、内边距(padding)、边框(border)和外边距(margin)组成。 (1)标准盒模型(box-sizing默认值, content-box&#xff…...

Win10环境使用ChatBox集成Deep Seek解锁更多玩法

Win10环境使用ChatBox集成Deep Seek解锁更多玩法 前言 之前部署了14b的Deep Seek小模型,已经验证了命令行及接口方式的可行性。但是纯命令行或者PostMan方式调用接口显然不是那么友好: https://lizhiyong.blog.csdn.net/article/details/145505686 纯…...

LM Studio 部署本地大语言模型

一、下载安装 1.搜索:lm studio LM Studio - Discover, download, and run local LLMs 2.下载 3.安装 4.更改成中文 二、下载模型(软件内下载) 1.选择使用代理,否则无法下载 2.更改模型下载目录 默认下载位置 C:\Users\用户名\.lmstudio\models 3.搜…...

Qt:QWidget核心属性

目录 QWidget核心属性 enab geometry WindowFrame的影响 windowTitle windowIcon qrc文件管理资源 windowOpacity cursor font toolTip focusPolicy styleSheet QWidget核心属性 在Qt中使用QWidget类表示"控件",如按钮、视图、输入框、滚动…...

unity学习29:摄像机camera相关skybox 和 Render Texture测试效果

目录 1 摄像机 1.1 每个Scene里都自带一个摄像机 camera 1.2 可以创建多个camera 1.3 下面先看backgroundtype: 2 backgroundtype: 天空盒 skybox 2.1 清除标志,清除:天空盒 自选天空盒 2.2 window /Asset Store 2.3 导入skybox 3 backgroundtype: 纯色…...

吴恩达深度学习——卷积神经网络的特殊应用

内容来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习使用。 文章目录 人脸识别相关定义Similarity函数使用Siamese网络实现函数d使用Triplet损失学习参数 神经风格迁移深度卷积网络可视化神经风格迁移的代价函数内容损失函数风格损失函数 人脸识别 …...

go语言文件和目录

打开和关闭文件 os.Open()函数能够打开一个文件,返回一个*File 和一个 err。操作完成文件对象以后一定要记得关闭文件。 package mainimport ("fmt""os" )func main() {// 只读方式打开当前目录下的 main.go 文件file, err : os.Open(".…...

c++ 面试题

C 面试题通常涵盖基础知识、面向对象编程、内存管理、模板、STL(标准模板库)等方面。以下是一些常见的 C 面试题及其简要解答,供你参考: 1. C 基础知识 1.1 C 和 C 的区别是什么? C 是 C 的超集,支持面向…...

JAVA安全—FastJson反序列化利用链跟踪autoType绕过

前言 FastJson这个漏洞我们之前讲过了,今天主要是对它的链条进行分析一下,明白链条的构造原理。 Java安全—log4j日志&FastJson序列化&JNDI注入_log4j漏洞-CSDN博客 漏洞版本 1.2.24及以下没有对序列化的类做校验,导致漏洞产生 1.2.25-1.2.41增加了黑名单限制,…...

Java Stream API:高效数据处理的利器引言

Java Stream API:高效数据处理的利器引言 在 Java 编程中,数据处理是一项极为常见且关键的任务。传统的 for 循环在处理数据集合时,往往会导致代码变得冗长、复杂,这不仅增加了代码的编写难度,还降低了代码的可读性和…...

kubeadm构建k8s源码阅读环境

目标 前面看了minikube的源码了解到其本质是调用了kubeadm来启动k8s集群,并没有达到最初看代码的目的。 所以继续看看kubeadm的代码,看看能否用来方便地构建源码调试环境。 k8s源码编译 kubeadm源码在k8s源码库中,所以要先克隆k8s源码。之…...

Java架构设计亿级流量场景下的本地缓存方案选型

在当今的互联网时代,亿级流量的应用场景已经司空见惯。无论是大型电商平台的促销活动,还是热门社交应用的日常运营,都可能面临每秒数万甚至数十万的请求流量。在这样的高并发、高流量场景下,系统的性能和稳定性面临着巨大的挑战。…...

ChatGPT怎么回事?

纯属发现,调侃一下~ 这段时间deepseek不是特别火吗,尤其是它的推理功能,突发奇想,想用deepseek回答一些问题,回答一个问题之后就回复服务器繁忙(估计还在被攻击吧~_~) 然后就转向了GPT&#xf…...

离线安装Appium Server

1、问题概述? 安装Appium通常有两种方式: 第一种:下载exe安装包,这种是Appium Server GUI安装方式,缺点是通过命令启动不方便。 第二种:通过cmd安装appium server,可以通过命令方式启动,比较方便。 问题:在没有外网的情况下,无法通过命令在cmd中安装appium server…...

Jetpack ViewModel

private val deviceViewModel: IDeviceViewModel by viewModels<DeviceViewModel>() 这句代码是 Jetpack ViewModel 在 Fragment 或 Activity 中的标准用法&#xff0c;它的作用是 创建并获取 ViewModel 实例&#xff0c;同时确保 ViewModel 的生命周期与 UI 组件保持一…...

2025年2月9日(数据分析,在最高点和最低点添加注释,添加水印)

要在最高点和最低点添加文本注释,可以使用 plt.annotate() 函数。这个函数允许你在图表中的特定位置添加文本注释,并且可以指定箭头指向特定的数据点。 以下是修改后的代码,添加了在最高点和最低点的文本注释: from matplotlib import pyplot as plt from matplotlib imp…...

如何导入第三方sdk | 引入第三方jar 包

0. 背景1. 上传私有仓库2. 使用本地文件系统 0. 背景 对接一些第三方功能&#xff0c;会拿到第三方的sdk&#xff0c;也就是jar包&#xff0c;如何导入呢 1. 上传私有仓库 最好的方式就是将第三方jar包&#xff0c;上传到私有的仓库&#xff0c;这样直接正常在pom引用即可如果只…...

掌握内容中台与人工智能技术的新闻和应用场景分析

内容概要 在当今数字化快速发展的时代&#xff0c;内容中台与人工智能技术的结合为各行各业带来了新的机遇。这一切都源自于对内容生产和管理能力的需求不断提升&#xff0c;尤其在新闻行业中更是如此。内容中台作为一种集中管理内容资源的平台&#xff0c;能够有效整合与调配…...

c#-枚举

//可空类型&#xff1a;int? num 等价 Nullable<int> num Nullable<int> a null; a 99; Console.WriteLine(a);//合并运算符?? &#xff1a; a有值的话&#xff0c;赋值给b int b a ?? 1; Console.WriteLine(b); 枚举成员不能相同&#xff0c;但枚举的值可…...

青少年编程与数学 02-008 Pyhon语言编程基础 22课题、类的定义和使用

青少年编程与数学 02-008 Pyhon语言编程基础 22课题、类的定义和使用 一、类类的定义和使用示例 二、定义1. 类定义语法2. 属性和方法3. 构造器和初始化4. 实例化5. 类变量和实例变量6. 类方法和静态方法7. 继承8. 多态总结 三、使用1. 创建类的实例2. 访问属性3. 调用方法4. 修…...

【通俗易懂说模型】反向传播(附多元回归与Softmax函数)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;深度学习_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. …...

【人工智能】Python中的深度学习优化器:从SGD到Adam

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传…...

仅128个token达到ImageNet生成SOTA性能!MAETok:有效的扩散模型的关键是什么?(卡内基梅隆港大等)

论文链接&#xff1a;https://arxiv.org/pdf/2502.03444 项目链接&#xff1a;https://github.com/Hhhhhhao/continuous_tokenizer 亮点直击 理论与实验分析&#xff1a;通过实验和理论分析建立了潜空间结构与扩散模型性能之间的联系。揭示了具有更少高斯混合模型&#xff08;G…...

Listener监听器和Filter过滤器

一.监听器 1.是javaweb的三大组件之一,分别是Servlet程序,Listener监听器,Filter过滤器 2.Listener是JvaEE的规范,就是接口,监听器的作用就是监听某种变化(一般是对象创建/销毁,属性变化),触发对应方法完成相应的任务 3.ServletContextListener:/*当一个类实现了ServletContex…...

我的年度写作计划

目录 计算机经典四件 数据结构 计算机网络体系 经典操作系统与计算机架构 嵌入式领域笔记 其他部分 私货部分 笔者打算在这里理一下今年的写作计划&#xff0c;如下所示&#xff1a; 计算机经典四件 数据结构 笔者因为冲刺面试需要&#xff0c;还是要更加扎实的掌握自…...

kafka专栏解读

kafka专栏文章的编写将根据kafka架构进行编写&#xff0c;即先编辑kafka生产者相关的内容&#xff0c;再编写kafka服务端的内容&#xff08;这部分是核心&#xff0c;内容较多&#xff0c;包含kafka分区管理、日志存储、延时操作、控制器、可靠性等&#xff09;&#xff0c;最后…...

数据库操作与数据管理——Rust 与 SQLite 的集成

第六章&#xff1a;数据库操作与数据管理 第一节&#xff1a;Rust 与 SQLite 的集成 在本节中&#xff0c;我们将深入探讨如何在 Rust 中使用 SQLite 数据库&#xff0c;涵盖从基本的 CRUD 操作到事务处理、数据模型的构建、性能优化以及安全性考虑等方面。SQLite 是一个轻量…...

Linux文件目录基本操作

目录 目录概述相关操作函数相关数据结构体说明 目录概述 什么是目录&#xff1f; 在linux操作系统中其实目录也是一种文件&#xff0c;相对于普通文件&#xff0c;它的存储内容不同&#xff0c;它的存储内容主要是当前目录下的文件以及子目录文件信息。目录就像是一颗大树&a…...

TaskBuilder项目实战:创建项目

用TaskBuilder开发应用系统的第一步就是创建项目&#xff0c;项目可以是一个简单的功能模块&#xff0c;也可以是很多功能模块的集合&#xff0c;具体怎么划分看各位的实际需要&#xff0c;我们一般会将相互关联比较紧密的一组功能模块放到一个独立的项目内&#xff0c;以便打包…...

使用DeepSeek的技巧笔记

来源&#xff1a;新年逼自己一把&#xff0c;学会使用DeepSeek R1_哔哩哔哩_bilibili 前言 对于DeepSeek而言&#xff0c;我们不再需要那么多的提示词技巧&#xff0c;但还是要有两个注意点&#xff1a;你需要理解大语言模型的工作原理与局限,这能帮助你更好的知道AI可完成任务…...

使用Python实现PDF与SVG相互转换

目录 使用工具 使用Python将SVG转换为PDF 使用Python将SVG添加到现有PDF中 使用Python将PDF转换为SVG 使用Python将PDF的特定页面转换为SVG SVG&#xff08;可缩放矢量图形&#xff09;和PDF&#xff08;便携式文档格式&#xff09;是两种常见且广泛使用的文件格式。SVG是…...

idea整合deepseek实现AI辅助编程

1.File->Settings 2.安装插件codegpt 3.注册deepseek开发者账号&#xff0c;DeepSeek开放平台 4.按下图指示创建API KEY 5.回到idea配置api信息&#xff0c;File->Settings->Tools->CodeGPT->Providers->Custom OpenAI API key填写deepseek的api key Chat…...

java文件上传粗糙版

粗糙版图片上传 1.导入依赖 <dependency><groupId>io.minio</groupId><artifactId>minio</artifactId><version>8.5.2</version> </dependency> 2.配置minio地址跟对应的桶 业务层实现类 import io.minio.MinioClient; /…...

一种基于Leaflet.Legend的图例动态更新方法

目录 前言 一、场景再现 1、需求描述 2、核心方法介绍 3、存在的问题 二、问题解决 1、重复解决办法 2、图例不展示解决办法 3、成果展示 三、总结 前言 在当今数字化时代&#xff0c;地理信息系统&#xff08;GIS&#xff09;技术已经广泛应用于各个领域&#xff0c;…...

Vue Dom截图插件,截图转Base64 html2canvas

安装插件 npm install html2canvas --save插件使用 <template><div style"padding: 10px;"><div ref"imageTofile" class"box">发生什么事了</div><button click"toImage" style"margin: 10px;&quo…...

安宝特方案 | AR眼镜:远程医疗的“时空折叠者”,如何为生命争夺每一分钟?

行业痛点&#xff1a;当“千里求医”遇上“资源鸿沟” 20世纪50年代&#xff0c;远程会诊的诞生曾让医疗界为之一振——患者不必跨越山河&#xff0c;专家无需舟车劳顿&#xff0c;一根电话线、一张传真纸便能架起问诊的桥梁。然而&#xff0c;传统远程医疗的局限也日益凸显&a…...

【人工智能】Python中的序列到序列(Seq2Seq)模型:实现机器翻译

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 序列到序列(Seq2Seq)模型是自然语言处理(NLP)中一项核心技术,广泛应用于机器翻译、语音识别、文本摘要等任务。本文深入探讨Seq2Seq模…...

【批量获取图片信息】批量获取图片尺寸、海拔、分辨率、GPS经纬度、面积、位深度、等图片属性里的详细信息,提取出来后导出表格,基于WPF的详细解决方案

摄影工作室通常会有大量的图片素材&#xff0c;在进行图片整理和分类时&#xff0c;需要知道每张图片的尺寸、分辨率、GPS 经纬度&#xff08;如果拍摄时记录了&#xff09;等信息&#xff0c;以便更好地管理图片资源&#xff0c;比如根据图片尺寸和分辨率决定哪些图片适合用于…...

关于32位和64位程序的传参方法及虚拟机调试工具总结

一、传参方法对比 1. 32位程序 系统调用 (Linux) 使用int 0x80指令触发系统调用 寄存器传参顺序&#xff1a; eax 系统调用号 ebx 第1个参数 ecx 第2个参数 edx 第3个参数 esi 第4个参数 edi 第5个参数 普通函数调用 (C语言) 栈传递参数&#xff1a;参数从右向左压栈…...

【Windows】PowerShell 缓存区大小调节

PowerShell 缓存区大小调节 方式1 打开powershell 窗口属性调节方式2&#xff0c;修改 PowerShell 配置文件 方式1 打开powershell 窗口属性调节 打开 CMD&#xff08;按 Win R&#xff0c;输入 cmd&#xff09;。右键标题栏 → 选择 属性&#xff08;Properties&#xff09;…...

查看云机器的一些常用配置

云原生学习路线导航页&#xff08;持续更新中&#xff09; kubernetes学习系列快捷链接 Kubernetes架构原则和对象设计&#xff08;一&#xff09;Kubernetes架构原则和对象设计&#xff08;二&#xff09;Kubernetes架构原则和对象设计&#xff08;三&#xff09;Kubernetes常…...

约克VRF|冬日舒适新标杆,温暖每一寸空间

冬天来了&#xff0c;谁不想窝在家里&#xff0c;一边温暖舒适&#xff0c;一边畅享清新空气&#xff1f;      约克VRF中央空调——用科技为你打造全方位的冬季理想生活&#xff01;      地暖空调二合一&#xff0c;暖从足起&#xff0c;养生更健康~      普通取…...

【AI学习】关于 DeepSeek-R1的几个流程图

遇见关于DeepSeek-R1的几个流程图&#xff0c;清晰易懂形象直观&#xff0c;记录于此。 流程图一 来自文章《Understanding Reasoning LLMs》&#xff0c; 文章链接&#xff1a;https://magazine.sebastianraschka.com/p/understanding-reasoning-llms?continueFlagaf07b1a0…...

CNN卷积神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)

代码地址&#xff1a;CNN卷积神经网络多变量多步预测&#xff0c;光伏功率预测&#xff08;Matlab完整源码和数据) 标题&#xff1a;CNN卷积神经网络多变量多步预测&#xff0c;光伏功率预测 一、引言 1.1 研究背景及意义 随着全球能源危机的加剧和环保意识的提升&#xff…...

mapbox进阶,添加绘图扩展插件,绘制圆形

👨‍⚕️ 主页: gis分享者 👨‍⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨‍⚕️ 收录于专栏:mapbox 从入门到精通 文章目录 一、🍀前言1.1 ☘️mapboxgl.Map 地图对象1.2 ☘️mapboxgl.Map style属性1.3 ☘️MapboxDraw 绘图控件二、🍀添加绘图扩…...

学习TCL脚本基础语法的几个步骤?

文章目录 前言1. 命令和参数1.1 Tcl 命令的基本结构1.2 示例1.2.1 puts 命令1.2.2 set 命令1.2.3 if 命令1.2.4 foreach 命令 1.3 参数的类型1.3.1 字符串1.3.2 变量1.3.3 表达式1.3.4 列表1.3.5 字典 1.4 命令的嵌套 二、变量1. 声明变量2. 使用变量3. 变量类型3.1 字符串3.2 …...

move_base全局路径规划震荡之参数调优

在使用 move_base 进行导航时&#xff0c;如果全局路径规划在遇到障碍物时频繁在障碍物左右两侧跳变&#xff0c;导致机器人绕障失败&#xff0c;通常可以通过调整参数优化来解决。以下是具体原因分析和解决方案&#xff1a; 问题原因分析&#xff1a; 全局路径规划的震荡&…...