OpenCV:图像修复
目录
简述
1. 原理说明
1.2 快速行进方法(INPAINT_TELEA)
2. 实现步骤
2.1 输入图像和掩膜(Mask)
2.2 调用cv2.inpaint()函数
2.3 完整代码示例
2.4 运行结果
3. 掩膜制作方法
4. 差异
4.1 修复效果
4.2 计算效率
5. 总结
简述
在 OpenCV 中,图像修复是一种用于去除图像中不需要的部分(如划痕、污渍等)的技术。OpenCV 提供了两种主要的图像修复算法:基于流体动力学的图像修复方法(Navier-Stokes,NS)和基于快速行进算法(Fast Marching Method,FMM)的修复方法。
1. 原理说明
cv2.inpaint() 基于两种算法:
1.1 Navier-Stokes方法(INPAINT_NS)
- 通过流体动力学模拟,沿等照度线(颜色梯度方向)传播信息。
- 适合修复自然纹理,但计算速度较慢。
1.2 快速行进方法(INPAINT_TELEA)
- 基于像素邻域的加权平均,优先修复边界附近的区域。
- 速度更快,适合实时处理。
2. 实现步骤
2.1 输入图像和掩膜(Mask)
- 原始图像:待修复的图片(需为uint8格式)。
- 掩膜图像:标记需修复区域的二值图像(白色区域为需修复部分)。
2.2 调用cv2.inpaint()函数
inpainted_img = cv2.inpaint(src, mask, inpaintRadius, flags)
- src:输入图像(BGR格式)。
- mask:掩膜图像(单通道,非零像素表示需修复区域)。
- inpaintRadius:修复半径(影响周围像素的范围,通常设为3-5)。
- flags:选择算法(cv2.INPAINT_NS 或 cv2.INPAINT_TELEA)。
2.3 完整代码示例
import cv2
import numpy as np# 读取原始图像和掩膜
image = cv2.imread("D:\\resource\\opencv\\lena_damaged1.png")# 掩膜需为单通道
mask = cv2.imread("D:\\resource\\opencv\\mask1.png", cv2.IMREAD_GRAYSCALE) # 检查图像是否读取成功
if image is None or mask is None:print("Error: image or mask is none !")exit()# 图像修复
inpainted_telea = cv2.inpaint(image, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
# inpainted_ns = cv2.inpaint(image, mask, inpaintRadius=3, flags=cv2.INPAINT_NS)# 显示结果
cv2.imshow("image", image)
cv2.imshow("mask", mask)
cv2.imshow("Inpainted (TELEA)", inpainted_telea)
# cv2.imshow("Inpainted (NS)", inpainted_ns)
cv2.waitKey(0)
cv2.destroyAllWindows()
2.4 运行结果
原图:
mask:
TELEA:
注意事项:
-
掩膜必须为单通道二值图像(0表示正常区域,非0表示需修复区域)。
-
修复区域周围需有足够的信息供算法参考,否则效果可能不理想。
-
对于复杂场景(如大面积修复),建议结合深度学习模型(如DeepFill、GAN)。
3. 掩膜制作方法
若没有掩膜图像,可通过以下方式生成:
- 手动标注(如用画图工具标记需修复区域为白色)。
- 程序生成(例如通过阈值分割或边缘检测):
# 示例:通过颜色阈值生成掩膜(假设修复红色区域)
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
mask = cv2.inRange(hsv, lower_red, upper_red)
4. 差异
4.1 修复效果
cv2.INPAINT_TELEA:
- 修复后的图像通常具有较好的平滑性,在处理小面积的噪声、划痕等损坏时,能够快速生成视觉上较为自然的结果。它对于简单的图像修复任务表现出色,能够有效地去除小瑕疵,使图像看起来更加干净。
- 然而,在处理大面积的缺失区域或具有复杂结构的图像时,可能会出现模糊或丢失细节的问题,因为它更侧重于平滑性,可能会过度平滑图像中的一些重要特征。
cv2.INPAINT_NS:
- 该算法在保留图像的结构信息方面表现更优,尤其适用于修复包含重要线条、纹理或边缘的图像。它能够更好地保持图像的原有结构,使得修复后的区域与周围环境更加融合。
- 但在某些情况下,修复结果可能会显得不够平滑,特别是在处理一些颜色变化较为剧烈的区域时,可能会出现一些轻微的块状效应。
4.2 计算效率
cv2.INPAINT_TELEA:
- 由于其基于快速行进算法,计算速度相对较快。它在处理小规模的修复任务时能够迅速给出结果,对于实时性要求较高的应用场景更为适用。
cv2.INPAINT_NS:
- 该算法需要求解较为复杂的偏微分方程,计算量相对较大,因此处理速度较慢。在处理大尺寸图像或需要修复大面积区域时,可能会花费较多的时间。
5. 总结
在实际应用中选择使用 cv2.INPAINT_TELEA 还是 cv2.INPAINT_NS 可以从以下几个方面进行考虑:
考虑因素 | 选择 cv2.INPAINT_TELEA 的情况 | 选择 cv2.INPAINT_NS 的情况 |
---|---|---|
修复区域特征 | 小面积、简单瑕疵修复,如轻微划痕、小斑点、孤立噪声点 | 大面积、复杂结构修复,图像含明显线条、纹理、边缘 |
对图像细节和结构的要求 | 追求平滑效果,不太在意细微结构变化 | 注重细节保留,图像细节信息重要 |
计算资源和时间限制 | 实时性要求高的场景,如实时视频流修复 | 计算资源充足且不考虑时间成本,如珍贵文物图像离线修复 |
相关文章:
OpenCV:图像修复
目录 简述 1. 原理说明 1.1 Navier-Stokes方法(INPAINT_NS) 1.2 快速行进方法(INPAINT_TELEA) 2. 实现步骤 2.1 输入图像和掩膜(Mask) 2.2 调用cv2.inpaint()函数 2.3 完整代码示例 2.4 运行结果 …...
解决基于FastAPI Swagger UI的文档打不开的问题
基于FastAPI Swagger UI的文档链接/docs和/redoc在没有外网的状态下无法打开,原因是Swagger依赖的JS和CSS来自CDN。 https://cdn.jsdelivr.net/npm/swagger-ui-dist5/swagger-ui-bundle.js https://cdn.jsdelivr.net/npm/swagger-ui-dist5/swagger-ui.css https://…...
前端开发知识梳理 - HTMLCSS
1. 盒模型 由内容区(content)、内边距(padding)、边框(border)和外边距(margin)组成。 (1)标准盒模型(box-sizing默认值, content-boxÿ…...
Win10环境使用ChatBox集成Deep Seek解锁更多玩法
Win10环境使用ChatBox集成Deep Seek解锁更多玩法 前言 之前部署了14b的Deep Seek小模型,已经验证了命令行及接口方式的可行性。但是纯命令行或者PostMan方式调用接口显然不是那么友好: https://lizhiyong.blog.csdn.net/article/details/145505686 纯…...
LM Studio 部署本地大语言模型
一、下载安装 1.搜索:lm studio LM Studio - Discover, download, and run local LLMs 2.下载 3.安装 4.更改成中文 二、下载模型(软件内下载) 1.选择使用代理,否则无法下载 2.更改模型下载目录 默认下载位置 C:\Users\用户名\.lmstudio\models 3.搜…...
Qt:QWidget核心属性
目录 QWidget核心属性 enab geometry WindowFrame的影响 windowTitle windowIcon qrc文件管理资源 windowOpacity cursor font toolTip focusPolicy styleSheet QWidget核心属性 在Qt中使用QWidget类表示"控件",如按钮、视图、输入框、滚动…...
unity学习29:摄像机camera相关skybox 和 Render Texture测试效果
目录 1 摄像机 1.1 每个Scene里都自带一个摄像机 camera 1.2 可以创建多个camera 1.3 下面先看backgroundtype: 2 backgroundtype: 天空盒 skybox 2.1 清除标志,清除:天空盒 自选天空盒 2.2 window /Asset Store 2.3 导入skybox 3 backgroundtype: 纯色…...
吴恩达深度学习——卷积神经网络的特殊应用
内容来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习使用。 文章目录 人脸识别相关定义Similarity函数使用Siamese网络实现函数d使用Triplet损失学习参数 神经风格迁移深度卷积网络可视化神经风格迁移的代价函数内容损失函数风格损失函数 人脸识别 …...
go语言文件和目录
打开和关闭文件 os.Open()函数能够打开一个文件,返回一个*File 和一个 err。操作完成文件对象以后一定要记得关闭文件。 package mainimport ("fmt""os" )func main() {// 只读方式打开当前目录下的 main.go 文件file, err : os.Open(".…...
c++ 面试题
C 面试题通常涵盖基础知识、面向对象编程、内存管理、模板、STL(标准模板库)等方面。以下是一些常见的 C 面试题及其简要解答,供你参考: 1. C 基础知识 1.1 C 和 C 的区别是什么? C 是 C 的超集,支持面向…...
JAVA安全—FastJson反序列化利用链跟踪autoType绕过
前言 FastJson这个漏洞我们之前讲过了,今天主要是对它的链条进行分析一下,明白链条的构造原理。 Java安全—log4j日志&FastJson序列化&JNDI注入_log4j漏洞-CSDN博客 漏洞版本 1.2.24及以下没有对序列化的类做校验,导致漏洞产生 1.2.25-1.2.41增加了黑名单限制,…...
Java Stream API:高效数据处理的利器引言
Java Stream API:高效数据处理的利器引言 在 Java 编程中,数据处理是一项极为常见且关键的任务。传统的 for 循环在处理数据集合时,往往会导致代码变得冗长、复杂,这不仅增加了代码的编写难度,还降低了代码的可读性和…...
kubeadm构建k8s源码阅读环境
目标 前面看了minikube的源码了解到其本质是调用了kubeadm来启动k8s集群,并没有达到最初看代码的目的。 所以继续看看kubeadm的代码,看看能否用来方便地构建源码调试环境。 k8s源码编译 kubeadm源码在k8s源码库中,所以要先克隆k8s源码。之…...
Java架构设计亿级流量场景下的本地缓存方案选型
在当今的互联网时代,亿级流量的应用场景已经司空见惯。无论是大型电商平台的促销活动,还是热门社交应用的日常运营,都可能面临每秒数万甚至数十万的请求流量。在这样的高并发、高流量场景下,系统的性能和稳定性面临着巨大的挑战。…...
ChatGPT怎么回事?
纯属发现,调侃一下~ 这段时间deepseek不是特别火吗,尤其是它的推理功能,突发奇想,想用deepseek回答一些问题,回答一个问题之后就回复服务器繁忙(估计还在被攻击吧~_~) 然后就转向了GPT…...
离线安装Appium Server
1、问题概述? 安装Appium通常有两种方式: 第一种:下载exe安装包,这种是Appium Server GUI安装方式,缺点是通过命令启动不方便。 第二种:通过cmd安装appium server,可以通过命令方式启动,比较方便。 问题:在没有外网的情况下,无法通过命令在cmd中安装appium server…...
Jetpack ViewModel
private val deviceViewModel: IDeviceViewModel by viewModels<DeviceViewModel>() 这句代码是 Jetpack ViewModel 在 Fragment 或 Activity 中的标准用法,它的作用是 创建并获取 ViewModel 实例,同时确保 ViewModel 的生命周期与 UI 组件保持一…...
2025年2月9日(数据分析,在最高点和最低点添加注释,添加水印)
要在最高点和最低点添加文本注释,可以使用 plt.annotate() 函数。这个函数允许你在图表中的特定位置添加文本注释,并且可以指定箭头指向特定的数据点。 以下是修改后的代码,添加了在最高点和最低点的文本注释: from matplotlib import pyplot as plt from matplotlib imp…...
如何导入第三方sdk | 引入第三方jar 包
0. 背景1. 上传私有仓库2. 使用本地文件系统 0. 背景 对接一些第三方功能,会拿到第三方的sdk,也就是jar包,如何导入呢 1. 上传私有仓库 最好的方式就是将第三方jar包,上传到私有的仓库,这样直接正常在pom引用即可如果只…...
掌握内容中台与人工智能技术的新闻和应用场景分析
内容概要 在当今数字化快速发展的时代,内容中台与人工智能技术的结合为各行各业带来了新的机遇。这一切都源自于对内容生产和管理能力的需求不断提升,尤其在新闻行业中更是如此。内容中台作为一种集中管理内容资源的平台,能够有效整合与调配…...
c#-枚举
//可空类型:int? num 等价 Nullable<int> num Nullable<int> a null; a 99; Console.WriteLine(a);//合并运算符?? : a有值的话,赋值给b int b a ?? 1; Console.WriteLine(b); 枚举成员不能相同,但枚举的值可…...
青少年编程与数学 02-008 Pyhon语言编程基础 22课题、类的定义和使用
青少年编程与数学 02-008 Pyhon语言编程基础 22课题、类的定义和使用 一、类类的定义和使用示例 二、定义1. 类定义语法2. 属性和方法3. 构造器和初始化4. 实例化5. 类变量和实例变量6. 类方法和静态方法7. 继承8. 多态总结 三、使用1. 创建类的实例2. 访问属性3. 调用方法4. 修…...
【通俗易懂说模型】反向传播(附多元回归与Softmax函数)
🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀深度学习_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前言 2. …...
【人工智能】Python中的深度学习优化器:从SGD到Adam
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在深度学习模型的训练过程中,优化器起着至关重要的作用,它决定了模型的收敛速度以及最终的性能。本文将介绍深度学习中常用的优化器,从传…...
仅128个token达到ImageNet生成SOTA性能!MAETok:有效的扩散模型的关键是什么?(卡内基梅隆港大等)
论文链接:https://arxiv.org/pdf/2502.03444 项目链接:https://github.com/Hhhhhhao/continuous_tokenizer 亮点直击 理论与实验分析:通过实验和理论分析建立了潜空间结构与扩散模型性能之间的联系。揭示了具有更少高斯混合模型(G…...
Listener监听器和Filter过滤器
一.监听器 1.是javaweb的三大组件之一,分别是Servlet程序,Listener监听器,Filter过滤器 2.Listener是JvaEE的规范,就是接口,监听器的作用就是监听某种变化(一般是对象创建/销毁,属性变化),触发对应方法完成相应的任务 3.ServletContextListener:/*当一个类实现了ServletContex…...
我的年度写作计划
目录 计算机经典四件 数据结构 计算机网络体系 经典操作系统与计算机架构 嵌入式领域笔记 其他部分 私货部分 笔者打算在这里理一下今年的写作计划,如下所示: 计算机经典四件 数据结构 笔者因为冲刺面试需要,还是要更加扎实的掌握自…...
kafka专栏解读
kafka专栏文章的编写将根据kafka架构进行编写,即先编辑kafka生产者相关的内容,再编写kafka服务端的内容(这部分是核心,内容较多,包含kafka分区管理、日志存储、延时操作、控制器、可靠性等),最后…...
数据库操作与数据管理——Rust 与 SQLite 的集成
第六章:数据库操作与数据管理 第一节:Rust 与 SQLite 的集成 在本节中,我们将深入探讨如何在 Rust 中使用 SQLite 数据库,涵盖从基本的 CRUD 操作到事务处理、数据模型的构建、性能优化以及安全性考虑等方面。SQLite 是一个轻量…...
Linux文件目录基本操作
目录 目录概述相关操作函数相关数据结构体说明 目录概述 什么是目录? 在linux操作系统中其实目录也是一种文件,相对于普通文件,它的存储内容不同,它的存储内容主要是当前目录下的文件以及子目录文件信息。目录就像是一颗大树&a…...
TaskBuilder项目实战:创建项目
用TaskBuilder开发应用系统的第一步就是创建项目,项目可以是一个简单的功能模块,也可以是很多功能模块的集合,具体怎么划分看各位的实际需要,我们一般会将相互关联比较紧密的一组功能模块放到一个独立的项目内,以便打包…...
使用DeepSeek的技巧笔记
来源:新年逼自己一把,学会使用DeepSeek R1_哔哩哔哩_bilibili 前言 对于DeepSeek而言,我们不再需要那么多的提示词技巧,但还是要有两个注意点:你需要理解大语言模型的工作原理与局限,这能帮助你更好的知道AI可完成任务…...
使用Python实现PDF与SVG相互转换
目录 使用工具 使用Python将SVG转换为PDF 使用Python将SVG添加到现有PDF中 使用Python将PDF转换为SVG 使用Python将PDF的特定页面转换为SVG SVG(可缩放矢量图形)和PDF(便携式文档格式)是两种常见且广泛使用的文件格式。SVG是…...
idea整合deepseek实现AI辅助编程
1.File->Settings 2.安装插件codegpt 3.注册deepseek开发者账号,DeepSeek开放平台 4.按下图指示创建API KEY 5.回到idea配置api信息,File->Settings->Tools->CodeGPT->Providers->Custom OpenAI API key填写deepseek的api key Chat…...
java文件上传粗糙版
粗糙版图片上传 1.导入依赖 <dependency><groupId>io.minio</groupId><artifactId>minio</artifactId><version>8.5.2</version> </dependency> 2.配置minio地址跟对应的桶 业务层实现类 import io.minio.MinioClient; /…...
一种基于Leaflet.Legend的图例动态更新方法
目录 前言 一、场景再现 1、需求描述 2、核心方法介绍 3、存在的问题 二、问题解决 1、重复解决办法 2、图例不展示解决办法 3、成果展示 三、总结 前言 在当今数字化时代,地理信息系统(GIS)技术已经广泛应用于各个领域,…...
Vue Dom截图插件,截图转Base64 html2canvas
安装插件 npm install html2canvas --save插件使用 <template><div style"padding: 10px;"><div ref"imageTofile" class"box">发生什么事了</div><button click"toImage" style"margin: 10px;&quo…...
安宝特方案 | AR眼镜:远程医疗的“时空折叠者”,如何为生命争夺每一分钟?
行业痛点:当“千里求医”遇上“资源鸿沟” 20世纪50年代,远程会诊的诞生曾让医疗界为之一振——患者不必跨越山河,专家无需舟车劳顿,一根电话线、一张传真纸便能架起问诊的桥梁。然而,传统远程医疗的局限也日益凸显&a…...
【人工智能】Python中的序列到序列(Seq2Seq)模型:实现机器翻译
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 序列到序列(Seq2Seq)模型是自然语言处理(NLP)中一项核心技术,广泛应用于机器翻译、语音识别、文本摘要等任务。本文深入探讨Seq2Seq模…...
【批量获取图片信息】批量获取图片尺寸、海拔、分辨率、GPS经纬度、面积、位深度、等图片属性里的详细信息,提取出来后导出表格,基于WPF的详细解决方案
摄影工作室通常会有大量的图片素材,在进行图片整理和分类时,需要知道每张图片的尺寸、分辨率、GPS 经纬度(如果拍摄时记录了)等信息,以便更好地管理图片资源,比如根据图片尺寸和分辨率决定哪些图片适合用于…...
关于32位和64位程序的传参方法及虚拟机调试工具总结
一、传参方法对比 1. 32位程序 系统调用 (Linux) 使用int 0x80指令触发系统调用 寄存器传参顺序: eax 系统调用号 ebx 第1个参数 ecx 第2个参数 edx 第3个参数 esi 第4个参数 edi 第5个参数 普通函数调用 (C语言) 栈传递参数:参数从右向左压栈…...
【Windows】PowerShell 缓存区大小调节
PowerShell 缓存区大小调节 方式1 打开powershell 窗口属性调节方式2,修改 PowerShell 配置文件 方式1 打开powershell 窗口属性调节 打开 CMD(按 Win R,输入 cmd)。右键标题栏 → 选择 属性(Properties)…...
查看云机器的一些常用配置
云原生学习路线导航页(持续更新中) kubernetes学习系列快捷链接 Kubernetes架构原则和对象设计(一)Kubernetes架构原则和对象设计(二)Kubernetes架构原则和对象设计(三)Kubernetes常…...
约克VRF|冬日舒适新标杆,温暖每一寸空间
冬天来了,谁不想窝在家里,一边温暖舒适,一边畅享清新空气? 约克VRF中央空调——用科技为你打造全方位的冬季理想生活! 地暖空调二合一,暖从足起,养生更健康~ 普通取…...
【AI学习】关于 DeepSeek-R1的几个流程图
遇见关于DeepSeek-R1的几个流程图,清晰易懂形象直观,记录于此。 流程图一 来自文章《Understanding Reasoning LLMs》, 文章链接:https://magazine.sebastianraschka.com/p/understanding-reasoning-llms?continueFlagaf07b1a0…...
CNN卷积神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据)
代码地址:CNN卷积神经网络多变量多步预测,光伏功率预测(Matlab完整源码和数据) 标题:CNN卷积神经网络多变量多步预测,光伏功率预测 一、引言 1.1 研究背景及意义 随着全球能源危机的加剧和环保意识的提升ÿ…...
mapbox进阶,添加绘图扩展插件,绘制圆形
👨⚕️ 主页: gis分享者 👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕️ 收录于专栏:mapbox 从入门到精通 文章目录 一、🍀前言1.1 ☘️mapboxgl.Map 地图对象1.2 ☘️mapboxgl.Map style属性1.3 ☘️MapboxDraw 绘图控件二、🍀添加绘图扩…...
学习TCL脚本基础语法的几个步骤?
文章目录 前言1. 命令和参数1.1 Tcl 命令的基本结构1.2 示例1.2.1 puts 命令1.2.2 set 命令1.2.3 if 命令1.2.4 foreach 命令 1.3 参数的类型1.3.1 字符串1.3.2 变量1.3.3 表达式1.3.4 列表1.3.5 字典 1.4 命令的嵌套 二、变量1. 声明变量2. 使用变量3. 变量类型3.1 字符串3.2 …...
move_base全局路径规划震荡之参数调优
在使用 move_base 进行导航时,如果全局路径规划在遇到障碍物时频繁在障碍物左右两侧跳变,导致机器人绕障失败,通常可以通过调整参数优化来解决。以下是具体原因分析和解决方案: 问题原因分析: 全局路径规划的震荡&…...
Could not create task ‘:mainActivity:minifyReleaseWithR8‘.
最近接收了一个老项目,把项目clone下来后,总是报错,无法运行 Build-tool 33.0.1 is missing DX at D:\Android\Sdk\build-tools\33.0.1\dx.batFAILURE: Build failed with an exception.* What went wrong: Could not determine the depende…...