理解神经网络:Brain.js 背后的核心思想
温馨提示
这篇文章篇幅较长,主要是为后续内容做铺垫和说明。如果你觉得文字太多,可以:
- 先收藏,等后面文章遇到不懂的地方再回来查阅。
- 直接跳读,重点关注加粗或高亮的部分。
放心,这种“文字轰炸”不会常有的,哈哈~ 感谢你的耐心阅读!😊
欢迎来到 brain.js
的学习之旅!
无论你是零基础的新手,还是已经有一定编程经验的开发者,这个系列都将为你提供一个系统、全面的学习路径。我们将从最基础的概念开始,逐步深入到实际应用和高级技巧,最终让你能够自信地构建和训练自己的神经网络模型。
以下是我们的学习路线图:
这一系列文章从入门到进阶,涵盖了 brain.js
的核心功能、技术细节以及实际应用场景。不仅适合初学者学习和实践,也为有一定基础的开发者提供了更多扩展和深入的思考方向。接下来,我们进入系列的第一部分:基础篇。
一、什么是神经网络?
1.1 神经网络的定义
神经网络(Neural Network
),全称人工神经网络(Artificial Neural Network
,ANN
),是一种受生物神经系统启发的计算模型。它通过模拟人脑神经元的连接和工作方式,完成数据的处理和预测任务。
- 直观理解:神经网络就像一个会学习的系统。它通过处理输入数据,生成与之对应的输出。例如,输入一张手写数字图片,神经网络会将其分类为 0 到 9 中的某一个数字。
- 核心功能:神经网络擅长模式识别和预测。无论是语音识别、图像分类,还是文本生成,它都展现了强大的适应性和学习能力。
1.2 为什么神经网络如此强大?
传统的算法需要人为设计规则,而神经网络通过训练可以自动学习规则。这使它能够适应各种数据模式和任务场景。总结来说,神经网络是一个“通用函数近似器”,可以从数据中学习规律,并利用这些规律进行推理和预测。
1.3 举例说明:神经网络如何工作?
假设你有一组手写数字图片,神经网络的任务是识别这些数字。它的工作过程如下:
- 接收输入数据:将每张图片转化为像素矩阵,例如一个 28x28 的灰度图片会被展平为一个 784 维的向量。
- 特征提取:通过隐藏层逐步提取图片中的边缘、形状等关键信息。
- 生成输出:根据提取的特征,将图片分类为相应的数字(0 到 9)。
神经网络的强大之处在于它的“学习能力”。它能够从海量数据中提取特征并构建复杂的映射关系。它的核心结构类似于人脑,由大量的“神经元”组成,并通过“权重”连接,形成一个可以自我优化的网络。
二、神经网络的灵感来自大脑
2.1 人脑与人工神经网络的对比
神经网络的概念来源于对人脑结构和工作方式的模拟。人脑是由大约 860亿个神经元 和 数百万亿个突触 组成的复杂网络。它通过这些神经元的连接和协作,完成思维、学习和决策等复杂任务。
人工神经网络(Artificial Neural Network
,ANN
)通过数学建模,抽象出人脑的部分功能。尽管人工神经网络远不及人脑复杂,但它能够在特定任务中表现得非常出色。
以下是人脑和人工神经网络的一些对比:
特性 | 人脑 | 人工神经网络 |
---|---|---|
基本单元 | 神经元(Neuron ) | 人工神经元(Node ) |
信息传递方式 | 电化学信号通过突触传播 | 数值信号通过权重传播 |
学习能力 | 通过强化学习调整突触连接强度 | 通过训练调整权重和偏置 |
灵活性 | 高度灵活,能处理多任务 | 通常针对特定任务设计,灵活性较低 |
能耗 | 高效低耗能 | 能耗高,尤其在大规模训练时 |
2.2 生物神经元的工作原理
生物神经元由以下三个主要部分组成:
- 树突(
Dendrite
):接收其他神经元传来的信号。 - 细胞体(
Soma
):对接收到的信号进行整合和处理,并决定是否激活神经元。 - 轴突(
Axon
):如果神经元被激活,轴突将信号传递给下一个神经元。
信号传播过程:
- 树突接收到多个信号,并传递到细胞体。
- 如果信号强度超过某个阈值,神经元会“激活”,产生动作电位。
- 动作电位通过轴突传播到突触,影响下一个神经元。
2.3 生物神经元的工作原理
人工神经元是对生物神经元的数学抽象模型,它通过以下方式工作:
-
接收输入信号(
Input
):每个输入信号代表一个特征值,例如房价预测中的面积或房间数。 -
加权求和(
Weighted Sum
):输入信号会根据重要性赋予不同的权重(Weight
)。权重值越大,表示信号对最终结果的影响越大。输入信号会根据重要性赋予不同的权重(
Weight
)。权重值越大,表示信号对最终结果的影响越大。
z = ∑ i = 1 n w i ⋅ x i + b z = \sum_{i=1}^{n} w_i \cdot x_i + b z=i=1∑nwi⋅xi+b
其中:xi
:第i
个输入信号wi
:对应的权重b
:偏置(Bias
),用于调整计算结果
-
激活函数(
Activation Function
):加权求和结果会通过一个激活函数,决定神经元是否激活,以及激活后的输出值。 -
输出信号(
Output
):激活函数的结果被传递到下一层神经元,直到输出层。
2.4 从生物神经元到人工神经元的转化
生物神经元部分 | 对应的人工神经元组件 | 功能 |
---|---|---|
树突(Dendrite ) | 输入信号 | 接收外界输入数据,传递到神经元中处理 |
细胞体(Soma ) | 加权求和和激活函数 | 处理输入信号,并根据阈值决定是否激活 |
轴突(Axon ) | 输出信号 | 将激活后的信号传递给下一层的神经元 |
人工神经元的设计灵感虽然来源于生物神经元,但它的目标是高效计算和任务专用化,而不是完全复制生物神经元的复杂性。通过输入信号、权重、偏置和激活函数的协作,人工神经元能够处理复杂的数据模式并生成输出。
三、人工神经网络的基础结构
人工神经网络由多个神经元按照层级结构排列而成,通常包括以下三个部分:输入层、隐藏层 和 输出层。每一层都有特定的功能,它们协同工作以实现数据处理和任务预测。
3.1 输入层(Input Layer
)
作用:输入层是神经网络的起点,用于接收外部数据,并将这些数据传递给网络的下一层。
- 每个输入节点对应一个特征值。例如,在房价预测中,特征可能包括面积、房间数、地理位置等。
- 输入层本身不对数据进行任何处理,只是将数据作为信号传递到隐藏层。
假设我们有以下数据用于预测房价:
- 面积:120 平方米
- 房间数:3
- 距市中心距离:5 公里
这些数据会作为输入信号传递到网络中。
3.2 隐藏层(Hidden Layer
)
作用:隐藏层是神经网络的核心计算部分,用于提取数据特征并执行复杂的数学运算。
- 隐藏层节点会接收来自上一层的输入信号,经过权重计算和激活函数处理后,将结果传递给下一层。
- 隐藏层的数量和每层节点数可以根据问题的复杂性调整。
隐藏层的计算过程:
-
对输入信号进行加权求和:
z = ∑ i = 1 n w i ⋅ x i + b z = \sum_{i=1}^{n} w_i \cdot x_i + b z=i=1∑nwi⋅xi+bwi
:输入信号的权重xi
:输入信号b
:偏置,用于调整计算结果
-
应用激活函数:
a = f ( z ) a = f(z) a=f(z)f
:激活函数,用于引入非线性,使网络能够学习复杂的模式。
在房价预测中,隐藏层中的一个节点可能专注于“面积”和“房间数”之间的关系,而另一个节点可能关注“距离市中心”和“房价”的关系。通过多层隐藏层的计算,神经网络能够提取到输入数据中的深层次特征。
3.3 输出层(Output Layer
)
作用:输出层是神经网络的终点,用于生成最终结果。
- 输出的形式取决于任务类型:
- 分类任务:输出层通常包含多个节点,每个节点表示一个类别的概率。
- 回归任务:输出层通常只有一个节点,表示连续值的预测结果。
在手写数字识别中,输出层有 10 个节点,表示数字 0-9 的概率。例如:输出层结果:[0.1, 0.05, 0.8, 0.05, ...]
,这里第 3 个节点的值为 0.8,表示神经网络预测输入图片是数字“2”。
在房价预测中,输出层可能直接输出房价,例如 200 万元
。
3.4 激活函数(Activation Function
)
作用:激活函数是每个节点的“开关”,决定神经元是否被激活,以及如何传递信号到下一层。
- 如果没有激活函数,神经网络只能处理简单的线性关系,无法应对复杂的非线性问题。
- 数学意义:激活函数引入非线性,使神经网络具备学习复杂映射关系的能力。
常见激活函数:
-
Sigmoid
:
f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+e−x1
将输出限制在 (0, 1) 范围内,适合二分类任务。 -
ReLU
(Rectified Linear Unit
):
f ( x ) = max ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
简单高效,广泛用于隐藏层节点。 -
Tanh
(双曲正切函数):
f ( x ) = e x − e − x e x + e − x
相关文章:
理解神经网络:Brain.js 背后的核心思想
温馨提示 这篇文章篇幅较长,主要是为后续内容做铺垫和说明。如果你觉得文字太多,可以: 先收藏,等后面文章遇到不懂的地方再回来查阅。直接跳读,重点关注加粗或高亮的部分。放心,这种“文字轰炸”不会常有的,哈哈~ 感谢你的耐心阅读!😊 欢迎来到 brain.js 的学习之旅!…...
工业相机开发操作流程
建议按照如下的流程操作相机(其中有一些步骤是可选的,已经标明): 一、载入SDK的动态链接库档MVCAMSDK.DLL。可以使用动态或者静 态加载两种方式。 如果使用C/C进行开发,在工程引用 CameraApi.h头文件(位于安装目录的SDK/DEMO/VC/include中)和…...
利用飞书机器人进行 - ArXiv自动化检索推荐
相关作者的Github仓库 ArXivToday-Lark 使用教程 Step1 新建机器人 根据飞书官方机器人使用手册,新建自定义机器人,并记录好webhook地址,后续将在配置文件中更新该地址。 可以先完成到后续步骤之前,后续的步骤与安全相关&…...
SpringCloudGateWay和Sentinel结合做黑白名单来源控制
假设我们的分布式项目,admin是8087,gateway是8088,consumer是8086 我们一般的思路是我们的请求必须经过我们的网关8088然后网关转发到我们的分布式项目,那我要是没有处理我们绕过网关直接访问项目8087和8086不也是可以࿱…...
Win10安装MySQL、Pycharm连接MySQL,Pycharm中运行Django
一、Windows系统mysql相关操作 1、 检查系统是否安装mysql 按住win r (调出运行窗口) 输入service.msc,点击【确定】 image.png 打开服务列表-检查是否有mysql服务 (compmgmt.msc) image.png 2、 Windows安装MySQL …...
MR-GDINO: Efficient Open-World Continual Object Detection—— 高效开放世界持续目标检测
这篇文章提出了一种名为MR-GDINO的开放世界持续目标检测方法,旨在解决开放世界检测器在持续学习过程中对已见类别和未见类别的灾难性遗忘问题。文章的主要内容和贡献如下: 问题定义:提出了开放世界持续目标检测任务,要求检测器在持…...
显示当前绑定变量
来自v$sql中的信息 测试两个变量的情况(实际可以看6个,可根据需要修改) DROP TABLE T1 PURGE; CREATE TABLE T1 AS SELECT A.*,SYSDATE RIQI FROM DBA_USERS A ORDER BY 1;var mc char(3); var id number; exec :mc:SYS; exec :id:50;set li…...
如何将xps文件转换为txt文件?xps转为pdf,pdf转为txt,提取pdf表格并转为txt
文章目录 xps转txt方法一方法二 pdf转txt整页转txt提取pdf表格,并转为txt 总结另外参考XPS文件转换为TXT文件XPS文件转换为PDF文件PDF文件转换为TXT文件提取PDF表格并转为TXT示例代码(部分) 本文测试代码已上传,路径如下ÿ…...
STM32 PWM驱动舵机
接线图: 这里将信号线连接到了开发板的PA1上 代码配置: 这里的PWM配置与呼吸灯一样,呼吸灯连接的是PA0引脚,输出比较单元用的是OC1通道,这里只需改为OC2通道即可。 完整代码: #include "servo.h&quo…...
「AI学习笔记」深度学习的起源与发展:从神经网络到大数据(二)
深度学习(DL)是现代人工智能(AI)的核心之一,但它并不是一夜之间出现的技术。从最初的理论提出到如今的广泛应用,深度学习经历了几乎一个世纪的不断探索与发展。今天,我们一起回顾深度学习的历史…...
专业视角深度解析:DeepSeek的核心优势何在?
杭州深度求索(DeepSeek)人工智能基础技术研究有限公司,是一家成立于2023年7月的中国人工智能初创企业,总部位于浙江省杭州市。该公司由量化对冲基金幻方量化(High-Flyer)的联合创始人梁文锋创立,…...
科技巨头AI投资引领未来增长
标题:科技巨头AI投资引领未来增长 文章信息摘要: 2024年科技巨头的资本支出远超预期,达到2360亿美元,主要得益于AI基础设施和数据中心建设的加速。预计2025年这一趋势将继续保持强劲增长,资本支出可能突破3000亿美元。…...
【Unity3D】Tilemap俯视角像素游戏案例
目录 一、导入Tilemap 二、导入像素风素材 三、使用Tilemap制作地图 3.1 制作Tile Palette素材库 3.2 制作地图 四、实现A*寻路 五、待完善 一、导入Tilemap Unity 2019.4.0f1 已内置Tilemap 需导入2D Sprite、2D Tilemap Editor、以及一个我没法正常搜出的2D Tilemap…...
Java 知识速记:全面解析 final 关键字
Java 知识速记:全面解析 final 关键字 什么是 final 关键字? final 关键字是 Java 中的一个修饰符。它可以用于类、方法和变量,其作用是限制对这些元素的修改。究竟如何限制?我们来逐个分析。 final 在变量中的用法 1. 声明常…...
《智能家居“孤岛危机”:设备孤立如何拖垮系统优化后腿》
在科技飞速发展的今天,智能家居不再是遥不可及的概念,它正逐渐走进千家万户,为我们描绘出舒适便捷的未来生活蓝图。想象一下,下班回家前,你可以通过手机远程开启空调,让室内温度恰到好处;到家时…...
大数据学习之Kafka消息队列、Spark分布式计算框架一
Kafka消息队列 章节一.kafka入门 4.kafka入门_消息队列两种模式 5.kafka入门_架构相关名词 Kafka 入门 _ 架构相关名词 事件 记录了世界或您的业务中 “ 发生了某事 ” 的事实。在文档中 也称为记录或消息。当您向 Kafka 读取或写入数据时,您以事件的 形式执行…...
Linux《基础指令》
在之前的Linux《Linux简介与环境的搭建》当中我们已经初步了解了Linux的由来和如何搭建Linux环境,那么接下来在本篇当中我们就要来学习Linux的基础指令。在此我们的学习是包括两个部分,即指令和关于Linux的基础知识;因此本篇指令和基础知识的…...
Avalonia+ReactiveUI跨平台路由:打造丝滑UI交互的奇幻冒险
一、引言 在当今数字化时代,跨平台应用开发已成为大势所趋。开发者们迫切需要一种高效、灵活的方式,能够让应用程序在不同操作系统上无缝运行,为用户提供一致的体验。Avalonia 和 ReactiveUI 的组合,宛如一对天作之合的舞者&…...
Ansible自动化运维实战--通过role远程部署nginx并配置(8/8)
文章目录 1、准备工作2、创建角色结构3、编写任务4、准备配置文件(金甲模板)5、编写变量6、编写处理程序7、编写剧本8、执行剧本Playbook9、验证-游览器访问每台主机的nginx页面 在 Ansible 中,使用角色(Role)来远程部…...
H264原始码流格式分析
1.H264码流结构组成 H.264裸码流(Raw Bitstream)数据主要由一系列的NALU(网络抽象层单元)组成。每个NALU包含一个NAL头和一个RBSP(原始字节序列载荷)。 1.1 H.264码流层次 H.264码流的结构可以分为两个层…...
批量解密,再也没有任何限制了
有的时候我们在网上下载了PDF文档。发现没有办法进行任何的操作,就连打印权限都没有。今天给大家介绍的这个软件可以一键帮你进行PDF解密,非常方便,完全免费。 PDF智能助手 批量解密PDF文件 这个软件不是很大,只有10MBÿ…...
认识小程序的基本组成结构
1.基本组成结构 2.页面的组成部分 3.json配置文件 4.app.json文件(全局配置文件) 5.project.config.json文件 6.sitemap.json文件 7.页面的.json配置文件 通过window节点可以控制小程序的外观...
模型I/O
文章目录 什么是模型I/O模型I/O功能之输出解析器输出解析器的功能输出解析器的使用Pydantic JSON输出解析器结构化输出解析器 什么是模型I/O 模型I/O在所有LLM应用中,核心元素无疑都是模型本身。与模型进行有效的交互是实现高效、灵活和可扩展应用的关键。LangChain…...
DeepSeek模型:开启人工智能的新篇章
DeepSeek模型:开启人工智能的新篇章 在当今快速发展的技术浪潮中,人工智能(AI)已经成为了推动社会进步和创新的核心力量之一。而DeepSeek模型,作为AI领域的一颗璀璨明珠,正以其强大的功能和灵活的用法&…...
git push到远程仓库时无法推送大文件
一、错误 remote: Error: Deny by project hooks setting ‘default’: size of the file ‘scientific_calculator’, is 164 MiB, which has exceeded the limited size (100 MiB) in commit ‘4c91b7e3a04b8034892414d649860bf12416b614’. 二、原因 本地提交过大文件&am…...
初识ExecutorService
设计目的 ExecutorService是Java并发包(java.util.concurrent)的一部分,旨在提供一种更高层次的抽象来管理线程和任务执行。它解决了手动创建和管理线程带来的复杂性和资源浪费问题,通过复用固定数量的线程池来处理大量短生命周期的任务,从而…...
初二回娘家
昨天下午在相亲相爱一家人群里聊天,今天来娘家拜年。 聊天结束后,开始准备今天的菜肴,梳理了一下,凉菜,热菜,碗菜。 上次做菜,粉丝感觉泡的不透,有的硬,这次使用开水浸泡…...
js基础(黑马程序员)
Web APIs(day6) 一、正则表达式 1.介绍 正则表达式(Regular Expression):是用于匹配字符串中字符组合的模式。在 JavaScript中,正则表达式也是对象 通常用来查找、替换那些符合正则表达式的文本&#x…...
Java---猜数字游戏
本篇文章所实现的是Java经典的猜数字游戏 , 运用简单代码来实现基本功能 目录 一.题目要求 二.游戏准备 三.代码实现 一.题目要求 随机生成一个1-100之间的整数(可以自己设置区间),提示用户猜测,猜大提示"猜大了",…...
Oracle Primavera P6 最新版 v24.12 更新 2/2
目录 一. 引言 二. P6 EPPM 更新内容 1. 用户管理改进 2. 更轻松地标准化用户设置 3. 摘要栏标签汇总数据字段 4. 将里程碑和剩余最早开始日期拖到甘特图上 5. 轻松访问审计数据 6. 粘贴数据时排除安全代码 7. 改进了状态更新卡片视图中的筛选功能 8. 直接从活动电子…...
【React】 react路由
这一篇文章的重点在于将React关于路由的问题都给搞清楚。 一个路由就是一个映射关系,key:value。key是路径,value 可能是function或者component。 安装react-router-dom包使用路由服务,我这里想要用的是6版本的包,因此后面加”6&q…...
Linux的常用指令的用法
目录 Linux下基本指令 whoami ls指令: 文件: touch clear pwd cd mkdir rmdir指令 && rm 指令 man指令 cp mv cat more less head tail 管道和重定向 1. 重定向(Redirection) 2. 管道(Pipes&a…...
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.18 逻辑运算引擎:数组条件判断的智能法则
1.18 逻辑运算引擎:数组条件判断的智能法则 1.18.1 目录 #mermaid-svg-QAFjJvNdJ5P4IVbV {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-QAFjJvNdJ5P4IVbV .error-icon{fill:#552222;}#mermaid-svg-QAF…...
C语言实现库函数strlen
size_t是 unsigned int fgets会读入\n,用strcspn函数除去 assert判读指针是否为空指针,使用前要引头文件<assert.h> #include <stdio.h> #include <assert.h> size_t mystrlen(const char* str) {assert(str);size_t count 0;while …...
18 大量数据的异步查询方案
在分布式的应用中分库分表大家都已经熟知了。如果我们的程序中需要做一个模糊查询,那就涉及到跨库搜索的情况,这个时候需要看中间件能不能支持跨库求交集的功能。比如mycat就不支持跨库查询,当然现在mycat也渐渐被摒弃了(没有处理笛卡尔交集的…...
FastExcel使用详解
文章目录 FastExcel使用详解一、引言二、环境准备与依赖引入1、Maven 依赖引入2、实体类定义 三、核心操作:读写 Excel1、读取 Excel1.1 自定义监听器1.2 读取文件 2、写入 Excel2.1 简单写入2.2 模板写入 四、Spring Boot 集成示例1、文件上传(导入&…...
深度学习python基础(第四节) 元组、字符串、集合和字典
本节主要介绍元组,字符串,集合,字典的基本语法定义,以及相关的操作. 元组的定义和操作 元组一旦定义完成就不可修改. """ # 定义元组字面量 (元素,元素,....,元素) # 元素可以不同的数据类型# 定义元组变量 变量名称 (元素,…...
QT串口通信,实现单个温湿度传感器数据的采集
1、硬件设备 RS485中继器(一进二出),usb转485模块、电源等等 => 累计115元左右。 2、核心代码 #include "MainWindow.h" #include "ui_MainWindow.h"MainWindow::...
绘制决策树尝试3
目录 代码解读AI 随机状态 种子 定义决策树回归模型 tree的decision regressor fit 还可用来预测 export 效果图 我的X只有一个特征 为何这么多分支 ??? 这是CART回归 CART回归 为什么说代码是CART回归? 不是所有的决…...
【逻辑学导论第15版】A. 推理
识别下列语段中的前提与结论。有些前提确实支持结论,有些并不支持。请注意,前提可能直接或间接地支持结论,而简单的语段也可能包含不止一个论证。 例题: 1.管理得当的民兵组织对于一个自由国家的安全是必需的,因而人民…...
qt-C++笔记之QLine、QRect、QPainterPath、和自定义QGraphicsPathItem、QGraphicsRectItem的区别
qt-C笔记之QLine、QRect、QPainterPath、和自定义QGraphicsPathItem、QGraphicsRectItem的区别 code review! 参考笔记 1.qt-C笔记之重写QGraphicsItem的paint方法(自定义QGraphicsItem) 文章目录 qt-C笔记之QLine、QRect、QPainterPath、和自定义QGraphicsPathItem、QGraphic…...
[Java]泛型(二)泛型方法
1.定义 在 Java 中,泛型方法是指在方法声明中使用泛型类型参数的一种方法。它使得方法能够处理不同类型的对象,而不需要为每种类型写多个方法,从而提高代码的重用性。 泛型方法与泛型类不同,泛型方法的类型参数仅仅存在于方法的…...
ProfibusDP主机与从机交互
ProfibusDP 主机SD2索要数据下发:68 08 F7 68 01 02 03 21 05 06 07 08 1C 1668:SD2 08:LE F7:LEr 68:SD2 01:目的地址 02:源地址 03:FC_CYCLIC_DATA_EXCHANGE功能码 21:数据地址 05,06,07,08&a…...
jQuery小游戏(二)
jQuery小游戏(二) 今天是新年的第二天,本人在这里祝大家,新年快乐,万事胜意💕 紧接jQuery小游戏(一)的内容,我们开始继续往下咯😜 游戏中使用到的方法 key…...
【MQ】如何保证消息队列的高可用?
RocketMQ NameServer集群部署 Broker做了集群部署 主从模式 类型:同步复制、异步复制 主节点返回消息给客户端的时候是否需要同步从节点 Dledger:要求至少消息复制到半数以上的节点之后,才给客户端返回写入成功 slave定时从master同步数据…...
简易计算器(c++ 实现)
前言 本文将用 c 实现一个终端计算器: 能进行加减乘除、取余乘方运算读取命令行输入,输出计算结果当输入表达式存在语法错误时,报告错误,但程序应能继续运行当输出 ‘q’ 时,退出计算器 【简单演示】 【源码位置】…...
AI大模型开发原理篇-4:神经概率语言模型NPLM
神经概率语言模型(NPLM)概述 神经概率语言模型(Neural Probabilistic Language Model, NPLM) 是一种基于神经网络的语言建模方法,它将传统的语言模型和神经网络结合在一起,能够更好地捕捉语言中的复杂规律…...
SpringBoot 基础特性
SpringBoot 基础特性 SpringApplication 相关特性 自定义 banner 在主配置文件写 banner.txt 的地址 #也可以不写默认路径就是 banner.txt #从类路径下找 banner #类路径就是 编译的target 目录 还有导入的第三方类路径。 spring.banner.locationclasspath:banner.txt#控制…...
网站快速收录:提高页面加载速度的重要性
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/32.html 网站快速收录中,提高页面加载速度具有极其重要的意义。以下从多个方面详细阐述其重要性: 一、提升用户体验 减少用户等待时间:页面加载速度直接…...
如何使用formlinker,重构微软表单创建的数字生产力法则?
仅需三步:上传文件-下载文件-导入文件到微软表单 凌晨两点的格式炼狱:被浪费的300万小时人类创造力 剑桥大学的实验室曾捕捉到一组震撼数据:全球教育工作者每年花在调整试题格式上的时间,足够建造3座迪拜哈利法塔。当北京某高校的…...