当前位置: 首页 > news >正文

openRv1126 AI算法部署实战之——ONNX模型部署实战

 在RV1126开发板上部署ONNX算法,实时目标检测+RTSP传输。视频演示地址

rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili

一、准备工作

1.从官网下载YOLOv5-v7.0工程(YOLOv5的第7个版本)

手动在线下载: Releases · ultralytics/yolov5 · GitHub

手动在线下载地址: https://github.com/ultralytics/yolov5/releases

往下拉找到yolov5s.pt和source code(tar.gz)并下载

在虚拟机中新建1个文件夹yolo,将上面下载的yolov5-7.0.tar.gz工程拷贝到虚拟机并解压,

得到/home/rv1126/yolo/yolov5-7.0文件夹

然后将yolov5s.pt拷贝至解压后的yolov5-7.0目录

2.YOLO初体验—ubuntu下跑YOLO预训练模型

首先进入pytorch训练环境,再进入yolo工程目录

conda activate py3.8-pytorch-1.13.0
cd /home/rv1126/yolo/yolov5-7.0/

在虚拟机中运行yolo程序

python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images

上述命令表示:采用预训练模型yolov5s.pt, 喂入模型中的图片被resize为640*640大小, 置信度阈值为0.25, 源图片位于data/images下

运行结束后生成的已标记目标的图片文件放在run/detect/exp目录

二、YOLOV5模型转换为RKNN格式

1.修改models/yolo.py文件

    打开/home/rv1126/yolo/yolov5-7.0/models/yolo.py找到59行,添加3个输出。注释后面的1输出。

注意python对文件格式要求较高,如果不会改或者改完报错,请拷贝/home/rv1126/yolov5/yolov5-7.0-github/models/yolo.py文件替换/home/rv1126/yolo/yolov5-7.0/models/yolo.py文件

2.将yolov5s.pt导出为yolov5s.onnx文件

注意当前环境为训练环境(py3.8-pytorch-1.13.0)

python export.py --weights yolov5s.pt --img 640 --batch 1 --include onnx

在当前路径生成yolov5s.onnx

3.将yolov5s.onnx模型转换为yolov5s.rknn

从/home/rv1126/yolov5/yolov5-7.0-github路径中拷贝模型转换脚本convert-onnx-to-rknn-pre.py和文件夹img到当前路径/home/rv1126/yolo/yolov5-7.0

进入模型转换环境

conda activate py3.6-rknn-1.7.3

开始转换模型

python convert-onnx-to-rknn-pre.py

​​​​​在当前目录生成yolov5.rknn

三、部署yolov5.rknn到RV1126开发板上

1.准备工作

首先在开发板执行如下命令,退出出厂测试程序

killall rkmedia_rockx_person_detection

在开发板执行如下命令,挂载nfs根文件系统

busybox mount -t nfs -o nolock,nfsvers=3 192.168.1.108:/home/rv1126 /getnfs/

2.拷贝模型到开发板并运行程序

cd /getnfs/yolo/yolov5-7.0
cp yolov5s.rknn /demo/bin/yolov5s_relu_rv1109_rv1126_out_opt.rknn

在开发板执行如下命令 运行yolo例程

/demo/bin/openRv1126_yolov5_object_recognize

3.VLC查看视频,串口查看打印坐标

然后在电脑上打开VLC播放器,输入如下取流地址。注意IP地址请根据实际修改

rtsp://192.168.1.105/live/main_stream

即可看到实时yolo检测的视频画面。

串口实时打印检测框坐标信息

如需退出请按ctrl+c

4.源码说明

上面运行的openRv1126_yolov5_object_recognize程序源码位于路径:

/home/rv1126/openRv1126-Aidemo/openRv1126_yolov5_object_recognize_rtsp

该源码定义了模型路径、数据集路径、识别类目数量如下

/home/rv1126/openRv1126-Aidemo/openRv1126_yolov5_object_recognize_rtspopenRv1126_yolov5_object_recognize.cpp指定模型路径static char *model_path = "/demo/bin/yolov5s_relu_rv1109_rv1126_out_opt.rknn";postprocess.cc指定数据集路径	#define LABEL_NALE_TXT_PATH "/demo/bin/coco_80_labels_list.txt"postprocess.h指定模型识别类目数量#define OBJ_CLASS_NUM     80

附录:操作命令

附录
pytorch/ONNX预训练模型转换rknn onnx/torchscript->rknn思路:yolov5 v7在训练环境导出为torchscript或onnx,然后在转换环境调用对应的API来转换成RKNN模型https://github.com/ultralytics/yolov5/releases	找到v7,往下拉找到 yolov5s.pt 和 source code(tar.gz)并下载
1.下载yolov5 v7工程,并导出pt->onnx/torchscript1.1修改models/yolo.py第59行打开注释,3个输出。注释后面的1输出return x[0],x[1],x[2]1.2修改好models/yolo.py文件中的def forward(self, x)函数以后, 可执行如下命令, 将.pt文件导出.onnx 或者. torchscript格式文件:// 转换为TorchScript格式, 得到 yolov5s.torchscript文件python export.py --weights ./yolov5s.pt --img 640 --batch 1 --include torchscript// 转换为ONNX格式, 得到 yolov5s.onnx文件python export.py --weights ./yolov5s.pt --img 640 --batch 1 --include onnx// 若需要指定opset, 可根据安装的onnx库的版本来调整, 如安装的onnx库的版本是1.12.0, 后面加上--opset 12python export.py --weights ./yolov5s.pt --img 640 --batch 1 --include onnx --opset 122.模型转换 onnx/torchscript->rknn2.1源码解析target = 'rv1126'# 确定目标设备targetrknn = RKNN()# 创建RKNN对象rknn.config(reorder_channel='0 1 2',mean_values=[[0, 0, 0]],std_values=[[255, 255, 255]],target_platform=target,output_optimize=1)rknn.load_pytorch(model="./original_model/best.torchscript", input_size_list=[[3,640,640]])# 加载模型rknn.build(dataset='./dataset/dataset1.txt',pre_compile=True)# 构建 RKNN 模型,并预处理rknn.export_rknn('./rknn_model/yolov5-7.0-torchscript.rknn')# 导出 RKNN 模型rknn.release()# 释放RKNN对象2.2转换实操:yolov5导出,复制到/home/rv1126/ModelConvertSample/original_model  best.onnx 和 best.torchscriptpython convert-onnx-to-rknn-pre.py python convert-pytorch-to-rknn-pre.py生成 /home/rv1126/ModelConvertSample/rknn_model/ yolov5-7.0-onnx.rknn 和 yolov5-7.0-torchscript.rknn

相关文章:

openRv1126 AI算法部署实战之——ONNX模型部署实战

在RV1126开发板上部署ONNX算法,实时目标检测RTSP传输。视频演示地址 rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili 一、准备工作 1.从官网下载YOLOv5-v7.0工程(YOLOv5的第7个版本) 手动在线下载: Releases ultraly…...

实验作业管理系统的设计与实现

标题:实验作业管理系统的设计与实现 内容:1.摘要 本系统旨在解决当前实验作业管理中存在的问题,提高管理效率和质量。通过对现有系统的调研和分析,我们确定了系统的功能需求和性能要求,并采用了先进的技术和架构进行设计和实现。系统实现了实…...

【愚公系列】《循序渐进Vue.js 3.x前端开发实践》032-组件的Teleport功能

标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主&…...

leetcode——二叉树的最大深度(java)

给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3 示例 2: 输入:root [1,null,2] 输…...

【PyTorch】3.张量类型转换

个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch&#xff0…...

自制一个入门STM32 四足机器人具体开发顺序

0 前期准备 1. 知识储备 学习 STM32 微控制器的基础知识,包括 GPIO、定时器、串口通信等外设的使用,可通过官方文档、教程和视频课程进行学习。了解舵机控制原理,因为四足机器人通常使用舵机来实现关节运动。掌握基本的机械结构设计知识&am…...

SpringCloud基础二(完结)

HTTP客户端Feign 在SpringCloud基础一中,我们利用RestTemplate结合服务注册与发现来发起远程调用的代码如下: String url "http://userservice/user/" order.getUserId(); User user restTemplate.getForObject(url, User.class);以上代码就…...

云原生时代,如何构建高效分布式监控系统

文章目录 一.监控现状二.Thanos原理分析SidecarQuerierStoreCompactor 三.Sidecar or ReceiverThanos Receiver工作原理 四.分布式运维架构 一.监控现状 Prometheus是CNCF基金会管理的一个开源监控项目,由于其良好的架构设计和完善的生态,迅速成为了监控…...

WordPress使用(1)

1. 概述 WordPress是一个开源博客框架,配合不同主题,可以有多种展现方式,博客、企业官网、CMS系统等,都可以很好的实现。 官网:博客工具、发布平台和内容管理系统 – WordPress.org China 简体中文,这里可…...

小白爬虫冒险之反“反爬”:无限debugger、禁用开发者工具、干扰控制台...(持续更新)

背景浅谈 小白踏足JS逆向领域也有一年了,对于逆向这个需求呢主要要求就是让我们去破解**“反爬机制”**,即反“反爬”,脚本处理层面一般都是decipher网站对request设置的cipher,比如破解一个DES/AES加密拿到key。这篇文章先不去谈…...

Time Constant | RC、RL 和 RLC 电路中的时间常数

注:本文为 “Time Constant” 相关文章合辑。 机翻,未校。 How To Find The Time Constant in RC and RL Circuits June 8, 2024 💡 Key learnings: 关键学习点: Time Constant Definition: The time constant (τ) is define…...

Python爬虫学习第三弹 —— Xpath 页面解析 实现无广百·度

早上好啊,大佬们。上回使用 Beautiful Soup 进行页面解析的内容是不是已经理解得十分透彻了~ 这回我们再来尝试使用另外一种页面解析,来重构上一期里写的那些代码。 讲完Xpath之后,小白兔会带大家解决上期里百度搜索的代码编写,保…...

JS 正则表达式 -- 分组【详解】含普通分组、命名分组、反向引用

普通分组 使用圆括号 () 来创建分组捕获匹配的内容,通过正则表达式匹配结果的数组来访问这些捕获的内容。 const str "Hello, World!"; const regex /(Hello), (World)!$/; const match str.match(regex);if (match) {console.log("完整匹配结果…...

Leetcode刷题-不定长滑动窗口

分享丨【题单】滑动窗口与双指针(定长/不定长/单序列/双序列/三指针/分组循环) - 力扣(LeetCode) 3090 class Solution:def maximumLengthSubstring(self, s: str) -> int:c Counter()res 0rk -1for i in range(len(s)):i…...

【Rust自学】15.6. RefCell与内部可变性:“摆脱”安全性限制

题外话,这篇文章一共4050字,是截止到目前为止最长的文章,如果你能坚持读完并理解,那真的很强! 喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以…...

护眼好帮手:Windows显示器调节工具

在长时间使用电脑的过程中,显示器的亮度和色温对眼睛的舒适度有着重要影响。传统的显示器调节方式不仅操作繁琐,而且在低亮度下容易导致色彩失真。因此,今天我想为大家介绍一款适用于Windows系统的护眼工具,它可以帮助你轻松调节显…...

使用 OpenResty 构建高效的动态图片水印代理服务20250127

使用 OpenResty 构建高效的动态图片水印代理服务 在当今数字化的时代,图片在各种业务场景中广泛应用。为了保护版权、统一品牌形象,动态图片水印功能显得尤为重要。然而,直接在后端服务中集成水印功能,往往会带来代码复杂度增加、…...

36、【OS】【Nuttx】OSTest分析(2):环境变量测试

背景 2025.1.29 蛇年快乐! 接之前wiki 35、【OS】【Nuttx】OSTest分析(1):stdio测试(五) 已经分析完了第一个测试项,输入输出端口测试,接下来分析下环境变量测试,也比较…...

C++并发编程指南04

文章目录 共享数据的问题3.1.1 条件竞争双链表的例子条件竞争示例恶性条件竞争的特点 3.1.2 避免恶性条件竞争1. 使用互斥量保护共享数据结构2. 无锁编程3. 软件事务内存(STM) 总结互斥量与共享数据保护3.2.1 互斥量使用互斥量保护共享数据示例代码&…...

Java实现LRU缓存策略实战

实现LRU模型选择LRU缓存回收算法集成Google Guava(LRU缓存策略)插件Google Guava(LRU策略)缓存示例总结LRU(Least Recently Used,最近最少使用)缓存是一种常见的缓存淘汰策略。它的基本思想是优先保留最近被访问过的数据,淘汰最久未被访问的数据。这种策略的目的是为了…...

三个不推荐使用的线程池

线程池的种类 其实看似这么多的线程池,都离不开ThreadPoolExecutor去创建,只不过他们是简化一些参数 newFixedThreadPool 里面全是核心线程 有资源耗尽的风险,任务队列最大长度为Integer.MAX_VALUE,可能会堆积大量的请求&#xff…...

Golang 并发机制-1:Golang并发特性概述

并发是现代软件开发中的一个基本概念,它使程序能够同时执行多个任务,从而提高效率和响应能力。在本文中,我们将探讨并发性在现代软件开发中的重要性,并深入研究Go处理并发任务的独特方法。 并发的重要性 增强性能 并发在提高软…...

Flink中的时间和窗口

在批处理统计中,我们可以等待一批数据都到齐后,统一处理。但是在实时处理统计中,我们是来一条就得处理一条,那么我们怎么统计最近一段时间内的数据呢?引入“窗口”。 所谓的“窗口”,一般就是划定的一段时…...

Alfresco Content Services dockerCompose自动化部署详尽操作

Alfresco Content Services docker社区部署文档 Alfresco Content Services简介 官方说明书 https://support.hyland.com/r/Alfresco/Alfresco-Content-Services-Community-Edition/23.4/Alfresco-Content-Services-Community-Edition/Using/Content/Folder-rules/Defining-…...

吴恩达深度学习——深层神经网络

来自https://www.bilibili.com/video/BV1FT4y1E74V,仅为本人学习所用。 符号约定 对于该深层网络,有四层,包含三个隐藏层和一个输出层。 隐藏层中,第一层有五个单元、第二层有五个单元,第三层有三个单元。标记 l l l…...

【算法设计与分析】实验1:字符串匹配问题的算法设计与求解

目录 一、实验目的 二、实验环境 三、实验内容 四、核心代码 五、记录与处理 六、思考与总结 七、完整报告和成果文件提取链接 一、实验目的 给定一个文本,在该文本中查找并定位任意给定字符串。 1、深刻理解并掌握蛮力法的设计思想; 2、提高应用…...

C语言二级题解:查找字母以及其他字符个数、数字字符串转双精度值、二维数组上下三角区域数据对调

目录 一、程序填空题 --- 查找字母以及其他字符个数 题目 分析 二、程序修改 --- 数字字符串转双精度值 题目 分析 小数位字符串转数字 三、程序设计 --- 二维数组上下三角区域数据对调 题目 分析 前言 本文来讲解: 查找字母以及其他字符个数、数字字符串…...

Git进阶之旅:Git 配置信息 Config

Git 配置级别: 仓库级别:local [ 优先级最高 ]用户级别:global [ 优先级次之 ]系统级别:system [ 优先级最低 ] 配置文件位置: git 仓库级别对应的配置文件是当前仓库下的 .git/configgit 用户级别对应的配置文件时用…...

Qwen2-VL:在任何分辨率下增强视觉语言模型对世界的感知 (大型视觉模型 核心技术 分享)

摘要 我们推出了Qwen2-VL系列,这是对之前Qwen-VL模型的高级升级,重新定义了视觉处理中的常规预设分辨率方法。Qwen2-VL引入了Naive Dynamic Resolution机制,使模型能够动态地将不同分辨率的图像转换为不同的视觉令牌数量。这种方法允许模型生成更高效和准确的视觉表示,紧密…...

【C语言】在Windows上为可执行文件.exe添加自定义图标

本文详细介绍了在 Windows 环境下,如何为使用 GCC 编译器编译的 C程序 添加自定义图标,从而生成带有图标的 .exe 可执行文件。通过本文的指导,读者可以了解到所需的条件以及具体的操作步骤,使生成的程序更具专业性和个性化。 目录 1. 准备条件2. 具体步骤步骤 1: 准备资源文…...

记录 | Docker的windows版安装

目录 前言一、1.1 打开“启用或关闭Windows功能”1.2 安装“WSL”方式1:命令行下载方式2:离线包下载 二、Docker Desktop更新时间 前言 参考文章:Windows Subsystem for Linux——解决WSL更新速度慢的方案 参考视频:一个视频解决D…...

FortiOS 存在身份验证绕过导致命令执行漏洞(CVE-2024-55591)

免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…...

系统思考—心智模式

“我们的大脑对连贯性的渴望远胜于对准确性的追求。”—诺贝尔经济学得主丹尼尔卡尼曼 在面对复杂的决策时,我们往往更倾向于寻找那些能够迅速串联起来的信息,而非深入挖掘每一个细节的真实性。这种倾向在日常生活中或许能帮助我们迅速作出决策&#xf…...

【信息系统项目管理师-选择真题】2008上半年综合知识答案和详解

更多内容请见: 备考信息系统项目管理师-专栏介绍和目录 文章目录 【第1题】【第2题】【第3题】【第4题】【第5题】【第6题】【第7~8题】【第9题】【第10题】【第11题】【第12题】【第13题】【第14题】【第15题】【第16~20题】【第21题】【第22题】【第23题】【第24题】【第25题…...

深入理解三高架构:高可用性、高性能、高扩展性的最佳实践

引言 在现代互联网环境下,随着用户规模和业务需求的快速增长,系统架构的设计变得尤为重要。为了确保系统能够在高负载和复杂场景下稳定运行,"三高架构"(高可用性、高性能、高扩展性)成为技术架构设计中的核…...

从 SAP 功能顾问到解决方案架构师:破茧成蝶之路

目录 行业瞭望:架构师崭露头角 现状剖析:功能顾问的局限与机遇 能力跃迁:转型的核心要素 (一)专业深度的掘进 (二)集成能力的拓展 (三)知识广度的延伸 &#xff0…...

《从因果关系的角度学习失真不变表示以用于图像恢复》学习笔记

paper:2303.06859 GitHub:lixinustc/Causal-IR-DIL: Distortion invariant feature learning for image restoration from a causality perspective 2023 CVPR 目录 摘要 1、介绍 1.1 图像修复任务 1.2 失真不变表示学习 1.3 因果效应估计的挑战…...

STM32 PWM驱动直流电机

接线图: 代码配置: 根据驱动舵机的代码来写,与舵机不同的是,这次的引脚接到了PA2上,所以需要改一下引脚以及改为OC3通道。 另外还需在配置两个GPIO引脚,来控制电机的旋转方向,这里连接到了PA4与…...

【Hadoop】Hadoop 概述

Hadoop 概述 Hadoop 是什么Hadoop 发展历史Hadoop 三大发行版本Hadoop 优势(4 高)Hadoop 组成(面试重点)HDFS 架构概述YARN 架构概述MapReduce 架构概述HDFS、YARN、MapReduce 三者关系 大数据技术生态体系 Hadoop 是什么 Hadoop…...

【仪器分析】FACTs-幅度

** 当然,这回是一篇没有插图的文章,但是有足够多的描述可以用来想象。 我拿这个系列当作前传试试水 引言。正弦信号可能会发生怎样的变化? ** 近日学FACTs,险些成为传函丁真, 如果从仪器角度考察正弦信号的测量&…...

deepseek R1的确不错,特别是深度思考模式

deepseek R1的确不错,特别是深度思考模式,每次都能自我反省改进。比如我让 它写文案: 【赛博朋克版程序员新春密码——2025我们来破局】 亲爱的代码骑士们: 当CtrlS的肌肉记忆遇上抢票插件,当Spring Boot的…...

Unity敌人逻辑笔记

写ai逻辑基本上都需要状态机。因为懒得手搓状态机,所以选择直接用动画状态机当逻辑状态机用。 架构设计 因为敌人的根节点已经有一个animator控制动画,只能增加一个子节点AI,给它加一个animator指向逻辑“动画”状态机。还有一个脚本&#…...

C++,STL 简介:历史、组成、优势

文章目录 引言一、STL 的历史STL 的核心组成三、STL 的核心优势四、结语进一步学习资源: 引言 C 是一门强大且灵活的编程语言,但其真正的魅力之一在于其标准库——尤其是标准模板库(Standard Template Library, STL)。STL 提供了…...

【事务管理】

目录 一. 介绍与操作二. Spring事务管理三. 事务四大特性 \quad 一. 介绍与操作 \quad \quad 二. Spring事务管理 \quad 推荐加在经常进行增删改的方法上 \quad 三. 事务四大特性 \quad ctrlaltt...

ERP革新:打破数据壁垒,重塑市场竞争

标题:ERP革新:打破数据壁垒,重塑市场竞争 文章信息摘要: Operator和Computer Use等工具通过模拟用户交互和自动化数据提取,绕过了传统ERP系统的API限制,打破了其数据护城河。这种技术革新降低了企业切换软…...

小阿卡纳牌

小阿卡纳牌 风:热湿 火:热干 水:冷湿 土:冷干 火风:温度相同,但是湿度不同,二人可能会在短期内十分热情,但是等待热情消退之后,会趋于平淡。 湿度相同、温度不同&#x…...

android的gradle

资料: GitHub - ChenSWD/CopyGradleInAction: 备份《Gradle IN Action》书中的源码,添加了部分注释 //github上一个开源项目,外加pdf书 Gradle User Manual gradle官网 讲的挺好的博客 Gradle之重新认识Gradle(项目结构、命令行、tas…...

时间轮:XXL-JOB 高效、精准定时任务调度实现思路分析

大家好,我是此林。 定时任务是我们项目中经常会遇到的一个场景。那么如果让我们手动来实现一个定时任务框架,我们会怎么做呢? 1. 基础实现:简单的线程池时间轮询 最直接的方式是创建一个定时任务线程池,用户每提交一…...

【愚公系列】《循序渐进Vue.js 3.x前端开发实践》029-组件的数据注入

标题详情作者简介愚公搬代码头衔华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主&…...

「 机器人 」扑翼飞行器控制的当前挑战与后续潜在研究方向

前言 在扑翼飞行器设计与控制方面,虽然已经取得了显著的进步,但在飞行时间、环境适应性、能量利用效率及模型精度等方面依旧存在亟待解决的挑战。以下内容概括了这些挑战和可能的改进路径。 1. 当前挑战 1.1 飞行时间短 (1)主要原因 能源存储有限(电池容量小)、驱动系…...