神经网络|(六)概率论基础知识-全概率公式
【1】引言
在前序学习进程中,我们已经对条件概率做了分析,知晓了古典概型下,求某个条件下某事件发生的概率,应该是计算促成条件发生的事件和要求的某事件都发生的综合概率。
再次回忆一下条件概率的定义:
条件概率就是在A事件已经发生的条件下,B事件发生的概率。
设A、B是两个事件,且P(A)>0,A事件发生的条件下B事件发生的条件概率为:
上式很容易推出新表达式:P(AB)=P(B|A)P(A)
根据新的表达式,我们做进一步拓展:如果所有A事件本身就是一个古典概型的全部,也就是单独的P(A)=1,那P(AB)可以理解为就是P(B)。这个拓展就是全概率公式。
【2】全概率公式
为说明全概率公式,首先回忆古典概型的示例:投币游戏,任何一次投币正面朝上的概率都是1/2,问:前两次投币正面朝上,但第三次投币反面朝上的概率?
已知三次投币的所有可能情况:
【正正正,正正反,正反正,正反反,反正正,反正反,反反正,反反反】
所以,前两次投币正面朝上,但第三次投币反面朝上只有一种情况,是1/8。
在熟悉古典概型的前提下,如果又掌握了条件概率,也可以算出:
P(正正反)=P(反|正正)P(正正)=P(反|正正)P(正|正)P(正)=(1/2)(1/2)(1/2)=1/8。
上述两种计算方法中,都是因为单次试验的概率已经确切知晓:无论正反都是1/2。
在第一种举例和第二种条件概率的计算方法之外,我们还可以直接使用分步相乘的原则,第一步正面朝上的概率是1/2,第二步正面朝上的概率是1/2,第三步反面朝上的概率是1/2,综合起来P(正正反)=(1/2)(1/2)(1/2)=1/8。
所以,现在至少找到三种方法计算正正反投币结果的概率:举例法、条件概率法和分布相乘法。
在此基础上,如果不关心前两次投币结果,只在意第三次投币为反的结果,通过举例法可知,一共有四种:【正正反,正反反,反正反,反反反】,而三次投币的所有结果是八种可能,所以第三次投币结果为反的概率是1/2。
实际上,我们本来就知道第三次投币结果为反的概率是1/2,因为这是个简单的古典概型,每一步的概率都确切是1/2。
又举例的目的是:说明当前这个1/2和前面的1/8是在不同条件下得到的。
1/2:不关心前两次投币结果,只在意第三次投币为反
1/8:前两次投币正面朝上,但第三次投币反面
前两次投币的所有可能:【正正,正反,反正,反反】。可见,前两次投币正面朝上,只是前两次投币结果的一种可能。
在此分析基础上,增加标记方法,记第i次投币结果正面朝上为Ai、反面朝上为Bi,则有:
P(A1)=1/2
P(A2)=1/2=P(A2A1)+P(A2B1)=(1/2)(1/2)+(1/2)(1/2)=1/2
P(A3)=1/2=P(A3A2A1)+P(A3A2B1)+P(A3B2A1)+P(A3B2B1)
=(1/2)(1/2)(1/2)+(1/2)(1/2)(1/2)+(1/2)(1/2)(1/2)+(1/2)(1/2)(1/2)
=1/2
如果把前两次投币的所有可能【正正,正反,反正,反反】两两综合起来,只看做一个结果,分别记作C1,C2,C3和C4,很显然P(Ci)=1/4(i=1,2,3,4),此时P(A3)可以写作:
P(A3)=P(A3C1)+P(A3C2)+P(A3C3)+P(A3C4)
=P(A3|C1)P(C1)+P(A3|C1)P(C1)+P(A3|C1)P(C1)+P(A3|C1)P(C1)
=(1/2)(1/4)+(1/2)(1/4)+(1/2)(1/4)+(1/2)(1/4)
=1/2
至此,我们已经获得全概率公式:P(A3)=P(A3C1)+P(A3C2)+P(A3C3)+P(A3C4)
全概率公式相对于条件概率公式,是综合所有条件后得出的。
在条件概率这篇文章中已经知晓:求条件概率,应该就算综合概率,那求全概率,就是综合所有可能得条件,可见全概率是条件概率的扩展。
需要注意的是:全概率、综合的所有条件,应该是彼此互斥但总体互补的关系,它们互不隶属,但总体上能凑成一个完整的试验。
为说明“彼此互斥但总体互补的关系,它们互不隶属,但总体上能凑成一个完整的试验”的意义,用投币两次的可能为例:
上述分析中,将【正正,正反,反正,反反】分别记作C1,C2,C3和C4,很显然P(Ci)=1/4(i=1,2,3,4),C1,C2,C3和C4两两互不隶属,但总体上互补,它们凑起来描述了两次投币的所有可能,它们的总概率加起来=1。
至此,全概率公式写作更通用的形式:
P(A)=P(AB1)+P(AB2)+...++P(ABn)(i=1,2...,Bi代表彼此互斥但总体互补的条件)
【3】总结
回顾了全概率公式的推导过程,了解了全概率的本质意义。全概率公式比条件概率公式的乘法形式内容更丰富,因为全概率公式综合了所有条件,这些条件彼此互斥又总体互补。
相关文章:
神经网络|(六)概率论基础知识-全概率公式
【1】引言 在前序学习进程中,我们已经对条件概率做了分析,知晓了古典概型下,求某个条件下某事件发生的概率,应该是计算促成条件发生的事件和要求的某事件都发生的综合概率。 再次回忆一下条件概率的定义: 条件概率就…...
LLM推理优化:数据、模型与系统级策略
标题:“LLM推理优化:数据、模型与系统级策略” 文章信息摘要: 文章探讨了大语言模型(LLM)推理优化的多层次策略,包括数据级、模型级和系统级优化。数据级优化通过输入压缩和提示工程提升效率;模…...
人工智能在医疗领域的应用有哪些?
人工智能在医疗领域的应用十分广泛,涵盖了诊断、治疗、药物研发等多个环节,以下是一些主要的应用: 医疗影像诊断 疾病识别:通过分析 X 光、CT、MRI 等影像,人工智能算法能够识别出肿瘤、结节、骨折等病变,…...
K8S极简教程(4小时快速学会)
1. K8S 概览 1.1 K8S 是什么 K8S官网文档:https://kubernetes.io/zh/docs/home/ 1.2 K8S核心特性 服务发现与负载均衡:无需修改你的应用程序即可使用陌生的服务发现机制。存储编排:自动挂载所选存储系统,包括本地存储。Secret和…...
大数据学习之SCALA分布式语言三
7.集合类 111.可变set一 112.可变set二 113.不可变MAP集合一 114.不可变MAP集合二 115.不可变MAP集合三 116.可变map一 package com . itbaizhan . chapter07 //TODO 2. 使用 mutable.Map 前导入如下包 import scala . collection . mutable // 可变 Map 集合 object Ma…...
[免费]基于Python的Django博客系统【论文+源码+SQL脚本】
大家好,我是java1234_小锋老师,看到一个不错的基于Python的Django博客系统,分享下哈。 项目视频演示 【免费】基于Python的Django博客系统 Python毕业设计_哔哩哔哩_bilibili 项目介绍 随着互联网技术的飞速发展,信息的传播与…...
ES设置证书和创建用户,kibana连接es
1、启动好es 2、进入es容器 docker exec -it es /bin/bash 3、生成ca证书 ./bin/elasticsearch-certutil ca 注:两个红方框位置直接回车 4、生成cert证书 ./bin/elasticsearch-certutil cert --ca elastic-stack-ca.p12 注:前两个红框直接回车&am…...
“大模型横扫千军”背后的大数据挖掘--浅谈MapReduce
文章目录 O 背景知识1 数据挖掘2 邦费罗尼原则3 TF.IDF4 哈希函数5 分布式文件系统 一、MapReduce基本介绍1. Map 任务2. 按键分组3. Reduce 任务4. 节点失效处理5.小测验:在一个大型语料库上有100个map任务和若干reduce任务: 二、基于MapReduce的基本运…...
< OS 有关 > 阿里云 几个小时前 使用密钥替换 SSH 密码认证后, 发现主机正在被“攻击” 分析与应对
信息来源: 文件:/var/log/auth.log 因为在 sshd_config 配置文件中,已经定义 LogLevel INFO 部分内容: 2025-01-27T18:18:55.68272708:00 jpn sshd[15891]: Received disconnect from 45.194.37.171 port 58954:11: Bye Bye […...
【C++高并发服务器WebServer】-7:共享内存
本文目录 一、共享内存1.1 shmget函数1.2 shmat1.3 shmdt1.4 shmctl1.5 ftok1.6 共享内存和内存映射的关联1.7 小demo 二、共享内存操作命令 一、共享内存 共享内存允许两个或者多个进程共享物理内存的同一块区域(通常被称为段)。由于一个共享内存段会称…...
Python中容器类型的数据(下)
集合 集合 (set) 是一种可迭代的、无序的、不能包含重复元素的容器类型的数据。 Python中的集合是一种重要的数据结构,以下为你详细介绍: 定义与特点 无序性:集合中的元素没有固定顺序, {1, 2, 3} 和 {3, 2, 1} 在Python中是同一…...
JavaScript系列(45)--响应式编程实现详解
JavaScript响应式编程实现详解 🔄 今天,让我们深入探讨JavaScript的响应式编程实现。响应式编程是一种基于数据流和变化传播的编程范式,它使我们能够以声明式的方式处理异步数据流。 响应式编程基础概念 🌟 💡 小知识…...
uniapp版本升级
1.样式 登录进到首页,弹出更新提示框,且不可以关闭,侧边返回直接退出! 有关代码: <uv-popup ref"popupUpdate" round"8" :close-on-click-overlay"false"><view style"…...
K8s运维管理平台 - KubeSphere 3.x 和4.x 使用分析:功能较强,UI美观
目录标题 Lic使用感受优点:优化点: 实操首页项目 | 应用负载 | 配置 | 定制资源定义存储监控告警集群设置 **KubeSphere 3.x** 和 **4.x**1. **架构变化**:2. **多集群管理**:3. **增强的 DevOps 功能**:4. **监控与日…...
使用Python Dotenv库管理环境变量
使用Python Dotenv库管理环境变量 在开发Python应用程序时,管理配置信息(如API密钥、数据库连接字符串等)是一个常见的需求。为了确保安全性和灵活性,通常不建议将这些敏感信息硬编码在代码中。这时,dotenv库就派上了…...
HTTP 配置与应用(不同网段)
想做一个自己学习的有关的csdn账号,努力奋斗......会更新我计算机网络实验课程的所有内容,还有其他的学习知识^_^,为自己巩固一下所学知识,下次更新校园网设计。 我是一个萌新小白,有误地方请大家指正,谢谢…...
异或哈希总结
例题 例题1https://codeforces.com/problemset/problem/1175/Fhttps://codeforces.com/problemset/problem/1175/F 例题2https://codeforces.com/contest/2014/problem/Hhttps://codeforces.com/contest/2014/problem/H例题4https://codeforces.com/contest/1418/problem/Ght…...
我的2024年总结
趁着摸鱼赶紧写一下吧 去年目标review 还是将去年的目标完成了一些 【接纳不完美,多拍照片】 这个还是部分做到了,今年和一些朋友们见面时都注意拍照留记录了,不过还可以继续加强,因为外貌上发生了重大变化,下面细说…...
简易CPU设计入门:控制总线的剩余信号(二)
项目代码下载 请大家首先准备好本项目所用的源代码。如果已经下载了,那就不用重复下载了。如果还没有下载,那么,请大家点击下方链接,来了解下载本项目的CPU源代码的方法。 CSDN文章:下载本项目代码 上述链接为本项目…...
软件开发中的密码学(国密算法)
1.软件行业中的加解密 在软件行业中,加解密技术广泛应用于数据保护、通信安全、身份验证等多个领域。加密(Encryption)是将明文数据转换为密文的过程,而解密(Decryption)则是将密文恢复为明文的过程。以下…...
ArcGIS10.2 许可License点击始终启动无响应的解决办法及正常启动的前提
1、问题描述 在ArcGIS License Administrator中,手动点击“启动”无响应;且在计算机管理-服务中,无ArcGIS License 或者License的启动、停止、禁止等均为灰色,无法操作。 2、解决方法 ①通过cmd对service.txt进行手动服务的启动…...
rust feature h和 workspace相关知识 (十一)
feature 相关作用和描述 在 Rust 中,features(特性) 是一种控制可选功能和依赖的机制。它允许你在编译时根据不同的需求启用或禁用某些功能,优化构建,甚至改变代码的行为。Rust 的特性使得你可以轻松地为库提供不同的…...
动手学深度学习-卷积神经网络-3填充和步幅
目录 填充 步幅 小结 在上一节的例子(下图) 中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为22。 正如我们在 上一节中所概括的那样,假设输入形状为nhnw,卷积核形…...
最长递增——蓝桥杯
1.题目描述 在数列 a1,a2,⋯,an 中,如果ai<ai1<ai2<⋯<aj,则称 ai 至 aj 为一段递增序列,长度为 j−i1。 定一个数列,请问数列中最长的递增序列有多长。 输入描述 输入的第一行包含一个整数 n。…...
DeepSeek R1 对比 AlphaGo,Zero 的思考过程
作者:真中合欢 原文:https://zhuanlan.zhihu.com/p/19897045280 等了好久,终于等来R1的论文,我在当天晚上第一时间拜读。整篇论文的实验和理论给我一种简洁的优雅,和DeepSeek-V3那篇论文的感觉完全不同。读论文的过程中…...
【2025最新计算机毕业设计】基于SSM房屋租赁平台【提供源码+答辩PPT+文档+项目部署】(高质量源码,可定制,提供文档,免费部署到本地)
作者简介:✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容:🌟Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…...
蓝桥杯练习日常|c/c++竞赛常用库函数(下)
书接上回......蓝桥杯算法日常|c\c常用竞赛函数总结备用-CSDN博客 目录 书接上回......https://blog.csdn.net/weixin_47011416/article/details/145290017 1、二分查找 2、lower_bound uper_bound 3、memset() 函数原型 参数说明 返回值 常见用…...
手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)
手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码) 目录 手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)Stable Diffusion 原理图Stable Diffusion的原理解释Stable Diffusion 和Di…...
技术总结:FPGA基于GTX+RIFFA架构实现多功能SDI视频转PCIE采集卡设计方案
目录 1、前言工程概述免责声明 3、详细设计方案设计框图SDI 输入设备Gv8601a 均衡器GTX 解串与串化SMPTE SD/HD/3G SDI IP核BT1120转RGBFDMA图像缓存RIFFA用户数据控制RIFFA架构详解Xilinx 7 Series Integrated Block for PCI ExpressRIFFA驱动及其安装QT上位机HDMI输出RGB转BT…...
【16届蓝桥杯寒假刷题营】第2期DAY5
2.最大公因数 - 蓝桥云课 问题描述 给你2个正整数N,M。 你需要构造一个有N个数的正整数序列a,满足以下条件: ∑i1NaiM。 求gcd(a),可能的最大值。 输入描述 输入一行两个正整数N,M,表示数组的长…...
26.项目集风险管理战略和项目集风险管理活动有何区别与联系?
项目集风险管理战略和项目集风险管理活动有何区别与联系? 项目集风险管理战略和项目集风险管理活动在项目集管理中的作用不同,但又是密切相关的。 区别: 1.定义 项目集风险管理战略:指的是制定一套全面的、系统的方针和方法,…...
PETSc源码分析: Time Integrators
本文结合PETSc源代码,总结PETSc中的ODE/DAE求解器。 注1:限于研究水平,分析难免不当,欢迎批评指正。 注2:文章内容会不定期更新。 参考文献 Balay S. PETSc/TAO Users Manual, Revision 3.22. Argonne National Labo…...
Spring Boot是什么及其优点
简介 Spring Boot是基于Spring框架开发的全新框架,其设计目的是简化Spring应用的初始化搭建和开发过程。 Spring Boot整合了许多框架和第三方库配置,几乎可以达到“开箱即用”。 优点 可快速构建独立的Spring应用。 直接嵌入Tomcat、Jetty和Underto…...
21.Word:小赵-毕业论文排版❗【39】
目录 题目 NO1.2 NO3.4 NO5.6 NO7.8.9 NO10.11.12 题目 NO1.2 自己的论文当中接收老师的修改:审阅→比较→源文档:考生文件夹:Word.docx→修订的文档:考生文件夹:教师修改→确定→接收→接收所有修订将合并之…...
LeetCode --- 433周赛
题目列表 3427. 变长子数组求和 3428. 最多 K 个元素的子序列的最值之和 3429. 粉刷房子 IV 3430. 最多 K 个元素的子数组的最值之和 一、变长子数组求和 题意要求我们能快速算出 n u m s [ s t a r t . . . i ] nums[start...i] nums[start...i] 这段区间和,其中…...
LLM幻觉(Hallucination)缓解技术综述与展望
LLMs 中的幻觉问题(LLM 幻觉:现象剖析、影响与应对策略)对其可靠性与实用性构成了严重威胁。幻觉现象表现为模型生成的内容与事实严重不符,在医疗、金融、法律等对准确性要求极高的关键领域,可能引发误导性后果&#x…...
Rocky9.5编译freeswitch【记录】
文件目录 tree -dL 1 . ├── flite-2.0.0 ├── freeswitch ├── ldns-1.8.4 ├── libcodec2-2.59 ├── libks ├── ooh323-0.1 ├── opus ├── signalwire-client-c ├── sofia-sip ├── spandsp ├── v8-6.1.298 └── zeromq-2.1.9操作记录 ip a nm…...
自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
在 TensorFlow 中实现逻辑回归、保存模型并加载模型进行预测的过程可以分为以下几个步骤: 准备数据:创建或加载你的自定义数据集。构建逻辑回归模型。训练模型。保存模型。加载模型。使用加载的模型进行预测。 import tensorflow as tf import numpy as…...
WPF进阶 | WPF 数据绑定进阶:绑定模式、转换器与验证
WPF进阶 | WPF 数据绑定进阶:绑定模式、转换器与验证 一、前言二、WPF 数据绑定基础回顾2.1 数据绑定的基本概念2.2 数据绑定的基本语法 三、绑定模式3.1 单向绑定(One - Way Binding)3.2 双向绑定(Two - Way Binding)…...
八股——Java基础(四)
目录 一、泛型 1. Java中的泛型是什么 ? 2. 使用泛型的好处是什么? 3. Java泛型的原理是什么 ? 什么是类型擦除 ? 4.什么是泛型中的限定通配符和非限定通配符 ? 5. List和List 之间有什么区别 ? 6. 可以把List传递给一个接受List参数的方法吗? 7. Arra…...
2025蓝桥杯JAVA编程题练习Day1
1.刑侦科推理试题 题目描述 有以下10道单选题,编程求这10道题的答案。 这道题的答案是: A. A B. B C. C D. D 第5题的答案是: A. C B. D C. A D. B 以下选项中哪一题的答案与其他三项不同: A. 第3题 B. 第6题 C. 第2题 D.…...
数据结构与算法-要点整理
知识导图: 一、数据结构 包含:线性表(数组、队列、链表、栈)、散列表、树(二叉树、多路查找树)、图 1.线性表 数据之间就是“一对一“的逻辑关系。 线性表存储数据的实现方案有两种,分别是顺序存储结构和链式存储结构。 包含:数组、队列、链表、栈。 1.1 数组…...
SaaS底层盈利逻辑剖析:运维费与服务费的战略抉择
一、引言 1.1 研究背景与意义 在数字化浪潮的推动下,SaaS(软件即服务)行业近年来取得了迅猛发展,成为软件产业中不可或缺的一部分。SaaS 通过互联网提供软件服务,企业无需进行复杂的本地软件安装和硬件购置ÿ…...
Python爬虫之——Cookie存储器
目录 专栏导读1、背景介绍2、库的安装3、核心代码4、完整代码总结 专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️🌈 博客主页:请点击——> 一晌小贪欢的博客主页求关注 &…...
【数据结构】(2)时间、空间复杂度
一、衡量算法好坏的指标 时间复杂度衡量算法的运行速度,空间复杂度衡量算法所需的额外空间。这些指标,是某场景中选择使用哪种数据结构和算法的依据。如今,计算机的存储器已经变得容易获得,所以不再太关注空间复杂度。 二、渐进表…...
理解 IS-IS 中重要概念之间的关系
本文为 “IS-IS 中重要概念” 相关文章合辑。 未整理去重。 理解 IS-IS、CLNS、CMNS、NSAP、NET 等概念之间的关系 1. 核心概念 IS-IS (Intermediate System to Intermediate System) 一种链路状态路由协议,基于 SPF(最短路径优先)算法计…...
AI 模型评估与质量控制:生成内容的评估与问题防护
在生成式 AI 应用中,模型生成的内容质量直接影响用户体验。然而,生成式模型存在一定风险,如幻觉(Hallucination)问题——生成不准确或完全虚构的内容。因此,在构建生成式 AI 应用时,模型评估与质…...
Mybatis-plus缓存
mybatis-plus缓存 MyBatis-Plus 是一个 MyBatis 的增强工具,在 MyBatis 的基础上提供了更多的便利性和强大的功能,包括但不限于分页、条件构造器、通用 Mapper、代码生成器等。MyBatis-Plus 也内置了基础的缓存功能,但需要注意的是ÿ…...
unity学习20:time相关基础 Time.time 和 Time.deltaTime
目录 1 unity里的几种基本时间 1.1 time 相关测试脚本 1.2 游戏开始到现在所用的时间 Time.time 1.3 时间缩放值 Time.timeScale 1.4 固定时间间隔 Time.fixedDeltaTime 1.5 两次响应时间之间的间隔:Time.deltaTime 1.6 对应测试代码 1.7 需要关注的2个基本…...
系统思考—转型
“我知道自己有问题,但问题到底出在哪里?” 很多中小企业主都会在这样的迷茫中徘徊。市场变化太快、团队执行力不强、内部沟通不畅……这些问题似乎无处不在。但其实,真正让企业陷入困境的,并不是问题本身,而是——看…...