当前位置: 首页 > news >正文

技术总结:FPGA基于GTX+RIFFA架构实现多功能SDI视频转PCIE采集卡设计方案

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 3、详细设计方案
    • 设计框图
    • SDI 输入设备
    • Gv8601a 均衡器
    • GTX 解串与串化
    • SMPTE SD/HD/3G SDI IP核
    • BT1120转RGB
    • FDMA图像缓存
    • RIFFA用户数据控制
    • RIFFA架构详解
    • Xilinx 7 Series Integrated Block for PCI Express
    • RIFFA驱动及其安装
    • QT上位机
    • HDMI输出
    • RGB转BT1120
    • Gv8500 驱动器
    • SDI转HDMI盒子
    • 工程设计源码层面架构
    • PCIE上板调试注意事项
    • FPGA工程编译注意事项
  • 4、设计方案1详解-->Kintex7-35T版本
  • 5、设计方案2详解-->Zynq7100版本
  • 6、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 7、上板调试验证
    • 准备工作
    • SDI视频采集转PCIE输出效果演示

技术总结:FPGA基于GTX+RIFFA架构实现多功能SDI视频转PCIE采集卡设计方案

1、前言

FPGA实现SDI视频编解码现状;
目前FPGA实现SDI视频编解码有两种方案:一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCrCb422,GS2972发送器直接将并行的YCrCb422编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;另一种方案是使用FPGA逻辑资源部实现SDI编解码,利用Xilinx系列FPGA的GTP/GTX资源实现解串,利用Xilinx系列FPGA的SMPTE SDI资源实现SDI编解码,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA开发者的技术水平要求较高。有意思的是,这两种方案在本博这里都有对应的解决方案,包括硬件的FPGA开发板、工程源码等等。本设计采用GTX逻辑资源解串方案;

FPGA实现PCIE数据传输现状;
目前基于Xilinx系列FPGA的PCIE通信架构主要有以下2种,一种是简单的、傻瓜式的、易于开发的、对新手友好的XDMA架构,该架构对PCIE协议底层做了封装,并加上了DMA引擎,使得使用的难度大大降低,加之Xilinx提供了配套的Windows和Linux系统驱动和上位机参考源代码,使得XDMA一经推出就让工程师们欲罢不能;另一种是更为底层的、需要设计者有一定PCIE协议知识的、更易于定制化开发的7 Series Integrated Block for PCI Express架构,该IP实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;本设计采用第二种方案,调用7 Series Integrated Block for PCI Express IP核,加上RIFFA架构实现PCIE通信,7 Series Integrated Block for PCI Express实现底层协议,RIFFA实现TLP报文组包、解包和轻量级DMA功能;本设计采用基于7 Series Integrated Block for PCI Express的RIFFA架构;

工程概述

本设计使用FPGA基于GTX+RIFFA架构实现多功能SDI视频采集卡;具体功能如下:
我的FPGA开发板硬件设计了2路SDI输入接口+2路SDI输出接口+PCIEX4接口+1路HDMI输出接口;
基于以上接口,设计了多功能SDI视频采集卡工程,具体如下:
第1路3G-SDI输入视频转PCIE输出给PC端电脑主机,并用QT上位机接收;
第1路3G-SDI输入视频转3G-SDI输出,并用显示器接收显示;
第2路3G-SDI输入视频转3G-SDI输出,并用显示器接收显示;
第2路3G-SDI输入视频转HDMI输出,并用显示器接收显示;

第1路SDI输入输出路径如下:
输入源为3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;其中1路视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;另外1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;

第2路SDI输入输出路径如下:
输入源为3G-SDI相机或者HDMI转3G-SDI盒子,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;其中1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;另外1路视频从DDR3中读出,送入纯verilog实现的GRB888转HDMI模块实现TMDS差分视频编码,最后视频输出到显示器显示;由此形成SDI相机+GTX+HDMI输出的高端架构;

针对市面上主流的FPGA,本博客设计了2套工程工程解决方案,具体如下:
在这里插入图片描述
现对上述2套工程工程解决方案做如下解释,方便读者理解:

工程解决方案1

开发板FPGA型号为Xilinx–>Kintex7–35T–xc7k325tffg484-2;输入源为2个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;
第1路3G-SDI输入视频流向如下:
同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;其中1路视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为1920x1080@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;另外1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;
第2路3G-SDI输入视频流向如下:
同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为板载DDR3;其中1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;另外1路视频从DDR3中读出,送入纯verilog实现的GRB888转HDMI模块实现TMDS差分视频编码,最后视频输出到显示器显示,输出分辨率为1920x1080@60Hz;由此形成SDI相机+GTX+HDMI输出的高端架构;

工程解决方案2

开发板FPGA型号为Xilinx–>Zynq7100–xc7z100ffg900-2;输入源为2个3G-SDI相机或者HDMI转3G-SDI盒子,分辨率为1920x1080@60Hz,也可以使用HD-SDI或者SD-SDI相机,因为本设计是三种SDI视频自适应的;
第1路3G-SDI输入视频流向如下:
同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为Zynq PL端DDR3,不建议使用PS端DDR3做缓存,因为Zynq的HP接口数据位宽仅有64bit,可能影响视频传输效率;其中1路视频从DDR3中读出,送入RIFFA模块做视频数据的TLP包封装,并跨时钟域后输出给Xilinx官方的7 Series Integrated Block for PCI Express IP核实现PCIE物理层、链路层和事务层功能,并以差分数据输出;PCIE视频数据通过PCIE金手指从FPGA板卡发送到PC主机,输出分辨率为1920x1080@60Hz;PC端主机在RIFFA-PCIE驱动的加持下有效识别并读取PCIE数据;PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;由此形成SDI相机+RIFFA+PCIE+QT的高端架构;另外1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;
第2路3G-SDI输入视频流向如下:
同轴的SDI视频通过同轴线连接到FPGA开发板的BNC座子,然后同轴视频经过板载的Gv8601a芯片实现单端转差分和均衡EQ的功能;然后差分SDI视频信号进入FPGA内部的GTX高速资源,实现数据高速串行到并行的转换,本博称之为解串;解串后的并行视频再送入Xilinx系列FPGA特有的SMPTE SD/HD/3G SDI IP核,进行SDI视频解码操作并输出BT1120视频,至此,SDI视频解码操作已经完成,可以进行常规的图像处理操作了;然后使用纯verilog实现的BT1120转RGB模块实现视频格式转换后输出RGB888视频;然后使用2路本博主常用的FDMA图像缓存架构对采集视频做图像缓存,缓存介质为Zynq PL端DDR3,不建议使用PS端DDR3做缓存,因为Zynq的HP接口数据位宽仅有64bit,可能影响视频传输效率;其中1路视频从DDR3中读出,送入纯Verilog实现的RGB转BT1120模块实现RGB888视频到BT1120视频流的转换;然后调用Xilinx官方的SMPTE SD/HD/3G SDI IP核实现HD-SDI视频编码操作;然后调用Xilinx官方的GTX原语,实现并行数据到高速串行的转换,差分高速信号再进入板载的Gv8500芯片实现差分转单端和驱动增强的功能,SDI视频通过FPGA开发板的BNC座子输出,最后通过同轴线连接到SDI转HDMI盒子连接到HDMI显示器;由此形成SDI相机+GTX+SDI输出的高端架构;另外1路视频从DDR3中读出,送入纯verilog实现的GRB888转HDMI模块实现TMDS差分视频编码,最后视频输出到显示器显示,输出分辨率为1920x1080@60Hz;由此形成SDI相机+GTX+HDMI输出的高端架构;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

3、详细设计方案

设计框图

工程解决方案详细设计方案框图如下:
在这里插入图片描述

SDI 输入设备

SDI 输入设备可以是SDI相机,代码兼容HD/SD/3G-SDI三种模式;SDI相机相对比较贵,预算有限的朋友可以考虑用HDMI转SDI盒子模拟SDI相机,这种盒子某宝一百块左右;当使用HDMI转SDI盒子时,输入源可以用笔记本电脑,即用笔记本电脑通过HDMI线连接到HDMI转SDI盒子的HDMI输入接口,再用SDI线连接HDMI转SDI盒子的SDI输出接口到FPGA开发板,如下:
在这里插入图片描述

Gv8601a 均衡器

Gv8601a芯片实现单端转差分和均衡EQ的功能,这里选用Gv8601a是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8601a均衡器原理图如下:
在这里插入图片描述

GTX 解串与串化

本设计使用Xilinx特有的GTX高速信号处理资源实现SDI差分视频信号的解串与串化,对于SDI视频接收而言,GTX起到解串的作用,即将输入的高速串行的差分信号解为并行的数字信号;对于SDI视频发送而言,GTX起到串化的作用,即将输入的并行的数字信号串化为高速串行的差分信号;GTX的使用一般需要例化GTX IP核,通过vivado的UI界面进行配置,但本设计需要对SD-SDI、HD-SDI、3G-SDI视频进行自动识别和自适应处理,所以需要使得GTX具有动态改变线速率的功能,该功能可通过DRP接口配置,也可通过GTX的rate接口配置,所以不能使用vivado的UI界面进行配置,而是直接例化GTX的GTXE2_CHANNEL和GTXE2_COMMON源语直接使用GTX资源;此外,为了动态配置GTX线速率,还需要GTX控制模块,该模块参考了Xilinx的官方设计方案,具有动态监测SDI模式,动态配置DRP等功能;该方案参考了Xilinx官方的设计;GTX 解串与串化模块代码架构如下:
在这里插入图片描述

SMPTE SD/HD/3G SDI IP核

SMPTE SD/HD/3G SDI IP核是Xilinx系列FPGA特有的用于SDI视频编解码的IP,该IP配置使用非常简单,vivado的UI界面如下:
在这里插入图片描述
SMPTE SD/HD/3G SDI IP核必须与GTX配合才能使用,对于SDI视频接收而言,该IP接收来自于GTX的数据,然后将SDI视频解码为BT1120视频输出,对于SDI视频发送而言,该IP接收来自于用户侧的的BT1120视频数据,然后将BT1120视频编码为SDI视频输出;该方案参考了Xilinx官方的设计;SMPTE SD/HD/3G SDI IP核代码架构如下:
在这里插入图片描述

BT1120转RGB

BT1120转RGB模块的作用是将SMPTE SD/HD/3G SDI IP核解码输出的BT1120视频转换为RGB888视频,它由BT1120转CEA861模块、YUV422转YUV444模块、YUV444转RGB888三个模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

FDMA图像缓存

FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中再读出送RIFFA模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为2帧乒乓缓存;图像缓存模块代码架构如下:
在这里插入图片描述

RIFFA用户数据控制

RIFFA用户数据控制模块的功能为产生读视频控制信号,控制视频读出并写入RIFFA模块;代码里设置了状态机,首先接收RIFFA模块的读数据请求,然后生成读视频控制信号控制视频读出,再根据RIFFA用户写时序将视频写入RIFFA,当写完一帧图像后再回来初始状态,由此形成循环;代码架构如下:
在这里插入图片描述

RIFFA架构详解

本设计使用的RIFFA 版本为RIFFA1.0;
RIFFA (Reusable Integration Framework for FPGA Accelerators) 是一个简单的框架,用于通过 PCI Express 总线将数据从主机 CPU 传输到 FPGA。该框架需要一个支持 PCIe 的工作站和一个带有 PCIe 连接器的主板上的 FPGA。RIFFA支持Windows和Linux,Altera和Xilinx,并绑定了C / C++,Python,MATLAB和Java。在软件方面有两个主要功能:数据发送和数据接收。这些函数通过 C/C++、Python、MATLAB 和 Java 中的用户库公开。该驱动程序支持每个系统多个 FPGA(最多 5 个)。软件绑定适用于 Linux 和 Windows 操作系统。用户只需编写几行代码即可与FPGA IP核进行通信。在硬件方面,用户访问具有独立发送和接收信号的接口。这些信号通过FIFO接口提供交易握手和第一个单词,用于读取/写入数据。无需了解总线地址、缓冲区大小或 PCIe 数据包格式。只需在FIFO接口上发送数据,在FIFO接口上接收数据即可。RIFFA不依赖于PCIe桥接器,因此不受网桥实现的限制。相反,RIFFA 直接与 PCIe 端点配合使用,并且运行速度足够快,使 PCIe 链路饱和。软件和硬件界面都得到了极大的简化。RIFFA架构如下:
在这里插入图片描述
RIFFA纯verilog代码架构如下:
在这里插入图片描述
复杂的代码架构需要长时间的品读才能消化,代码中提供了注释,感兴趣的可以去仔细研读并修改为自己项目需要的情景,对于普通开发者而言,其实只需要掌握RIFFA的用户逻辑即可完成数据读写操作,至于TLP包的封装与解包等操作,代码中已经做好了,一般不需要修改,除非需要定制功能和性能优化外;RIFFA用户逻辑接口及其详细注释如下:该接口位于riffa_wrapper.v;
在这里插入图片描述
RIFFA 框架不依赖 PCIe Bridge ,因此它不受桥连接的控制,这就实现了PCIe 通信链路的高带宽。下图显示了使用 32 位,64 位以及 128 位接口的RIFFA 框架性能图,图中的实线为理论上最大的带宽值,虚线为可实现的最大带宽值。PCIe Gen1 以及 PCIe Gen2 都是使用 8B/10B 编码方式,理论上的最大带宽利用率为 80%,在下图中我们可以看出在使用 32 位,64 位接口的情况下,RIFFA 框架可以实现理论上的最大带宽利用率 80%左右;在 128 位接口的情况下最大带宽利用率为 76%左右;
在这里插入图片描述
以PCIEX4为例,RIFFA模块资源消耗如下:
在这里插入图片描述

Xilinx 7 Series Integrated Block for PCI Express

7 Series Integrated Block for PCI Express是Xilinx官方推出的集成在FPGA内部的PCIE硬核IP;主要实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;7 Series Integrated Block for PCI Express例化使用十分简单,只是配置项比较多,但大部分保持默认即可,一般也用不到那么多功能,最主要的配置项如下:
在这里插入图片描述
7 Series Integrated Block for PCI Express在代码中调用如下:
在这里插入图片描述

RIFFA驱动及其安装

本设计提供RIFFA驱动源码,该源码既包括Windows也包括Linux,并提供Windows下的驱动安装可执行文件,如下:
在这里插入图片描述
Windows下驱动安装步骤如下:友情提示,Windows下驱动秩序安装一次即可;
第一步:使系统禁用签名并进入测试模式,方法如下:
在这里插入图片描述
也可百度其他方法实现上述目的,完成后电脑屏幕右下角应有如下显示:
在这里插入图片描述
第二步:修改可执行文件的兼容性,方法如下:
在这里插入图片描述
第三步:安装驱动,方法如下:
在这里插入图片描述
驱动装好后,下载FPGA工程bit,然后重启电脑,打开我的电脑–>管理–>设备管理器,应看到如下设备:
在这里插入图片描述

QT上位机

PC端调用QT上位机调用RIFFA-PCIE驱动的API实现视频数据显示;QT上位机源码如下:
在这里插入图片描述
电脑端接收到 FPGA 开发板传来的数据是用户应用程序通过调用库函数fpga_rec才开始接收来自 FPGA 开发板的读请求,然后电脑端将数据分包接收;上位机运行样式如下:
在这里插入图片描述

HDMI输出

在HDMI输出方式下,使用HDMI输出模块将RGB视频编码为HDMI差分信号,HDMI输出模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,代码如下:
在这里插入图片描述
关于这个模块,请参考我之前的博客,博客地址:点击直接前往

RGB转BT1120

在SDI输出方式下需要使用该模块;RGB转BT1200模块的作用是将用户侧的RGB视频转换为BT1200视频输出给SMPTE SD/HD/3G SDI IP核;RGB转BT1120模块由RGB888转YUV444模块、YUV444转YUV422模块、SDI视频编码模块、数据嵌入模块组成,该方案参考了Xilinx官方的设计;BT1120转RGB模块代码架构如下:
在这里插入图片描述

Gv8500 驱动器

Gv8500芯片实现差分转单端和增强驱动的功能,这里选用Gv8500是因为借鉴了了Xilinx官方的方案,当然也可以用其他型号器件。Gv8500驱动器原理图如下:
在这里插入图片描述

SDI转HDMI盒子

在SDI输出方式下需要使用到SDI转HDMI盒子,因为我手里的显示器没有SDI接口,只有HDMI接口,为了显示SDI视频,只能这么做,当然,如果你的显示器有SDI接口,则可直接连接显示,我的SDI转HDMI盒子在某宝购买,不到100块;

工程设计源码层面架构

工程源码由Bolck Design设计和模块例化组成,Bolck Design主要为基于FDMA架构的图像缓存;模块例化则为包括Bolck Design在内的整体代码架构;以设计方案1为例Bolck Design设计如下,其他设计方案与之类似:
在这里插入图片描述
以设计方案1为例,综合后的工程源码层面架构如下:
在这里插入图片描述

PCIE上板调试注意事项

1:必须先安装RIFFA-PCIE驱动,详情请参考第3章节的《RIFFA驱动及其安装》,驱动只需安装一次;
2:下载FPGA工程bit后需要重启电脑,电脑才能识别到RIFFA-PCIE驱动;程序固化后也需要重启电脑;
3:FPGA板卡插在主机上后一般不需要额外供电,如果你的板子元器件较多功耗较大,则需要额外供电,详情咨询开发板厂家,当然;
4:PCIE调试需要电脑主机,但笔记本电脑理论上也可以外接出来PCIE,详情百度自行搜索一下,电脑主机PCIE插槽不方便操作时可以使用延长线接出来,某宝有卖;

FPGA工程编译注意事项

由于RIFFA源码包含的头文件众多,所以在编译工程之前,必须设置全局包含文件,否则编译器找不到头文件导致报错,设置如下:
在这里插入图片描述

4、设计方案1详解–>Kintex7-35T版本

开发板FPGA型号:Xilinx-Kintex7–35T–xc7k325tffg484-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:2路3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
第1路SDI输入视频的输出路径:PCIE2.0+3G-SDI,分辨率1920x1080@60Hz;
第2路SDI输入视频的输出路径:HDMI+3G-SDI,分辨率1920x1080@60Hz;
SDI视频解串方案:Xilinx–GTX高速接口解串;
SDI视频解码方案:Xilinx–SMPTE SD/HD/3G SDI解码;
HDMI视频编码方案:纯verilog编码;
图像缓存方案:FDMA图像缓存+DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X4,5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现多功能SDI视频采集卡;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构多功能SDI视频采集卡的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、设计方案2详解–>Zynq7100版本

开发板FPGA型号:Xilinx–Zynq7100–xc7z100ffg900-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:2路3G-SDI相机或HDMI转SDI盒子,分辨率1920x1080@60Hz;
第1路SDI输入视频的输出路径:PCIE2.0+3G-SDI,分辨率1920x1080@60Hz;
第2路SDI输入视频的输出路径:HDMI+3G-SDI,分辨率1920x1080@60Hz;
SDI视频解串方案:Xilinx–GTX高速接口解串;
SDI视频解码方案:Xilinx–SMPTE SD/HD/3G SDI解码;
HDMI视频编码方案:纯verilog编码;
图像缓存方案:FDMA图像缓存+PL端DDR3颗粒;图像2帧乒乓缓存;
PCIE详情:PCIE2.0版本,X4,5GT/s单lane线速率;
PCIE底层方案:Xilinx 7 Series Integrated Block for PCI Express;
PCIE上层方案:RIFFA;
实现功能:FPGA基于GTX+RIFFA架构实现多功能SDI视频采集卡;
工程作用:此工程目的是让读者掌握FPGA基于GTX+RIFFA架构多功能SDI视频采集卡的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

7、上板调试验证

准备工作

需要准备的器材如下:
SDI摄像头或HDMI转SDI盒子;
FPGA开发板;
PC主机;
显示器;
我的开发板连接如下:
在这里插入图片描述
下载FPGA工程bit,重启电脑,打开上位机软件,即可看到测速情况;

SDI视频采集转PCIE输出效果演示

SDI视频采集转PCIE输出效果如下:

SDI-RIFFA-PCIE

相关文章:

技术总结:FPGA基于GTX+RIFFA架构实现多功能SDI视频转PCIE采集卡设计方案

目录 1、前言工程概述免责声明 3、详细设计方案设计框图SDI 输入设备Gv8601a 均衡器GTX 解串与串化SMPTE SD/HD/3G SDI IP核BT1120转RGBFDMA图像缓存RIFFA用户数据控制RIFFA架构详解Xilinx 7 Series Integrated Block for PCI ExpressRIFFA驱动及其安装QT上位机HDMI输出RGB转BT…...

【16届蓝桥杯寒假刷题营】第2期DAY5

2.最大公因数 - 蓝桥云课 问题描述 给你2个正整数N,M。 你需要构造一个有N个数的正整数序列a,满足以下条件: ∑i1N​ai​M。 求gcd(a),可能的最大值。 输入描述 输入一行两个正整数N,M,表示数组的长…...

26.项目集风险管理战略和项目集风险管理活动有何区别与联系?

项目集风险管理战略和项目集风险管理活动有何区别与联系? 项目集风险管理战略和项目集风险管理活动在项目集管理中的作用不同,但又是密切相关的。 区别: 1.定义 项目集风险管理战略:指的是制定一套全面的、系统的方针和方法,…...

PETSc源码分析: Time Integrators

本文结合PETSc源代码,总结PETSc中的ODE/DAE求解器。 注1:限于研究水平,分析难免不当,欢迎批评指正。 注2:文章内容会不定期更新。 参考文献 Balay S. PETSc/TAO Users Manual, Revision 3.22. Argonne National Labo…...

Spring Boot是什么及其优点

简介 Spring Boot是基于Spring框架开发的全新框架,其设计目的是简化Spring应用的初始化搭建和开发过程。 Spring Boot整合了许多框架和第三方库配置,几乎可以达到“开箱即用”。 优点 可快速构建独立的Spring应用。 直接嵌入Tomcat、Jetty和Underto…...

21.Word:小赵-毕业论文排版❗【39】

目录 题目​ NO1.2 NO3.4 NO5.6 NO7.8.9 NO10.11.12 题目 NO1.2 自己的论文当中接收老师的修改:审阅→比较→源文档:考生文件夹:Word.docx→修订的文档:考生文件夹:教师修改→确定→接收→接收所有修订将合并之…...

LeetCode --- 433周赛

题目列表 3427. 变长子数组求和 3428. 最多 K 个元素的子序列的最值之和 3429. 粉刷房子 IV 3430. 最多 K 个元素的子数组的最值之和 一、变长子数组求和 题意要求我们能快速算出 n u m s [ s t a r t . . . i ] nums[start...i] nums[start...i] 这段区间和,其中…...

LLM幻觉(Hallucination)缓解技术综述与展望

LLMs 中的幻觉问题(LLM 幻觉:现象剖析、影响与应对策略)对其可靠性与实用性构成了严重威胁。幻觉现象表现为模型生成的内容与事实严重不符,在医疗、金融、法律等对准确性要求极高的关键领域,可能引发误导性后果&#x…...

Rocky9.5编译freeswitch【记录】

文件目录 tree -dL 1 . ├── flite-2.0.0 ├── freeswitch ├── ldns-1.8.4 ├── libcodec2-2.59 ├── libks ├── ooh323-0.1 ├── opus ├── signalwire-client-c ├── sofia-sip ├── spandsp ├── v8-6.1.298 └── zeromq-2.1.9操作记录 ip a nm…...

自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

在 TensorFlow 中实现逻辑回归、保存模型并加载模型进行预测的过程可以分为以下几个步骤: 准备数据:创建或加载你的自定义数据集。构建逻辑回归模型。训练模型。保存模型。加载模型。使用加载的模型进行预测。 import tensorflow as tf import numpy as…...

WPF进阶 | WPF 数据绑定进阶:绑定模式、转换器与验证

WPF进阶 | WPF 数据绑定进阶:绑定模式、转换器与验证 一、前言二、WPF 数据绑定基础回顾2.1 数据绑定的基本概念2.2 数据绑定的基本语法 三、绑定模式3.1 单向绑定(One - Way Binding)3.2 双向绑定(Two - Way Binding)…...

八股——Java基础(四)

目录 一、泛型 1. Java中的泛型是什么 ? 2. 使用泛型的好处是什么? 3. Java泛型的原理是什么 ? 什么是类型擦除 ? 4.什么是泛型中的限定通配符和非限定通配符 ? 5. List和List 之间有什么区别 ? 6. 可以把List传递给一个接受List参数的方法吗? 7. Arra…...

2025蓝桥杯JAVA编程题练习Day1

1.刑侦科推理试题 题目描述 有以下10道单选题,编程求这10道题的答案。 这道题的答案是: A. A B. B C. C D. D 第5题的答案是: A. C B. D C. A D. B 以下选项中哪一题的答案与其他三项不同: A. 第3题 B. 第6题 C. 第2题 D.…...

数据结构与算法-要点整理

知识导图: 一、数据结构 包含:线性表(数组、队列、链表、栈)、散列表、树(二叉树、多路查找树)、图 1.线性表 数据之间就是“一对一“的逻辑关系。 线性表存储数据的实现方案有两种,分别是顺序存储结构和链式存储结构。 包含:数组、队列、链表、栈。 1.1 数组…...

SaaS底层盈利逻辑剖析:运维费与服务费的战略抉择

一、引言 1.1 研究背景与意义 在数字化浪潮的推动下,SaaS(软件即服务)行业近年来取得了迅猛发展,成为软件产业中不可或缺的一部分。SaaS 通过互联网提供软件服务,企业无需进行复杂的本地软件安装和硬件购置&#xff…...

Python爬虫之——Cookie存储器

目录 专栏导读1、背景介绍2、库的安装3、核心代码4、完整代码总结 专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️‍🌈 博客主页:请点击——> 一晌小贪欢的博客主页求关注 &…...

【数据结构】(2)时间、空间复杂度

一、衡量算法好坏的指标 时间复杂度衡量算法的运行速度,空间复杂度衡量算法所需的额外空间。这些指标,是某场景中选择使用哪种数据结构和算法的依据。如今,计算机的存储器已经变得容易获得,所以不再太关注空间复杂度。 二、渐进表…...

理解 IS-IS 中重要概念之间的关系

本文为 “IS-IS 中重要概念” 相关文章合辑。 未整理去重。 理解 IS-IS、CLNS、CMNS、NSAP、NET 等概念之间的关系 1. 核心概念 IS-IS (Intermediate System to Intermediate System) 一种链路状态路由协议,基于 SPF(最短路径优先)算法计…...

AI 模型评估与质量控制:生成内容的评估与问题防护

在生成式 AI 应用中,模型生成的内容质量直接影响用户体验。然而,生成式模型存在一定风险,如幻觉(Hallucination)问题——生成不准确或完全虚构的内容。因此,在构建生成式 AI 应用时,模型评估与质…...

Mybatis-plus缓存

mybatis-plus缓存 MyBatis-Plus 是一个 MyBatis 的增强工具,在 MyBatis 的基础上提供了更多的便利性和强大的功能,包括但不限于分页、条件构造器、通用 Mapper、代码生成器等。MyBatis-Plus 也内置了基础的缓存功能,但需要注意的是&#xff…...

unity学习20:time相关基础 Time.time 和 Time.deltaTime

目录 1 unity里的几种基本时间 1.1 time 相关测试脚本 1.2 游戏开始到现在所用的时间 Time.time 1.3 时间缩放值 Time.timeScale 1.4 固定时间间隔 Time.fixedDeltaTime 1.5 两次响应时间之间的间隔:Time.deltaTime 1.6 对应测试代码 1.7 需要关注的2个基本…...

系统思考—转型

“我知道自己有问题,但问题到底出在哪里?” 很多中小企业主都会在这样的迷茫中徘徊。市场变化太快、团队执行力不强、内部沟通不畅……这些问题似乎无处不在。但其实,真正让企业陷入困境的,并不是问题本身,而是——看…...

Java面试题2025-设计模式

1.说一下开发中需要遵守的设计原则? 设计模式中主要有六大设计原则,简称为SOLID ,是由于各个原则的首字母简称合并的来(两个L算一个,solid 稳定的),六大设计原则分别如下: 1、单一职责原则 单一职责原则的定义描述非…...

本地Harbor仓库搭建流程

Harbor仓库搭建流程 本文主要介绍如何搭建harbor仓库,推送本地镜像供其他机器拉取构建服务 harbor文档:Harbor 文档 | 配置 Harbor YML 文件 - Harbor 中文 github下载离线安装包 Releases goharbor/harbor 这是harbor的GitHub下载地址&#xff0c…...

爬虫基础之爬取某基金网站+数据分析

声明: 本案例仅供学习参考使用,任何不法的活动均与本作者无关 网站:天天基金网(1234567.com.cn) --首批独立基金销售机构-- 东方财富网旗下基金平台! 本案例所需要的模块: 1.requests 2.re(内置) 3.pandas 4.pyecharts 其他均需要 pip install 模块名 爬取步骤: …...

Qt调用FFmpeg库实时播放UDP组播视频流

基于以下参考链接,通过改进实现实时播放UDP组播视频流 https://blog.csdn.net/u012532263/article/details/102736700 源码在windows(qt-opensource-windows-x86-5.12.9.exe)、ubuntu20.04.6(x64)(qt-opensource-linux-x64-5.12.12.run)、以…...

YOLOv10改进,YOLOv10检测头融合DynamicHead,添加小目标检测层(四头检测)+CA注意机制,全网首发

摘要 作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别 空间 通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自…...

【ComfyUI专栏】推荐几个常用的云端ComfyUI平台

如果我们本身的系统资源不足,但是我们依然能够使用显卡来利用ComfyUI生成我们需要的图片或者视频。当前平台中主要有两个不同的廉价平台提供了ComfyUI的功能,这里提供的资源基本上都是基于分钟进行计算。这些平台的好处就是基本上不需要你额外进行配置。…...

std::pair源码:operator=被delete了,提供的是sfinae版本

D:\DevTools\VS2017\VC\Tools\MSVC\14.16.27023\include\utility pair& operator(const volatile pair&) delete;真正版本&#xff1a;template<class _Other1 _Ty1,class _Other2 _Ty2,enable_if_t<conjunction_v<is_assignable<_Ty1&, const _Oth…...

数据要素白皮书(2024年)(解读+全文阅读)

数据要素白皮书&#xff08;2024年&#xff09;》由中国通信标准化协会大数据技术标准推进委员会发布&#xff0c;版权受法律保护&#xff0c;转载需注明来源。该白皮书深入分析了当前数据要素在全球及中国的发展态势&#xff0c;并提出了关键观察与展望。 全球范围内&#xf…...

C#常用257单词

1、Visual Studio 直译&#xff1a;可视化开发环境 说明&#xff1a;简称VS&#xff0c;我们编写程序的集成开发环境&#xff0c;可以写代码、编译代码、调试代码、发布程序。 2、.Net 直译&#xff1a;dotNet 说明&#xff1a;我们常说的.net读作dotnet&#xff0c;表示网…...

禅道2024年度回顾:品牌向善,才能向上!

很高兴禅道顺利完成了2024年的跃升计划&#xff0c;并交出了一份认真的答卷&#xff01; 这一年&#xff0c;禅道的产品在变强&#xff0c;完成了产品的重构与全面升级&#xff1b; 这一年&#xff0c;禅道的朋友在变多&#xff0c;服务到更多不同行业的客户&#xff1b; 这…...

RK3568 adb使用

文章目录 一、adb介绍**ADB 主要功能****常用 ADB 命令****如何使用 ADB****总结** 二、Linux下载adb**方法 1&#xff1a;使用包管理器&#xff08;适用于 Ubuntu/Debian 系统&#xff09;****方法 2&#xff1a;通过 Snap 安装&#xff08;适用于支持 Snap 的系统&#xff09…...

koodo-reader-电脑跨平台现代阅读器[支持ebook等电子书,支持多种格式]

koodo-reader-电脑跨平台现代阅读器[支持ebook等电子书&#xff0c;支持多种格式] 链接&#xff1a;https://pan.xunlei.com/s/VOH_rDBEXIU8lg4aA6IztZ4PA1?pwdg724# 特色 支持阅读格式&#xff1a; EPUB (.epub) PDF (.pdf) Kindle (.azw3, .mobi, .azw) 纯文本 (.txt…...

03:Heap代码的分析

Heap代码的分析 1、内存对齐2、Heap_1.c文件代码分析3、Heap_2.c文件代码分析4、Heap_4.c文件代码分析5、Heap_5.c文件代码分析 1、内存对齐 内存对齐的作用是为了CPU更快的读取数据。对齐存储与不对齐存储的情况如下&#xff1a; 计算机读取内存中的数据时是一组一组的读取的…...

二分查找题目:寻找两个正序数组的中位数

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;寻找两个正序数组的中位数 出处&#xff1a;4. 寻找两个正序数组的中位数 难度 8 级 题目描述 要求 给定两个大…...

Java Web-Tomcat Servlet

Web服务器-Tomcat Web服务器简介 Web 服务器是一种软件程序&#xff0c;它主要用于在网络上接收和处理客户端&#xff08;如浏览器&#xff09;发送的 HTTP 请求&#xff0c;并返回相应的网页内容或数据。以下是关于 Web 服务器的详细介绍&#xff1a; 功能 接收请求&#…...

渗透测试-WAF是什么以及原理解释 waf功能详解

目录 waf功能介绍 waf出现的地点: 什么是waf 功能: 常见的系统攻击分为两类 一是利用Web服务器的漏洞进行攻击 二是利用网页自身的安全漏洞进行攻击 WAF主要功能&#xff1a; waf的特点1 waf主要功能2 网马木马主动防御及查杀 流量监控 网站漏洞防御功能 危险组件…...

Vue3 provide/inject用法总结

1. 基本概念 provide/inject 是 Vue3 中实现跨层级组件通信的方案&#xff0c;类似于 React 的 Context。它允许父组件向其所有子孙组件注入依赖&#xff0c;无论层级有多深。 1.1 基本语法 // 提供方&#xff08;父组件&#xff09; const value ref(hello) provide(key, …...

C# 提取PDF表单数据

目录 使用工具 C# 提取多个PDF表单域的数据 C# 提取特定PDF表单域的数据 PDF表单是一种常见的数据收集工具&#xff0c;广泛应用于调查问卷、业务合同等场景。凭借出色的跨平台兼容性和标准化特点&#xff0c;PDF表单在各行各业中得到了广泛应用。然而&#xff0c;当需要整合…...

【JAVA项目】基于ssm的【宠物医院信息管理系统】

【JAVA项目】基于ssm的【宠物医院信息管理系统】 技术简介&#xff1a;采用JSP技术、ssm框架、B/S架构、MySQL技术等实现。 系统简介&#xff1a;宠物医院信息管理系统&#xff0c;在系统首页可以查看首页、医学知识、医生信息、药品信息、新闻资讯、留言反馈、我的、跳转到后台…...

书生大模型实战营2

L0——入门岛 Python基础 Conda虚拟环境 虚拟环境是Python开发中不可或缺的一部分&#xff0c;它允许你在不同的项目中使用不同版本的库&#xff0c;避免依赖冲突。Conda是一个强大的包管理器和环境管理器。 创建新环境 首先&#xff0c;确保你已经安装了Anaconda或Minico…...

产业园管理系统提升企业综合管理效率与智能化水平的成功案例分析

内容概要 在当前科技迅猛发展的时代&#xff0c;越来越多的企业意识到数字化转型的重要性。为了提升管理效率和智能化水平&#xff0c;产业园管理系统应运而生&#xff0c;成为众多园区和商办写字楼不可或缺的一部分。无论是工业园、物流园还是公寓&#xff0c;这些系统都能为…...

《AI赋能光追:开启图形渲染新时代》

光线追踪技术是图形渲染领域的重大突破&#xff0c;能够通过模拟光的传播路径&#xff0c;精准渲染反射、折射、阴影和间接光照等效果&#xff0c;实现高度逼真的场景呈现。而人工智能的加入&#xff0c;更是为光线追踪技术带来了前所未有的变革&#xff0c;主要体现在以下几个…...

危机13小时:追踪一场GitHub投毒事件

事件概要 自北京时间 2024.12.4 晚间6点起&#xff0c; GitHub 上不断出现“幽灵仓库”&#xff0c;仓库中没有任何代码&#xff0c;只有诱导性的病毒文件。当天&#xff0c;他们成为了 GitHub 上 star 增速最快的仓库。超过 180 个虚假僵尸账户正在传播病毒&#xff0c;等待不…...

利用JSON数据类型优化关系型数据库设计

利用JSON数据类型优化关系型数据库设计 前言 在关系型数据库中&#xff0c;传统的结构化存储方式要求预先定义好所有的列及其数据类型。 然而&#xff0c;随着业务的发展&#xff0c;这种设计可能会显得不够灵活&#xff0c;尤其是在需要扩展单个列的描述功能时。 JSON数据…...

如何学习Java后端开发

文章目录 一、Java 语言基础二、数据库与持久层三、Web 开发基础四、主流框架与生态五、分布式与高并发六、运维与部署七、项目实战八、持续学习与提升总结路线图 学习 Java 后端开发需要系统性地掌握多个技术领域&#xff0c;从基础到进阶逐步深入。以下是一个详细的学习路线和…...

AI刷题-蛋糕工厂产能规划、优质章节的连续选择

挑两个简单的写写 目录 一、蛋糕工厂产能规划 问题描述 输入格式 输出格式 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 关键点 最终代码&#xff1a; 运行结果&#xff1a;​编辑 二、优质章节的连续选择 问题描述 输入格式 输出格式 解题思路&a…...

SpringBoot统一数据返回格式 统一异常处理

统一数据返回格式 & 统一异常处理 1. 统一数据返回格式1.1 快速入门1.2 存在问题1.3 案列代码修改1.4 优点 2. 统一异常处理 1. 统一数据返回格式 强制登录案例中,我们共做了两部分⼯作 通过Session来判断⽤⼾是否登录对后端返回数据进⾏封装,告知前端处理的结果 回顾 后…...

[MySQL]事务的理论、属性与常见操作

目录 一、事物的理论 1.什么是事务 2.事务的属性&#xff08;ACID&#xff09; 3.再谈事务的本质 4.为什么要有事务 二、事务的操作 1.事务的支持版本 2.事务的提交模式 介绍 自动提交模式 手动提交模式 3.事务的操作 4.事务的操作演示 验证事务的回滚 事务异常…...