当前位置: 首页 > news >正文

Stable Diffusion 3.5 介绍

Stable Diffusion 3.5 是由 Stability AI 推出的最新一代图像生成模型,是 Stable Diffusion 系列的重要升级版本。以下是关于 Stable Diffusion 3.5 的详细信息:

版本概述

Stable Diffusion 3.5 包含三个主要版本:

  1. Stable Diffusion 3.5 Large:参数量为80亿,支持生成100万像素(1MP)的高分辨率图像,适合专业用户和对图像质量有较高要求的场景。
  2. Stable Diffusion 3.5 Large Turbo:基于 Large 版本优化,采用对抗性扩散蒸馏(ADD)技术,显著提高了生成速度,同时保持高质量输出。
  3. Stable Diffusion 3.5 Medium:参数量为25亿,适用于中等分辨率需求的用户,如生成40万像素(0.4MP)的图像。

技术改进

Stable Diffusion 3.5 在多个方面进行了显著改进:

  1. 图像质量和细节:通过增加模型参数量,提升了图像分辨率上限至2048x2048,并改善了细节表现和真实感。
  2. 提示词匹配度:优化了对复杂提示词的理解能力,能够更准确地生成符合用户需求的图像。
  3. 速度提升:Large Turbo 版本通过技术优化,大幅缩短了生成时间,适合需要快速生成大量图像的用户。
  4. 多模态支持:支持多种视觉元素的整合,解决了早期版本中复杂细节和多元素集成的限制问题。

应用场景

Stable Diffusion 3.5 的不同版本适用于不同的使用场景:

  • Large 版本:适合需要高分辨率和高质量图像的专业用户,如艺术创作、设计和科研。
  • Large Turbo 版本:适合追求速度和效率的用户,例如需要快速生成大量图像的场景。
  • Medium 版本:适合普通用户或对图像质量要求不高的场景。

安装与使用

Stable Diffusion 3.5 提供了详细的本地部署和在线使用指南。用户可以通过 Hugging Face 平台下载模型文件,并在本地环境中运行。此外,还支持通过 ComfyUI 等工具进行安装和操作。

开源与社区支持

Stable Diffusion 3.5 是开源项目,用户可以免费获取模型文件并进行二次开发。社区提供了丰富的教程和资源,帮助用户更好地使用该模型。

总结

Stable Diffusion 3.5 是目前市场上最强大的图像生成模型之一,凭借其卓越的图像质量、高效的生成速度和灵活的应用场景,成为 AI 图像生成领域的领先工具。无论是专业用户还是普通爱好者,都可以根据自身需求选择合适的版本来实现高质量的图像生成。

根据提供的信息,无法回答关于Stable Diffusion 3.5的三个版本在价格上的具体差异的问题。

对抗性扩散蒸馏(ADD)技术是如何具体提升生成速度的?

对抗性扩散蒸馏(ADD)技术通过以下几种方式具体提升了生成速度:

  1. 减少采样步骤:ADD技术通过结合评分蒸馏和对抗损失,显著减少了生成图像所需的采样步骤。例如,SDXL Turbo模型在使用ADD技术后,从50步减少到仅需一步即可生成高质量图像。这种减少的步骤不仅提高了生成速度,还减少了计算资源的需求。

  2. 高效利用预训练模型:ADD技术利用预训练的大规模文生图扩散模型作为教师信号,通过教师模型的指导,学生模型能够更快地生成高质量图像。这种方法避免了从头开始生成图像的低效过程,从而显著提高了生成速度。

  3. 多尺度采样和多路径策略:在ADD-XL模型中,通过多尺度采样和多路径策略,进一步提高了生成速度。多尺度采样允许模型在不同分辨率下进行采样,从而减少整体生成时间。多路径策略则通过并行处理多个路径来加速生成过程。

  4. 减少模糊和伪影:ADD技术在推理阶段不使用条件生成(CFG),避免了传统蒸馏操作中常见的模糊和伪影问题。这不仅提高了生成图像的质量,还减少了因模糊和伪影导致的额外采样步骤。

  5. 优化计算效率:ADD技术通过评分蒸馏和对抗损失,优化了计算效率。评分蒸馏帮助模型在每个时间步获得更准确的像素分布,从而减少不必要的采样步骤。对抗损失则通过判别器网络评估生成图像的质量,确保生成过程的高效性。

  6. 广泛应用于多种任务:ADD技术不仅在图像生成领域表现出色,还被应用于文本到图像合成、图像编辑和填充任务等多模态场景。这种广泛的应用进一步证明了其在不同任务中的高效性和灵活性。

Stable Diffusion 3.5 社区提供的教程和资源主要集中在哪些方面?

Stable Diffusion 3.5 社区提供的教程和资源主要集中在以下几个方面:

  1. 基础到高级应用:社区提供了从基础到高级的使用方法,包括免费商用版本的介绍、与Flux模型的对比、如何在ComfyUI中整合和使用这些技术等。

  2. 参数设置技巧:社区分享了详细的参数设置技巧,帮助用户一键解除咒语,完美复刻原图,适用于AI电商、图生图等场景。

  3. 实战案例:社区提供了多个实战案例,如Krita AI、Flux PuLID、InstantID等工具的使用,以及人脸迁移、角色生成、动画制作等实际应用。

  4. 安装包和视频教程:社区提供了Stable Diffusion安装包、PDF教程和视频教程,帮助零基础小白系统性学习AI绘画。

  5. 本地部署和工作流搭建:社区分享了SD3.5的本地部署实现,以及SD3.5图像改造中指定局部重绘Inpaint的功能,并推荐了一些超绝大模型,适合新手小白使用。

  6. 整合包和汉化桌面端:社区提供了SD3.5 IPAdapter+ControlNet工作流搭建及效果测试,以及ComfyUI工作流的汉化桌面端一键部署,适用于Windows、Mac和Linux系统。

  7. 开源模型和推理代码:社区提供了多种型号变体的下载和使用,如Stable Diffusion 3.5 Large和Stable Diffusion 3.5 Large Turbo,并在GitHub上提供推理代码。

  8. 社区论坛和交流平台:社区列出了多个社区和论坛,如AIGODLIKE、NovelAI Dev和Stable Diffusion CN等,供用户交流和学习。

  9. 工具推荐:社区推荐了多种与Stable Diffusion相关的工具,如Stable Diffusion WebUI、SD.Next、ComfyUI等。

  10. 技术博客和论坛:社区建议关注技术博客和论坛,获取行业专家的见解和最佳实践。

Stable Diffusion 3.5 在图像质量和细节方面的改进是如何实现的?

根据提供的信息,无法回答问题。我搜索到的资料主要集中在Stable Diffusion 3.5的性能提升、新模型的推出以及其在不同场景下的应用,但没有具体提到Stable Diffusion 3.5在图像质量和细节方面的改进是如何实现的。例如,等都提到了Stable Diffusion 3.5的性能提升和新模型的推出,但没有详细说明这些改进是如何具体影响图像质量和细节的。

如何在本地环境中部署和运行 Stable Diffusion 3.5?

根据提供的信息,无法直接回答如何在本地环境中部署和运行 Stable Diffusion 3.5 的具体步骤。然而,可以总结出一些关键点和步骤,这些步骤可能有助于在本地环境中部署和运行 Stable Diffusion 3.5。

关键步骤总结

  1. 下载模型文件

    • 可以从 Hugging Face 平台下载 Stable Diffusion 3.5 的模型文件。具体版本包括 Stable Diffusion 3.5 Large、Stable Diffusion 3.5 Large Turbo 和即将发布的 Stable Diffusion 3.5 Medium 。
    • 下载的文件通常包括 sd3.5L_exampleWorkflow.json sd3.5_large_turbo.safetensors 等文件 。
  2. 安装 ComfyUI

    • 从 GitHub 下载并安装 ComfyUI。ComfyUI 是一个用于部署和运行 Stable Diffusion 模型的工具 。
    • 安装完成后,运行脚本并设置中文界面(可选) 。
  3. 配置环境

    • 创建一个虚拟环境(如使用 conda 创建名为 sd3.5 的虚拟环境),并安装必要的依赖项,如 Python 3.10、PyTorch 2.2.2、torchvision 0.17.2、torchaudio 0.22.2 和 pytorch-cuda 12.1 。
    • 安装 Jupyter,以便在虚拟环境中运行代码 。
  4. 下载模型文件并放置到指定目录

    • 将下载的模型文件(如 sd3.5_large_turbo.safetensors )放置到 ComfyUI 的 models/checkpoint 目录中 。
    • sd3.5L_exampleWorkflow.json 文件拖入 ComfyUI 的 TripleCCLIPOADER 中,并修改为下载的模型名称 。
  5. 生成图像

    • 在 ComfyUI 中输入提示词,开始生成图像 。
  6. 公网远程访问(可选)

    • 如果需要公网远程访问,可以使用 CPolar 内网穿透工具创建远程公网地址,从而实现远程访问 。

注意事项

  • 硬件要求:Stable Diffusion 3.5 对硬件要求较高,建议显存大于 16GB 的用户下载 Stable Diffusion 3.5 Large,显存大于 8GB 的用户下载 Stable Diffusion 3.5 Large Turbo 。
  • 版本选择:根据具体需求选择合适的模型版本,如 Stable Diffusion 3.5 Large、Stable Diffusion 3.5 Large Turbo 或 Stable Diffusion 3.5 Medium 。

结论

虽然我搜索到的资料中没有详细列出所有步骤,但通过综合多个证据中的信息,可以大致了解如何在本地环境中部署和运行 Stable Diffusion 3.5。

相关文章:

Stable Diffusion 3.5 介绍

Stable Diffusion 3.5 是由 Stability AI 推出的最新一代图像生成模型,是 Stable Diffusion 系列的重要升级版本。以下是关于 Stable Diffusion 3.5 的详细信息: 版本概述 Stable Diffusion 3.5 包含三个主要版本: Stable Diffusion 3.5 L…...

力扣hot100-->滑动窗口、贪心

你好呀,欢迎来到 Dong雨 的技术小栈 🌱 在这里,我们一同探索代码的奥秘,感受技术的魅力 ✨。 👉 我的小世界:Dong雨 📌 分享我的学习旅程 🛠️ 提供贴心的实用工具 💡 记…...

### 2.5.3 二叉树的基本操作

2.5.3 二叉树的基本操作 // 获取树中节点的个数 int size(Node root);// 获取叶子节点的个数 int getLeafNodeCount(Node root);// 子问题思路-求叶子结点个数// 获取第K层节点的个数 int getKLevelNodeCount(Node root,int k);// 获取二叉树的高度 int getHeight(Node root);…...

GAEA 社区:从用户到共同创造者

GAEA 模型最引人注目的方面之一是,它将用户视为共同创造者,而不仅仅是被动的消费者。在许多中心化平台中,用户就是用户。但在 GAEA 的生态系统中,每个人都在推动进步。无论您是贡献计算能力、分享有价值的数据还是帮助改进模型&am…...

记录一个连不上docker中的mysql的问题

引言 使用的debian12,不同发行版可能有些许差异,连接使用的工具是navicat lite 本来是毫无思绪的,以前在云服务器上可能是防火墙的问题,但是这个桌面环境我压根没有使用防火墙。 直到 ying192:~$ mysql -h127.0.0.1 -uroot ERROR 1045 (28…...

doris:MySQL Load

Doris 兼容 MySQL 协议,可以使用 MySQL 标准的 LOAD DATA 语法导入本地文件。MySQL Load 是一种同步导入方式,执行导入后即返回导入结果。可以通过 LOAD DATA 语句的返回结果判断导入是否成功。一般来说,可以使用 MySQL Load 导入 10GB 以下的…...

使用vitepress搭建自己的博客项目

一、介绍can-vitepress-blog 什么是CAN BLOG CAN BLOG是基于vitepress二开的个人博客系统,他能够方便使用者快速构建自己的博客文章,无需繁琐的配置和复杂的代码编写。 CAN BLOG以antdv为UI设计基础,简洁大方,界面友好&#xf…...

Yii框架中的扩展:如何使用外部库

在Yii框架中,扩展功能的一种常见且有效的方式是使用外部库。这些外部库可以帮助开发者实现特定的功能,如调用第三方API、处理图片、生成PDF文件或发送邮件等。以下是使用外部库扩展Yii框架的详细步骤: 一、安装外部库 使用Composer&#xff…...

【Elasticsearch】inference ingest pipeline

Elasticsearch 的 Ingest Pipeline 功能允许你在数据索引之前对其进行预处理。通过使用 Ingest Pipeline,你可以执行各种数据转换和富化操作,包括使用机器学习模型进行推理(inference)。这在处理词嵌入、情感分析、图像识别等场景…...

Linux的基本指令(上)

1.ls指令 语法:ls [选项] [目录或文件] 功能:对于⽬录,该命令列出该⽬录下的所有⼦⽬录与⽂件。对于⽂件,将列出⽂件名以及其他信息。 常用选项: -a 列出⽬录下的所有⽂件,包括以 . 开头的隐含⽂件。 -d 将…...

【贪心算法】洛谷P1106 - 删数问题

2025 - 01 - 22 - 第 46 篇 【洛谷】贪心算法题单 - 【贪心算法】 - 【学习笔记】 作者(Author): 郑龙浩 / 仟濹(CSND账号名) 目录 文章目录 目录P1106 删数问题题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示思路代码 P1106 删数问题 题目描述 键盘输入一个高…...

【人工智能】Python中的知识图谱构建与应用

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 随着人工智能技术的不断发展,知识图谱已成为信息检索、推荐系统、自然语言处理等领域的重要技术之一。本文将详细介绍如何使用Python构建知…...

Spring WebSocket 与 STOMP 协议结合实现私聊私信功能

目录 后端pom.xmlConfig配置类Controller类DTO 前端安装相关依赖websocketService.js接口javascripthtmlCSS 效果展示简单测试连接: 报错解决方法1、vue3 使用SockJS报错 ReferenceError: global is not defined 功能补充拓展1. 安全性和身份验证2. 异常处理3. 消息…...

【Matlab高端绘图SCI绘图模板】第05期 绘制高阶折线图

1.折线图简介 折线图是一个由点和线组成的统计图表,常用来表示数值随连续时间间隔或有序类别的变化。在折线图中,x 轴通常用作连续时间间隔或有序类别(比如阶段1,阶段2,阶段3)。y 轴用于量化的数据&#x…...

java后端之事务管理

Transactional注解:作用于业务层的方法、类、接口上,将当前方法交给spring进行事务管理,执行前开启事务,成功执行则提交事务,执行异常回滚事务 spring事务管理日志: 默认情况下,只有出现Runti…...

常见的多媒体框架(FFmpeg GStreamer DirectShow AVFoundation OpenMax)

1.FFmpeg FFmpeg是一个非常强大的开源多媒体处理框架,它提供了一系列用于处理音频、视频和多媒体流的工具和库。它也是最流行且应用最广泛的框架! 官方网址:https://ffmpeg.org/ FFmpeg 的主要特点和功能: 编解码器支持: FFmpe…...

如何移植ftp服务器到arm板子?

很多厂家提供的sdk,一般都不自带ftp服务器功能, 需要要发人员自己移植ftp服务器程序。 本文手把手教大家如何移植ftp server到arm板子。 环境 sdk:复旦微 Buildroot 2018.02.31. 解压 $ mkdir ~/vsftpd $ cp vsftpd-3.0.2.tar.gz ~/vs…...

牛批,吾爱出品

可能是因为从事IT的原因,我身边的大多数朋友也是从事相关工作的,而IT工作往往需要长时间对着电脑。这样就很容易眼睛疲劳。今天给大家推荐几款,希望有对有需要的小伙伴有所帮助,大家可以收藏以来哦。 CareUEyes CareUEyes是一款绿…...

基于 Android 的日程管理系统的设计与实现

标题:基于 Android 的日程管理系统的设计与实现 内容:1.摘要 基于 Android 的日程管理系统旨在帮助用户更高效地管理个人日程安排。该系统采用了 Android 平台的优势,结合了简洁的界面设计和强大的功能,为用户提供了便捷的日程管理体验。 在设计与实现过…...

Kubectl 与 Helm 详解

在 Kubernetes 生态中,kubectl 和 Helm 是两个核心工具,分别用于直接管理 Kubernetes 资源和简化应用的部署与管理。本文将深入探讨 kubectl 和 Helm 的功能、使用场景、部署与更新方式,并对比它们的优缺点。 1. Kubectl 详解 1.1 什么是 Kubectl? kubectl 是 Kubernetes…...

centos搭建docker registry镜像仓库

centos搭建docker registry镜像仓库 简介 Docker Registry是一个存储和分发Docker镜像的服务。它允许用户上传、下载和管理 Docker 镜像,为容器化应用的部署提供了便利。 拉取镜像 docker image pull registry证书配置 创建镜像仓库的镜像数据目录和证书目录&…...

Pyecharts之饼图与多饼图的应用

在数据可视化领域,饼图是一种常用的图表类型,特别适合展示数据的比例关系。Pyecharts 为我们提供了强大的饼图绘制功能,不仅可以轻松绘制各种饼图,还能对饼图的样式和数据标签进行深度定制,并且可以组合多个饼图以满足…...

51单片机入门_01_单片机(MCU)概述(使用STC89C52芯片;使用到的硬件及课程安排)

文章目录 1. 什么是单片机1.1 微型计算机的组成1.2 微型计算机的应用形态1.3 单板微型计算机1.4 单片机(MCU)1.4.1 单片机内部结构1.4.2 单片机应用系统的组成 1.5 80C51单片机系列1.5.1 STC公司的51单片机1.5.1 STC公司单片机的命名规则 2. 单片机的特点及应用领域2.1 单片机的…...

蓝桥杯LQ1044 求完数

题目描述 因子:因子也叫因数,例如3515,那么3和5是15的因子。 同时15115,那么1和15也是15的因子。 1,3,5,15 这四个因子是15的所有因子。 完数:如果一个数等于不含它本身的其他因子之…...

Django 日志配置实战指南

日志是 Django 项目中不可或缺的一部分,它帮助我们记录应用程序的运行状态、调试信息、错误信息等。通过合理配置日志,我们可以更好地监控和调试应用程序。本文将详细介绍如何在 Django 项目中实现日志文件分割、日志级别控制以及多环境日志配置,并结合最佳实践和代码示例,…...

[笔记] 极狐GitLab实例 : 手动备份步骤总结

官方备份文档 : 备份和恢复极狐GitLab 一. 要求 为了能够进行备份和恢复,请确保您系统已安装 Rsync。 如果您安装了极狐GitLab: 如果您使用 Omnibus 软件包,则无需额外操作。如果您使用源代码安装,您需要确定是否安装了 rsync。…...

php代码审计2 piwigo CMS in_array()函数漏洞

php代码审计2 piwigo CMS in_array()函数漏洞 一、目的 本次学习目的是了解in_array()函数和对项目piwigo中关于in_array()函数存在漏洞的一个审计并利用漏洞获得管理员帐号。 二、in_array函数学习 in_array() 函数搜索数组中是否存在指定的值。 in_array($search,$array…...

随机矩阵投影长度保持引理及其证明

原论文中的引理 2 \textbf{2} 2 1. \textbf{1. } 1. 引理 1 \textbf{1} 1(前提之一) 1.1. \textbf{1.1. } 1.1. 引理 1 \textbf{1} 1的内容 👉前提: X ∼ N ( 0 , σ ) X\sim{}N(0,\sigma) X∼N(0,σ)即 f ( x ) 1 2 π σ e – x 2 2 σ 2 f(x)\text{}…...

蓝桥杯真题 - 三国游戏 - 题解

题目链接:https://www.lanqiao.cn/problems/3518/learning/ 个人评价:难度 2 星(满星:5) 前置知识:贪心 整体思路 先假设魏蜀吴中的某一个势力最终获胜的情况下,如何求出事件发生的最大数量&a…...

Spring 源码学习(七)——注解后处理器-2

五 InitDestroyAnnotationBeanPostProcessor 类 1 属性 InitDestroyAnnotationBeanPostProcessor 类用于处理初始化与销毁注解;其中第一个属性为用于标识初始化方法与销毁方法注解类型的 initAnnotationType 与 destroyAnnotationType 属性、还有一个用于标识执行顺…...

即梦(Dreamina)技术浅析(一)

1.技术架构与核心组件 2.生成模型的具体实现 3.多模态融合技术 4.训练数据与模型优化 5.用户交互与创作流程 6.技术挑战与解决方案 7.未来发展方向 1. 技术架构与核心组件 即梦的技术架构可以分为以下几个核心组件: 1.1 前端用户界面(UI) 功能模块: 文字输入框:用…...

Spring MVC(二)

介绍 Cookie 与 Session Session 类似哈希表,存储了一些键值对结构,Key 就是 SessionID,Vaule 就是用户信息,客户端发起会话的时候,服务器一旦接收,就会创建会话【也就是 Session】,通过 Sessi…...

java求职学习day15

多线程 1 基本概念 1.1 程序和进程的概念 (1)程序 - 数据结构 算法,主要指存放在硬盘上的可执行文件。 (2)进程 - 主要指运行在内存中的可执行文件。 (3)目前主流的操作系统都支持多进程&a…...

Typesrcipt泛型约束详细解读

代码示例: // 如果我们直接对一个泛型参数取 length 属性, 会报错, 因为这个泛型根本就不知道它有这个属性 (() > {// 定义一个接口,用来约束将来的某个类型中必须要有length这个属性interface ILength{// 接口中有一个属性lengthlength:number}function getLen…...

[操作系统] 进程地址空间管理

虚拟地址空间的初始化 缺页中断 缺页中断的概念 缺页中断(Page Fault Interrupt) 是指当程序访问的虚拟地址在页表中不存在有效映射(即该页未加载到内存中)时,CPU 会发出一个中断信号,请求操作系统加载所…...

【fly-iot飞凡物联】(20):2025年总体规划,把物联网整套技术方案和实现并落地,完成项目开发和课程录制。

前言 fly-iot飞凡物联专栏: https://blog.csdn.net/freewebsys/category_12219758.html 1,开源项目地址进行项目开发 https://gitee.com/fly-iot/fly-iot-platform 完成项目开发,接口开发。 把相关内容总结成文档,并录制课程。…...

14-6-1C++STL的list

(一)list容器的基本概念 list容器简介: 1.list是一个双向链表容器,可高效地进行插入删除元素 2.list不可以随机存取元素,所以不支持at.(pos)函数与[ ]操作符 (二)list容器头部和尾部的操作 list对象的默…...

vue2和vue3指令

Vue 2 和 Vue 3 的指令系统非常相似,但 Vue 3 在指令方面进行了优化和扩展。以下是 Vue 2 和 Vue 3 中指令的对比: 1. 通用指令 这些指令在 Vue 2 和 Vue 3 中都可以使用,功能一致: 指令说明v-bind绑定 HTML 属性或组件 propsv-…...

求整数的和与均值(信息学奥赛一本通-1061)

【题目描述】 读入n(1≤n≤10000)个整数,求它们的和与均值。 【输入】 输入第一行是一个整数n,表示有n个整数。 第2~n1行每行包含1个整数。每个整数的绝对值均不超过10000。 【输出】 输出一行,先输出和,再输出平均值(保留到小数点…...

CodeForces 611:New Year and Domino ← 二维前缀和

【题目来源】 https://codeforces.com/contest/611/problem/C 【题目描述】 They say "years are like dominoes, tumbling one after the other". But would a year fit into a grid? I dont think so. Limak is a little polar bear who loves to play. He has r…...

【ROS2】RViz2界面类 VisualizationFrame 详解

1、简述 VisualizationFrame 继承自 QMainWindow 和 WindowManagerInterface; 窗口顶部是常规布局:菜单栏 和 工具栏 窗口中心是 RenderPanel,用来渲染3D画面 周围是dock区域,包括:DisplaysPanel、ViewsPanel、TimePanel、SelectionPanel 和 ToolPropertiesPanel Windo…...

梯度下降法 (Gradient Descent) 算法详解及案例分析

梯度下降法 (Gradient Descent) 算法详解及案例分析 目录 梯度下降法 (Gradient Descent) 算法详解及案例分析1. 引言2. 梯度下降法 (Gradient Descent) 算法原理2.1 基本概念2.2 算法步骤2.3 梯度下降法的变种3. 梯度下降法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案…...

【Flutter】旋转元素(Transform、RotatedBox )

这里写自定义目录标题 Transform旋转元素可以改变宽高约束的旋转 - RotatedBox Transform旋转元素 说明:Transform旋转操作改变了元素的方向,但并没有改变它的布局约束。因此,虽然视觉上元素看起来是旋转了,但它仍然遵循原始的宽…...

大数运算之C语言实现

一、 前言 在我们代码编程过程中,我们经常需要处理各种规模的数值。从日常工作中的一些简单算术在到科学研究中的复杂计算,数字无处不在。然而,当数值变的异常庞大时,就需要用到大数运算来进行实现。本文我们将介绍大数运算的基本…...

三高“高性能、高并发、高可靠”系统架构设计系列文章

目录 高并发系统的艺术:如何在流量洪峰中游刃有余 《数据密集型应用系统设计》读后感与高并发高性能实践案例 系统稳定性与高可用保障的几种思路 软件系统限流的底层原理解析 技术解决方案调研 延迟队列调研 重试调研 异步回调调研 分库分表调研 分布式事…...

Java设计模式 十八 状态模式 (State Pattern)

状态模式 (State Pattern) 状态模式是一种行为型设计模式,它允许对象在其内部状态改变时改变其行为。状态模式让一个对象在其状态改变时,其行为也随之改变,看起来就像是改变了对象的类。通过将状态的变化封装到不同的状态对象中,…...

Django创建纯净版项目并启动

1.Django的基本目录结构 2. 创建app项目 python manage.py startapp user# python manage.py 是固定的,代表python脚本,主要用于django中的项目管理 # startapp 创建app # user 你的app名字,也就是功能模块名称3.数据库 进入settings.…...

[b01lers2020]Life on Mars1

打开题目页面如下 看了旁边的链接,也没有什么注入点,是正常的科普 利用burp suite抓包,发现传参 访问一下 http://5edaec92-dd87-4fec-b0e3-501ff24d3650.node5.buuoj.cn:81/query?searchtharsis_rise 接下来进行sql注入 方法一&#xf…...

element-plus 的table section如何实现单选

如果是单选那么全新的按钮应该隐藏或者不可编辑的状态。但是我没找到改变成不可编辑的方法&#xff0c;只能采取隐藏 <template><!-- 注意要包一层div根元素&#xff0c;否则css样式可能会不生效&#xff0c;原因不详 --><div><el-table ref"proTab…...

利用Qt5.15.2编写Android程序时遇到的问题及解决方法

文章目录 背景1.文件读写 背景 目前我用的是Qt5.15.2来编写Qt程序&#xff0c;环境的配置看我这篇文章【Qt5.15.2配置Android开发环境】 项目中的一些配置的截图&#xff1a; 1.文件读写 假如直接用 QFileDialog::getExistingDirectory来获取路径的话&#xff0c;会得到类…...