python3+TensorFlow 2.x(二) 回归模型
目录
回归算法
1、线性回归 (Linear Regression)
一元线性回归举例
2、非线性回归
3、回归分类
回归算法
回归算法用于预测连续的数值输出。回归分析的目标是建立一个模型,以便根据输入特征预测目标变量,在使用 TensorFlow 2.x 实现线性回归模型时,通常的步骤包括数据预处理、模型构建、训练和评估。
1、线性回归 (Linear Regression)
概述:线性回归是最基本的回归算法之一,假设目标变量与输入特征之间存在线性关系。
模型形式:y=+
+...+
+ϵ,其中 y 是目标变量,x 是特征,βi是权重,ϵ 是误差项。
一元线性回归举例
实现步骤:
导入必要的库。
生成或加载数据预处理:使用生成的线性数据集。生成了一个简单的线性关系 y = 2x + 1,并加上了一些噪声来模拟实际的观测数据。np.linspace 生成 100 个从 0 到 10 的点,np.random.normal 用于生成随机噪声。数据处理:使用 X.reshape(-1, 1) 将 X 变成二维数组,以适应 TensorFlow 的输入要求。
构建线性回归模型:使用 tf.keras.Sequential 创建一个简单的线性模型。只使用一个 Dense 层来表示线性回归,其中 input_dim=1 指明输入特征的维度为 1,output_dim=1 表示输出只有一个预测值。
编译模型:设置损失函数和优化器。使用了 adam 优化器,这是一个常用且效果不错的优化器。损失函数选择 mean_squared_error,这是回归问题中常见的损失函数。
训练模型:使用训练数据来训练模型。model.fit 方法用于训练模型。设置了 200 个 epoch 和10 的批次大小。
评估模型:通过测试数据评估模型性能。model.evaluate 会返回训练集的损失值,用来评估训练过程中的效果.
预测结果:使用训练好的模型进行预测。使用 matplotlib 绘制训练过程中每个 epoch 的损失变化情况,以便观察模型训练的收敛过程,使用 model.predict 来预测训练集上的输出,然后将预测结果与真实数据一起绘制出来,查看模型的拟合效果
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt# 1. 生成数据:y = 2x + 1
np.random.seed(42)
X = np.linspace(0, 10, 100) # 生成100个点,范围是[0, 10]
Y = 2 * X + 1 + np.random.normal(0, 1, X.shape[0]) # y = 2x + 1,加上一些噪声# 2. 数据预处理:将数据转化为TensorFlow的张量(也可以直接使用NumPy数组)
X_train = X.reshape(-1, 1) # 特征,转换成二维数组
Y_train = Y.reshape(-1, 1) # 标签,转换成二维数组# 3. 构建线性回归模型
model = keras.Sequential([keras.layers.Dense(1, input_dim=1) # 只有一个输入特征,输出一个值
])# 4. 编译模型:选择损失函数和优化器
model.compile(optimizer='adam', loss='mean_squared_error')# 5. 训练模型
history = model.fit(X_train, Y_train, epochs=200, batch_size=10, verbose=0)# 6. 评估模型
loss = model.evaluate(X_train, Y_train)
print(f"Final training loss: {loss}")# 7. 绘制训练过程中的损失变化
plt.plot(history.history['loss'])
plt.title('Training Loss Over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()# 8. 预测结果
Y_pred = model.predict(X_train)# 9. 可视化真实数据和预测结果
plt.scatter(X_train, Y_train, color='blue', label='Actual Data')
plt.plot(X_train, Y_pred, color='red', label='Predicted Line')
plt.title('Linear Regression with TensorFlow 2')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()
2、非线性回归
创建合成数据集:使用 NumPy 生成从 -3 到 3 的 100 个点,并计算对应的 y 值为sin(x) 加上一些噪声。
划分训练集和测试集:使用 train_test_split 将数据集划分为训练集和测试集,比例为 80% 训练,20% 测试。
构建曲线拟合模型:使用 tf.keras.Sequential 创建一个简单的神经网络模型,包含两个隐藏层,每层有 64 个神经元,激活函数为 ReLU,最后一层为输出层。
编译模型:使用 Adam 优化器和均方误差损失函数编译模型。
训练模型:使用 fit 方法训练模型,设置训练轮数为 200,批次大小为 10。
进行预测:使用 predict 方法对测试集进行预测。可视化预测结果,使用 Matplotlib 绘制实际值和预测值的散点图。
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split# 1. 创建合成数据集
np.random.seed(0)
X = np.linspace(-3, 3, 100) # 生成从-3到3的100个点
y = np.sin(X) + np.random.normal(0, 0.1, X.shape) # y = sin(x) + 噪声# 2. 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 3. 构建曲线拟合模型
# 将输入数据转换为二维数组
X_train = X_train.reshape(-1, 1)
X_test = X_test.reshape(-1, 1)model = tf.keras.Sequential([tf.keras.layers.Dense(64, activation='relu', input_shape=(1,)), # 隐藏层tf.keras.layers.Dense(64, activation='relu'), # 隐藏层tf.keras.layers.Dense(1) # 输出层
])# 4. 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 5. 训练模型
model.fit(X_train, y_train, epochs=200, batch_size=10, verbose=0)# 6. 进行预测
predictions = model.predict(X_test)# 7. 可视化预测结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test, y_test, color='blue', label='Actual Values') # 实际值
plt.scatter(X_test, predictions, color='red', label='Predicted Values') # 预测值
plt.title('Curve Fitting Regression')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.grid()
plt.show()
3、回归分类
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_regression
import matplotlib.pyplot as plt# 生成回归数据集
X_reg, y_reg = make_regression(n_samples=1000, n_features=1, noise=10, random_state=42)# 生成分类数据集
X_class, y_class = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=42)# 划分训练集和测试集
X_reg_train, X_reg_test, y_reg_train, y_reg_test = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)
X_class_train, X_class_test, y_class_train, y_class_test = train_test_split(X_class, y_class, test_size=0.2, random_state=42)# 创建线性回归模型
model_reg = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,)) # 输入特征为 1,输出为 1
])# 编译模型
model_reg.compile(optimizer='adam', loss='mean_squared_error')# 训练模型
model_reg.fit(X_reg_train, y_reg_train, epochs=100, batch_size=32, verbose=1)# 评估模型
loss_reg = model_reg.evaluate(X_reg_test, y_reg_test, verbose=0)
print(f'回归模型测试集损失: {loss_reg:.4f}')# 可视化回归结果
plt.scatter(X_reg, y_reg, color='blue', label='Data points')
plt.scatter(X_reg_test, model_reg.predict(X_reg_test), color='red', label='Predictions')
plt.title('Linear Regression Results')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.legend()
plt.show()# 创建逻辑回归模型
model_class = tf.keras.Sequential([tf.keras.layers.Dense(1, activation='sigmoid', input_shape=(2,)) # 输入特征为 2,输出为 1
])# 编译模型
model_class.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 训练模型
model_class.fit(X_class_train, y_class_train, epochs=100, batch_size=32, verbose=1)# 评估模型
loss_class, accuracy_class = model_class.evaluate(X_class_test, y_class_test, verbose=0)
print(f'分类模型测试集损失: {loss_class:.4f}, 测试集准确率: {accuracy_class:.4f}')# 可视化分类数据点
plt.scatter(X_class_train[y_class_train == 0][:, 0], X_class_train[y_class_train == 0][:, 1], color='blue', label='Class 0', alpha=0.5)
plt.scatter(X_class_train[y_class_train == 1][:, 0], X_class_train[y_class_train == 1][:, 1], color='red', label='Class 1', alpha=0.5)# 绘制决策边界
x_min, x_max = X_class[:, 0].min() - 1, X_class[:, 0].max() + 1
y_min, y_max = X_class[:, 1].min() - 1, X_class[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = model_class.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, levels=[0, 0.5, 1], alpha=0.2, colors=['blue', 'red'])
plt.title('Logistic Regression Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()
make_classification 是 sklearn.datasets 模块中的一个函数,用于生成用于分类的合成数据集。可以通过不同的参数来控制生成数据的特性。
参数解释:n_samples: 生成的样本数量。
n_features: 特征的总数。设置为 2,表示每个样本有 2 个特征。
n_informative: 有效特征的数量,这些特征对分类任务有贡献。设置为 2,表示所有特征都是有效特征。
n_redundant: 冗余特征的数量,这些特征是通过线性组合生成的有效特征。设置为 0,表示没有冗余特征。
n_clusters_per_class: 每个类别的聚类数量。设置为 1,表示每个类别只有一个聚类。
random_state: 随机种子,用于确保结果的可重复性。设置为 42。
make_regression 是 sklearn.datasets 模块中的一个函数,用于生成用于回归的合成数据集。
参数解释:n_samples: 生成的样本数量。
n_features: 特征的总数。比如设置为 1,表示每个样本有 1 个特征。
n_informative: 有效特征的数量,这些特征对目标变量有贡献。比如设置为 1,表示所有特征都是有效特征。
n_targets: 目标变量的数量。默认值为 1,表示生成一个目标变量。
bias: 截距项,表示模型的偏置。可以设置为一个常数,比如 0。
noise: 添加到输出中的噪声的标准差。可以设置为一个浮点数,如 0.1表示添加一定的随机噪声。
random_state: 随机种子,用于确保结果的可重复性。可以设置为一个整数,比如 42。
相关文章:
python3+TensorFlow 2.x(二) 回归模型
目录 回归算法 1、线性回归 (Linear Regression) 一元线性回归举例 2、非线性回归 3、回归分类 回归算法 回归算法用于预测连续的数值输出。回归分析的目标是建立一个模型,以便根据输入特征预测目标变量,在使用 TensorFlow 2.x 实现线性回归模型时&…...
lombok 没生效 java: 找不到符号 符号: 方法 setName(java.lang.String)
今天使用lombok 添加了 Data注解 set方法却没起效 解决方法 1 给lombok 添加版本号 再maven刷新下 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.8</version><optional>…...
uiautomator2教程
一、简介 uiautomator2 是一个 Python 库,用于 Android 的 UI 自动化测试,底层基于 Google uiautomator。 二、安装 1、安装adb 2、pip install uiautomator2 3、设备安装 atx - agent,python -m uiautomator2 init 4、安装weditor&…...
旅游风景的代码项目
敦煌莫高窟:用代码打开千年艺术的大门 ——一个零基础也能看懂的神奇项目 前言:当古老艺术遇上现代代码 想象一下,你坐在电脑前,指尖轻轻一点,就能穿越到敦煌莫高窟——看飞天的衣袂飘飘、听千年的驼铃声声。这不是科…...
【后端开发】字节跳动青训营之性能分析工具pprof
性能分析工具pprof 一、测试程序介绍二、pprof工具安装与使用2.1 pprof工具安装2.2 pprof工具使用 资料链接: 项目代码链接实验指南pprof使用指南 一、测试程序介绍 package mainimport ("log""net/http"_ "net/http/pprof" // 自…...
【测试】-- 认识测试
1. 软件测试定义 软件测试就是验证软件产品特性(功能、性能、界面、易用性等)是否满足用户的需求。 2. 测试的岗位 软件测试开发工程师(测开) 开发:开发测试效率工具(自动化、性能测试、覆盖率等&#x…...
浏览器hid 和蓝牙bluetooth技术区别
HID与蓝牙技术区别 引言 在前端开发中,与外部设备的交互越来越重要,尤其是在移动设备和物联网设备日益普及的今天。HID(Human Interface Device)和蓝牙(Bluetooth)是两种常用的技术,用于实现设备…...
PCIE模式配置
对于VU系列FPGA,当DMA/Bridge Subsystem for PCI Express IP配置为Bridge模式时,等同于K7系列中的AXI Memory Mapped To PCI Express IP。...
mysql 学习3 SQL语句--整体概述。SQL通用语法;DDL创建数据库,查看数据库,删除数据库,使用数据库;
SQL通用语法 SQL语句分类 DDL data definition language : 用来创建数据库,创建表,创建表中的字段,创建索引。因此成为 数据定义语言 DML data manipulation language 有了数据库和表以及字段后,那么我们就需要给这个表中 添加数…...
Swing使用MVC模型架构
什么是MVC模式? MVC是一组英文的缩写,其全名是Model-View-Controller,也就是“模型-视图-控制器”这三个部分组成。这三个部分任意一个部分发生变化都会引起另外两个发生变化。三者之间的关系示意图如下所示: MVC分为三个部分,所以在MVC模型中将按照此三部分分成三…...
Java定时任务实现方案(二)——ScheduledExecutorService
这篇笔记,我们要来介绍实现Java定时任务的第二个方案,使用ScheduledExecutorService,以及该方案的优点和缺点。 ScheduledExecutorService是Java并发包java.util.concurrent中用于执行定时任务和周期性任务的接口,它拓展了Executo…...
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
在本系列的上篇中,小李哥为大家介绍了如何在亚马逊云科技上给社交数字营销场景创建AI代理的方案,用于社交动态的生成和对文章进行推广曝光。在本篇中小李哥将继续本系列的介绍,为大家介绍如何创建主代理,将多个子代理挂载到主代理…...
Leecode刷题C语言之收集所有金币可获得的最大积分
执行结果:通过 执行用时和内存消耗如下: int dfs(int node, int parent, int f, int* coins, int k, int **children, int *childCount, int **memo) {if (memo[node][f] ! -1) {return memo[node][f];}int res0 (coins[node] >> f) - k;int res1 coins[no…...
STM32_SD卡的SDIO通信_基础读写
本篇将使用CubeMXKeil, 创建一个SD卡读写的工程。 目录 一、SD卡要点速读 二、SDIO要点速读 三、SD卡座接线原理图 四、CubeMX新建工程 五、CubeMX 生成 SD卡的SDIO通信部分 六、Keil 编辑工程代码 七、实验效果 实现效果,如下图: 一、SD卡 速读…...
新手理解:Android 中 Handler 和 Thread.sleep 的区别及应用场景
新手理解:Android 中 Handler 和 Thread.sleep 的区别及应用场景 Handler 是啥?Handler 的几个核心功能: Thread.sleep 是啥?Thread.sleep 的核心特点: 两者的区别它们的应用场景1. Handler 的应用场景2. Thread.sleep…...
C语言-----扫雷游戏
扫雷游戏的功能说明 : • 使⽤控制台实现经典的扫雷游戏 • 游戏可以通过菜单实现继续玩或者退出游戏 • 扫雷的棋盘是9*9的格⼦ • 默认随机布置10个雷 • 可以排查雷: ◦ 如果位置不是雷,就显⽰周围有⼏个雷 ◦ 如果位置是雷,就…...
监控与调试:性能优化的利器 — ShardingSphere
在分布式数据库系统中,监控和调试是确保系统高效运行的关键。ShardingSphere 提供了多种监控和调试工具,帮助开发者实时跟踪和优化性能,识别瓶颈,进行故障排查,从而提升系统的稳定性和响应速度。本文将介绍如何使用 Sh…...
Kubernetes相关知识入门详解
一、Pod的滚动升级 1.服务升级的一般思路:停止与该服务相关的所有服务pod,重新拉去更新后的镜像并启动。这种方法存在一个比较现实的问题是逐步升级导致较长时间的服务不可用。 2.Kubernetes滚动升级的思路:通过滚动升级的命令创建新的rc&…...
多层 RNN原理以及实现
数学原理 多层 RNN 的核心思想是堆叠多个 RNN 层,每一层的输出作为下一层的输入,从而逐层提取更高层次的抽象特征。 1. 单层 RNN 的数学表示 首先,单层 RNN 的计算过程如下。对于一个时间步 t t t,单层 RNN 的隐藏状态 h t h_t…...
Unity阿里云OpenAPI 获取 Token的C#【记录】
获取Token using UnityEngine; using System; using System.Text; using System.Linq; using Newtonsoft.Json.Linq; using System.Security.Cryptography; using UnityEngine.Networking; using System.Collections.Generic; using System.Globalization; using Cysharp.Thr…...
java+vue项目部署记录
目录 前言 一、java和vue 二、部署记录 1.获取代码 2.运行前端 3.运行后端 三、其他 1.nvm 总结 前言 近期工作需要部署一套javavue前后分离的项目,之前都略有接触,但属于不及皮毛的程度,好在对其他开发语言、html js这些还算熟&am…...
PID 控制算法(二):C 语言实现与应用
在本文中,我们将用 C 语言实现一个简单的 PID 控制器,并通过一个示例来演示如何使用 PID 控制算法来调整系统的状态(如温度、速度等)。同时,我们也会解释每个控制参数如何影响系统的表现。 什么是 PID 控制器…...
深入MapReduce——计算模型设计
引入 通过引入篇,我们可以总结,MapReduce针对海量数据计算核心痛点的解法如下: 统一编程模型,降低用户使用门槛分而治之,利用了并行处理提高计算效率移动计算,减少硬件瓶颈的限制 优秀的设计,…...
在Spring Boot中使用SeeEmitter类实现EventStream流式编程将实时事件推送至客户端
😄 19年之后由于某些原因断更了三年,23年重新扬帆起航,推出更多优质博文,希望大家多多支持~ 🌷 古之立大事者,不惟有超世之才,亦必有坚忍不拔之志 🎐 个人CSND主页——Mi…...
Qt实践:一个简单的丝滑侧滑栏实现
Qt实践:一个简单的丝滑侧滑栏实现 笔者前段时间突然看到了侧滑栏,觉得这个抽屉式的侧滑栏非常的有趣,打算这里首先尝试实现一个简单的丝滑侧滑栏。 首先是上效果图 (C,GIF帧率砍到毛都不剩了) QProperty…...
基于ESP32-IDF驱动GPIO输出控制LED
基于ESP32-IDF驱动GPIO输出控制LED 文章目录 基于ESP32-IDF驱动GPIO输出控制LED一、点亮LED3.1 LED电路3.2 配置GPIO函数gpio_config()原型和头文件3.3 设置GPIO引脚电平状态函数gpio_set_level()原型和头文件3.4 代码实现并编译烧录 一、点亮LED 3.1 LED电路 可以看到&#x…...
OpenCV文字绘制支持中文显示
OpenCV版本:4.4 IDE:VS2019 功能描述 OpenCV绘制文本的函数putText()不支持中文的显示,网上很多方法推荐的都是使用FreeType来支持,FreeType是什么呢?FreeType的官网上有介绍 FreeType官网 https://www.freetype.or…...
jenkins-k8s pod方式动态生成slave节点
一. 简述: 使用 Jenkins 和 Kubernetes (k8s) 动态生成 Slave 节点是一种高效且灵活的方式来管理 CI/CD 流水线。通过这种方式,Jenkins 可以根据需要在 Kubernetes 集群中创建和销毁 Pod 来执行任务,从而充分利用集群资源并实现更好的隔离性…...
消息队列篇--基础篇(消息队列特点,应用场景、点对点和发布订阅工作模式,RabbmitMQ和Kafka代码示例等)
1、消息队列的介绍 消息(Message)是指在应用之间传送的数据,消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象。 消息队列(Message Queue,简称MQ)…...
Jetpack架构组件学习——使用Glance实现桌面小组件
基本使用 1.添加依赖 添加Glance依赖: // For AppWidgets supportimplementation "androidx.glance:glance-appwidget:1.1.0"// For interop APIs with Material 3implementation "androidx.glance:glance-material3:1.1.0"// For interop APIs with Mater…...
go读取excel游戏配置
1.背景 游戏服务器,配置数据一般采用csv/excel来作为载体,这种方式,策划同学配置方便,服务器解析也方便。在jforgame框架里,我们使用以下的excel配置格式。 然后可以非常方便的进行数据检索,例如ÿ…...
Linux系统下速通stm32的clion开发环境配置
陆陆续续搞这个已经很久了。 因为自己新电脑是linux系统无法使用keil,一开始想使用vscode里的eide但感觉不太好用;后面想直接使用cudeide但又不想妥协,想趁着这个机会把linux上的其他单片机开发配置也搞明白;而且非常想搞懂cmake…...
快慢指针及原理证明(swift实现)
目录 链表快慢指针一、快慢指针基本介绍二、快慢指针之找特殊节点1.删除链表的倒数第k个结点题目描述解题思路 2.链表的中间节点题目描述解题思路 三、快慢指针之环形问题1.判断环形链表题目描述解题思路 2.判断环形链表并返回入环节点题目描述解题思路 3.变种——判断快乐数题…...
web前端3--css
注意(本文一切代码一律是在vscode中书写) 1、书写位置 1、行内样式 //<标签名 style"样式声明"> <p style"color: red;">666</p> 2、内嵌样式 1、style标签 里面写css代码 css与html之间分离 2、css属性:值…...
一文大白话讲清楚webpack基本使用——5——babel的配置和使用
文章目录 一文大白话讲清楚webpack基本使用——5——babel的配置和使用1. 建议按文章顺序从头看,一看到底,豁然开朗2. babel-loader的配置和使用2.1 针对ES6的babel-loader2.2 针对typescript的babel-loader2.3 babel配置文件 一文大白话讲清楚webpack基…...
Python自动化运维:一键掌控服务器的高效之道
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在互联网和云计算高速发展的今天,服务器数量的指数增长使得手动运维和管理变得异常繁琐。Python凭借其强大的可读性和丰富的生态系统,成为…...
基于quartz,刷新定时器的cron表达式
文章目录 前言基于quartz,刷新定时器的cron表达式1. 先看一下测试效果2. 实现代码 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。 而且听说点赞的人每天的运气都不会太差&…...
HTML常用属性
HTML标签的常见属性包括许多不同的功能,可以为元素提供附加信息或控制元素的行为。以下是一些常见的属性及其解释: 1. src 描述:src(source)属性指定一个资源的路径,通常用于图像、音频、视频等标签。常见…...
在 Babylon.js 中使用 Gizmo:交互式 3D 操作工具
在 3D 应用程序中,交互式操作对象(如平移、旋转、缩放)是一个常见的需求。Babylon.js 提供了一个强大的工具——Gizmo,用于在 3D 场景中实现这些功能。本文将介绍如何在 Babylon.js 中使用 Gizmo,并展示如何通过代码实…...
蓝桥杯练习日常|递归-进制转换
蓝桥云课760数的计算 一、递归 题目: 我的解题代码: #include <iostream> using namespace std; int sum0; int main() {// 请在此输入您的代码int n;cin>>n;int fun(int n);fun(n); cout<<sum<<\n;return 0; } // void fu…...
LabVIEW滤波器选择与参数设置
在信号处理应用中,滤波器是去除噪声、提取目标信号的重要工具。LabVIEW 提供多种类型的滤波器(如低通、高通、带通、带阻),用户需要根据采样频率、信号特性和应用需求合理选择滤波器类型及参数设置。本文以 采样率 100kHz…...
【c语言日寄】Vs调试——新手向
【作者主页】siy2333 【专栏介绍】⌈c语言日寄⌋:这是一个专注于C语言刷题的专栏,精选题目,搭配详细题解、拓展算法。从基础语法到复杂算法,题目涉及的知识点全面覆盖,助力你系统提升。无论你是初学者,还是…...
C#中的Timers.Timer使用用法及常见报错
System.Timers.Timer 是一个基于服务器的计时器,它可以在应用程序中定期触发事件。这个计时器特别适合用于多线程环境,并且不应该与用户界面(UI)直接交互。在 ASP.NET 中,通常使用 System.Timers.Timer 来处理周期性的任务。 主要使用步骤&am…...
chrome小插件:长图片等分切割
前置条件: 安装有chrome谷歌浏览器的电脑 使用步骤: 1.打开chrome扩展插件 2.点击管理扩展程序 3.加载已解压的扩展程序 4.选择对应文件夹 5.成功后会出现一个扩展小程序 6.点击对应小程序 7.选择图片进行切割,切割完成后会自动保存 代码…...
mysql数据被误删的恢复方案
文章目录 一、使用备份恢复二、使用二进制日志(Binary Log)三、使用InnoDB表空间恢复四、使用第三方工具预防措施 数据误删是一个严重的数据库管理问题,但通过合理的备份策略和使用适当的恢复工具,可以有效地减少数据丢失的风险…...
K8S-Pod资源清单的编写,资源的增删改查,镜像的下载策略
1. Pod资源清单的编写 1.1 Pod运行单个容器的资源清单 ##创建工作目录 mkdir -p /root/manifests/pods && cd /root/manifests/pods vim 01-nginx.yaml ##指定api版本 apiVersion: v1 ##指定资源类型 kind: Pod ##指定元数据 metadata:##指定名称name: myweb ##用户…...
Unity Line Renderer Component入门
Overview Line Renderer 组件是 Unity 中用于绘制连续线段的工具。它通过在三维空间中的两个或两个以上的点的数组,并在每个点之间绘制一条直线。可以绘制从简单的直线到复杂的螺旋线等各种图形。 1. 连续性和独立线条 连续性:Line Renderer 绘制的线条…...
计算机工程:解锁未来科技之门!
计算机工程与应用是一个充满无限可能性的领域。随着科技的迅猛发展,计算机技术已经深深渗透到我们生活的方方面面,从医疗、金融到教育,无一不在彰显着计算机工程的巨大魅力和潜力。 在医疗行业,计算机技术的应用尤为突出。比如&a…...
翻译:How do I reset my FPGA?
文章目录 背景翻译:How do I reset my FPGA?1、Understanding the flip-flop reset behavior2、Reset methodology3、Use appropriate resets to maximize utilization4、Many options5、About the author 背景 在写博客《复位信号的同步与释放(同步复…...
在Unity中使用大模型进行离线语音识别
文章目录 1、Vosk下载下载vosk-untiy-asr下载模型在项目中使用语音转文字音频转文字2、whisper下载下载unity项目下载模型在unity中使用1、Vosk 下载 下载vosk-untiy-asr Github链接:https://github.com/alphacep/vosk-unity-asr 进不去Github的可以用网盘 夸克网盘链接:h…...